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Abstract. 
The philosophy of evolution of the species, which is 

copied by evolutionary algorithms, is intended to be 
unfair. The best individuals compete against the worst 
ones and generally supplant them. The competition is 
unfair because individuals with different skills are 
included in the same scenario, being evaluated in a 
rudimentary way: only the best will survive. However, 
the population diversity is important to preserve 
important features that not always make the individual a 
strong competitor. This diversity can be reached 
keeping the competition among individuals fairer. In 
this work, an adaptive hierarchical fair competition 
genetic algorithm is implemented in a parallel 
environment and is applied to standard numerical 
optimization problems taken from the literature. The 
code was paralleled using the MPI (Message Passing 
Interface) communication library and executed in a 
distributed memory parallel machine, a PC cluster. 

1. Introduction 
The basic idea of genetic algorithms is to store a 

population of individuals (or chromosomes), 
representing candidate solutions for concrete problems, 
that evolves along the time (or generations) through a 
competition process, where the most adapted (better 
fitness) have better survival and reproduction 
possibilities. The evolutionary process is based on 
individuals' selection and modification of the solutions 
that they represent through genetic operators as 
crossover and mutation. In function parameter 
optimization, real-coded genetic algorithms have been 
successively applied and authors have reported the 
easiness and flexibility of its implementation [1].  

Sequential GAs have been shown to be very 
successful in many applications and in very different 
domains. However some problems could be better 
addressed with some form of Parallel GA (PGA). For 
some kind of problems, the population needs to be very 

large and the memory required to store each individual 
might be considerable. In some cases, this makes it 
impossible to run an application efficiently using a 
single processor. Besides, sequential GAs may get 
trapped in a sub-optimal region of the search space thus 
becoming unable to find better quality solutions, 
especially for very large search space. PGAs can search 
in parallel different search subspaces or in different 
visions of such subspaces, thus making it less likely to 
become trapped by low-quality subspaces.  

However, the most important advantage of PGAs is 
that in many cases they provide better performance than 
single population-based algorithms. The reason is that 
multiple populations permit speciation, a process by 
which different populations evolve in different 
directions. Thus, Parallel GAs are not only extensions of 
the traditional GA sequential model, but they can 
represent even a new paradigm that searches the space 
of solutions differently.  The only problem that one has 
to face to use PGAs is to choose the parallel model to be 
adopted. 

A recent parallel model, the Hierarchical Fair 
Competition (HFC), was proposed by (Hu et al., 2002) 
and is inspired by stratified competition often observed 
in society[2]. Subpopulations are stratified by fitness in 
castes or classes of individuals with different skills. 
Individuals move from low-fitness to higher-fitness 
subpopulations if and only if they exceed the fitness-
based admission threshold of the receiving 
subpopulations.  

HFC was applied to real-world analog circuit 
synthesis problem using a genetic programming (HFC-
GP)[2]. This work describes the preliminary results of 
the HFC using a real-coded genetic algorithm (HFC-
GA) applied to numerical optimization. The HFC-GA 
was paralleled using the Message-Passing Interface 
(MPI). 

This paper is organized as follows. In section 2, are 
presented some parallel evolutionary models. Section 3 
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takes the guidelines of the HFC model. An adaptive 
hierarchical fair competition genetic algorithm and the 
results obtained for numerical optimization are 
presented in Section 4.  

2. Parallel Evolutionary Models 

The way in which GAs can be paralleled depends 
upon elements such as: a) how individual's evaluation 
and genetic operators are performed; b) whether single 
or multiple (how many?) subpopulations (demes) are 
used; c) how individuals are exchanged; etc. Some of 
the models found in the literature can be classified into 
classes[3]: 

a) Master-Slave (global) parallelization;  
b) Subpopulations with migration; 
c) Subpopulations with static overlapping; 
d) Subpopulations with dynamic overlapping. 

In Master-Slave model, only evaluation of 
individuals and genetic operators are paralleled and 
such parallel processes are all dependents of the master 
process.  This kind of global parallelization simply 
shows how easy it can be to transpose any genetic 
algorithm onto a parallel processor, without changing 
anything of the nature of the algorithm.  

Multiple-deme (subpopulations) GAs are the most 
popular parallelization model. Depending upon number 
and the size of the demes, they can be called coarse or 
fine-grained models. 

Coarse-grained algorithms are a general term for a 
subpopulation model with a relatively small number of 
demes with many individuals. These models are 
characterized by the relatively long time they require for 
processing a generation within each deme, and by their 
occasional communication for exchanging individuals 
(migration operator).  

In fine-grained models, on the other hand, the 
population is divided into a large number of small 
demes.  Inter-deme communication is realized either by 
using a migration operator, or by using overlapping 
demes.  

The communication between demes can be 
performed, basically, by migration or overlapping (static 
or dynamic).  The migration of individuals is controlled 
by several parameters, such as:  

a) The topology that defines the connections 
between demes; 

b) The frequency of migration and the amount of 
individuals exchanged; 

c) The strategy of migration, i.e., the profile of 
the individuals to be exchanged. 

In overlapping schema, overlapping areas are 
defined between demes, following some kind of 
topology, where some individuals belong to more than 
one deme. The improvement obtained by one deme is 
propagated through all demes by these areas.  

In coarse-grained models, many topologies can be 
defined to connect the demes, but the most common 
models are the island model and the stepping-stones 
model. In the basic island model, migration can occur 
between any subpopulations, whereas in the stepping 
stone demes are disposed on a ring and migration is 
restricted to neighboring demes.  

Choosing the frequency for migration and which 
individuals should migrate appears to be more 
complicated than the choice of the topology. Migrations 
should occur after a time long enough for allowing the 
development of goods characteristics in each 
subpopulation. 

The greater advantage of the coarse-grained and 
fine-grained models is the possibility of better exploring 
the parallel potentialities. However, the coarse-grained 
model, in general, has smaller cost to be implemented 
(minor complexity of hardware and software). 

 
Figure 1 – Island and stepping-stones models. 

3. Hierarchical Fair Competition model 
The premature convergence of genetic algorithms is 

a problem to be overcome. The convergence is 
desirable, but must be controlled in order that the 
population does not get trapped in local optima.  Even 
in dynamic-sized populations, the high-fitness 
individuals supplant the low-fitness or are favorites to 
be selected, dominating the evolutionary process. The 
philosophy of evolution of the species, which is copied 
by evolutionary algorithms, is unfair because 
individuals with different skills are put in the same 
scenario and are evaluated in one-dimensional way: 
only the best will survive.  

On the other hand, the population diversity is 
important to keep samples of solutions dispersed in 
search space, increasing the probability of finding out 
the global optima in multi-modal optimization 
problems.  The population diversity could be reached 
keeping the competition among individuals fairer.  

The Hierarchical Fair Competition (HFC) model is 
originated from an effort to avoid the premature 
convergence in traditional evolutionary algorithms[2]. 
The fair competition is obtained in HFC model by 



dividing the individuals in independent castes or classes 
according with their skills.   

Such model is frequently observed in several 
advanced societies.  In human society, competitions are 
often organized in to hierarchy of levels. None of them 
will allow unfair competition. For example, a primary 
student will not normally compete against graduate 
students in academic system.  Even in cruel ecological 
systems, one can observe mechanisms of parental care 
to protect the young and allowing them to grow up and 
develop their full potentials. 

 
Figure 2 – Fair competition in educational system. 

In HFC model, multiple demes are organized in a 
hierarchy, in which each deme can only accommodate 
individuals within a specified range of fitness. The 
universe of fitness values must have a deme 
correspondence. Each deme has an admission threshold 
that determines the profile of the fitnesses in each deme. 
Individuals are moved from low-fitness to higher-fitness 
subpopulations if and only if they exceed the fitness-
based admission threshold of the receiving 
subpopulations.  Thus, one can note that HFC model 
adopts a unidirectional migration operator, where 
individuals can move to superior levels, but not to 
inferior ones.  

The following figure illustrates the topology of HFC 
model. The arrows indicate the moving direction 
possibilities. The access deme (primary level) can send 
individuals to all other demes and the elite deme only 
can receive individuals from the others. One can note 
that, with respect to topology, HFC model is a specific 
case of island model, where only some moves are 
allowed.  

Considering, the frequency of migration, authors 
have proposed that individuals must be moved away in 
regular intervals, using admission buffers to collect 
qualified candidates from other populations. The 
strategy to determine what individuals must be 
exchanged is not flexible. All individuals with fitness 
outside the fitness range of their deme (superior 
individuals) must be exported to admission buffer of the 

appropriate subpopulation. The amount of individuals to 
be exchanged cannot be determined and will depend 
upon the number of superior individuals of each level at 
each exchange time. 

An important feature can be incorporated to the HFC 
model: to work with a heterogeneous evolutionary 
environment. Once each subpopulation evolves 
individuals with different profiles, subpopulations can 
have different sizes, evolutionary operators and other 
parameters [2]. The HFC model allows employing 
different strategies of exploration and exploitation in 
each subpopulation. 

 
Figure 3 - HFC topology 

The fitness range is determined considering the 
problem at hand and the number of demes. The authors 
suggest an adaptive schema using a calibration stage 
with few generations to capture an initial range of 
fitness values, based upon average fµ, standard 
deviation σf, and the best fitness fmin. Afterwards, the 
initial population is divided into subpopulations, 
according to the individuals’ fitness and moved to their 
respective demes. In regular generation intervals, the 
admission thresholds of all demes (but the access deme) 
are updated (update stage), evaluating fµ, σf, and fmin 
again. The calibration and update stages together are 
employed to avoid the need of previous knowledge 
about the problem at hand, incorporating an adaptive 
feature to the algorithm.  

For maximization problems, the admission threshold 
ALi of each level can be calculated by the following 
formula: 

Access level 0:  AL0 = + ∞  (1) 

Elite level N-1:  ALN-1 = fmin - σf  (2) 

Admission threshold of the other intermediary levels 
Li (i=1,…,N-2), where N is the number of demes, is 
given by:   

ALi = fµ + (Li-1) x (fmin - σf - fµ)/(N - 2),   (3) 

 



4. Computational tests  
An Adaptive Hierarchical Fair Competition Genetic 

Algorithm (AHFCGA) was implemented using 
Message-Passing Interface (MPI) and was applied to 
numerical optimization problems. In this section, the 
novelties of this implementation and the computational 
tests are presented. 

4.1 The AHFCGA 
Some new features were implemented in this version 

of AHFCGA that was relevant to reach a greater fidelity 
to the HFC model. Differently that has been done by the 
authors, in previous works, the moving of the 
individuals is fully asynchronous and individuals 
belonging to superior levels do not participate anyway 
of the evolutionary process in an inferior level.  In other 
words, the superior individuals are put on output buffer 
to be exported as soon they are generated or selected. 

At beginning, all processors in parallel do the 
calibration stage. The average of fµ, σf, and fmin are 
considered in calculation of the admission thresholds 
(see (1), (2) and (3)). In the following update stages, the 
same process is done, but fµ, σf, and fmin of the access 
level is not considered, due to the greater instability that 
can be inserted in the system. The authors suggest 
somewhat similar, except by considering only elite 
deme for calculations [2]. 

After the calibration stage, each deme has three 
kinds of individuals: the inferior, the belonging and the 
superior ones.  The access deme has no inferior 
individual and the elite deme has no superior one. In 
previous works, the superior individuals are kept in 
deme a number of generations afterwards they are 
exported to their respective demes. This feature allows 
the synchronous exchange of individuals, once all 
demes can run a fixed number of generation and 
stopping for receiving individuals. In this work, an 
asynchronous exchange is implemented. Whenever a 
superior individual is selected, it moved to output buffer 
and it is not matched to crossover operation, not 
participating of the evolutionary process in that deme. 
Another individual is then selected out in his place to 
crossover. In the same way, whenever a superior 
individual is generated by crossover, it is moved to 
output buffer immediately.  

When output buffer is full or after a maximum 
number of iterations, the evolutionary process is stopped 
and all superior individuals are exported, emptying the 
buffer. In following, incoming individuals (from inferior 
levels) are received (if there exist) and moved from 
admission buffer to regular subpopulation. The sending 
and receiving movements are made asynchronously. 
There is no exact time to exchange.  

The pseudo-code of the AHFCGA is presented in 
following. The procedure EvolveDeme(P,MAX_GEN) runs 

a real-coded GA until the output buffer is full or a 
maximum number of iterations. The worst individual is 
always chosen to be replaced by the incoming 
individual (steady-state updating)[4]. The stop criteria 
can be a specific number maximum of generations or 
the success to find the best-known solution. The 
procedure Complement_Population(P) is run only in 
access level, filling the free space caused by exported 
individuals. One can say that access level would work 
as permanent generator of individuals, feeding the 
whole population with new genetic material during all 
time life[2]. 

Initialize_Population(P); 
Calibration_stage; 
do  
 if (UPDATING_TIME) then 
   Compute_Local  (fµ, σf, fmin); 
   Compute_Global (fµ, σf, fmin) 
   Send (Admission_Thresholds, ALL_DEMES); 
 end_if 
 EvolveDeme(P,MAX_ITERATIONS); 
 while (OUTPUT_BUFFER NOT EMPTY) 
   Send (Individual, RESPECTIVE_DEME); 
 end_while 
 if (ACCESS_DEME)  then 
   Complement_Population(P); 
 else  
   while (THERE_EXIST_INCOMING_INDIVIDUAL) 
     Receive (Individual, ANY_WHERE); 
     Update_Population(P, Individual); 
   end_while 
 endif 
while(NOT STOP_CRITERIA); 

4.2 The Test functions  
There exist many applications related to function 

parameter optimization (numerical optimization) well 
suitable to evolutionary algorithm application, such as 
neural network training, fuzzy set optimization, inverse 
problems, and others. 

Several test functions can be found in literature and, 
frequently, many researchers have used them to study 
the performance of optimization algorithms. In this 
work, a small set of well-known test-functions was used 
as benchmark. The test functions rosenbrock, schwefel, 
griewangk, and rastringin are specially interesting due 
to be generalized functions, i.e., they can be set with n-
dimensional variables. In the Figure 4, the test functions 
are shown. 

 
Figure 4 – Test functions 



The parameter N of the test functions is the number 
of variables to be optimized in order that the value of f 
is minimized. In the experiments, N was set with high 
values to try the effectiveness of the implementation for 
large-scale problems. More information about the 
benchmark can be obtained in [5-6]. 

4.3 The experiments 
For the computational tests, some parameters of 

AHFCGA were set.  Following the suggestion found in 
[2], the calibration stage was run with 10 generations 
and the update stage procedure was called in intervals of 
10 generations. The whole execution was limited to 
20x106 of objective function calls (reached by anyone of 
processors). The population and buffer sizes were set as 
500 each. Other genetic parameter settings, as mutation 
rate, and evolutionary operators can be found in  [4]. 

Once adjusted, 5 trials were performed with each 
one the 4 test functions. The best-found solution (FS), 
number of function calls (FC) and execution time (ET) 
were considered to evaluate the algorithm performance. 
FS is the average of all best solutions found in all trials; 
ET is the average of all worst execution times in all 
trials and FC is increased whenever an individual is 
evaluated with respect to objective function (fitness). 

The access deme has the feature of complementing the 
population and thus it has always a greater number of 
function calls. The following equations show how FS, 
FC and ET are calculated: 

))((min td
DT FSaverageFS =  (4) 

))(( td
DT FCaverageaverageFC =  (5) 

))((max td
DT ETaverageET =  (6) 

where <operation>T means an operation over all trials 
(5 trials), <operation>D means the operation over all 
demes (from 4 up to 8 demes).   

In order to better evaluate the AHFCGA 
performance, it was employed a Sequential Real-coded 
GA (SRGA) similar to it with respect to parameters and 
genetic operators. A first attempt of exploring a 
heterogeneous evolutionary environment was made in 
this work. Different set of evolutionary operators was 
used in access and elite demes. In the access deme, a 
more aggressive blind mutation was employed to cause 
population instability (no convergence). Whereas, in the 
elite deme, a local search operator had the objective of 
accelerating the convergence rate. 

  Table I – Comparison between AHFCGA and a SRGA without local search 
Problem    AHFCGA    SRGA   

Function(N) Expected solution Found solution Function calls Time(s) Processors Found solution Function calls Time(s) 

Gri(300) 0,001 0,003 18.148.679,200 9.621,071 5 0,024 20.000.400,232 2.291,350 

Gri(500) 0,001 0,008 14.652.728,600 16.404,450 5 2,735 20.000.941,554 2.724,560 

Ros(300) 0,001 492,450 15.134.845,666 27.682,733 6 292,324 20.000.327,320 3.853,870 

Ros(500) 0,001 293,881 14.906.582,000 13.900,931 8 508,006 20.000.743,199 4.929,760 

Sch(300) -125.694,872 -112.666,556 15.423.303,500 9.489,012 6 -119.015,114 20.000.569,543 1.631,580 

Sch(500) -209.491,454 -168.550,906 15.075.617,166 14.537,990 8 -152.370,806 20.000.998,011 2.139,420 

Ras(300) 0,001 16,798 13.962.687,000 7.941,095 5 0,014 20.000.353,176 2.105,270 

Ras(500) 0,001 47,210 19.265.249,200 13.875,082 5 56,252 20.000.513,101 2.767,930 

Table II – Comparison between AHFCGA and a SRGA running in 5 processors with local search 
Problem    AHFCGA   SRGA   

Function(N)  Expected solution Found solution Function calls Time(s) Found solution Function calls Time(s) 

Gri(50) 0,001 0,002 6.760.905,000 609,786 0,015 20.000.733,453 401,980 

Gri(100) 0,001 0,002 8.079.508,750 1.211,795 0,017 20.000.524,392 739,060 

Gri(150) 0,001 0,003 9.670.970,750 1.945,880 0,003 20.001.981,220 1.072,310 

Gri(200) 0,001 0,005 13.756.132,500 2.753,484 0,003 20.000.982,266 1.403,970 

Ros(50) 0,001 0,027 9.470.336,750 814,264 0,003 20.000.577,098 490,120 

Ros(100) 0,001 0,007 8.947.193,500 2.089,886 0,001 20.000.989,235 920,580 

Ros(150) 0,001 0,014 10.846.004,250 2.425,631 0,053 20.001.928,033 1.350,070 

Ros(200) 0,001 0,016 15.308.611,500 5.785,164 0,056 20.000.423,300 1.809,890 

Sch(50) -20.949,145 -20.949,144 6.659.924,000 555,838 -20.949,144 20.000.128,226 217,830 

Sch(100) -41.898,291 -40.003,274 7.704.175,000 1.577,982 -41.898,289 20.001.338,660 385,250 

Sch(150) -62.847,436 -56.017,438 9.200.378,750 1.344,362 -62.847,433 20.003.759,500 518,790 

Sch(200) -83.796,582 -71.696,182 10.634.924,250 2.823,487 -83.796,577 20.000.866,245 700,160 

Ras(50) 0,001 0,001 1.287.368,000 120,828 0,000 201.691,235 2,970 

 Ras(100) 0,001 0,001 6.190.600,750 1.450,926 0,000 1.208.324,330 38,760 

 Ras(150) 0,001 1,048 6.569.484,250 1.745,440 0,000 3.930.745,200 149,340 

 Ras(200) 0,001 6,950 10.451.448,000 2.057,527 0,001 14.795.927,100 752,850 



In the first set of trials, it was explored variations in 
the number of demes without local search in both 
algorithms (AHFCGA and SRGA). Both algorithms 
were stopped either by getting the expected solution or 
when the maximum of 20x106 objective function calls.   

In the second set of trials, it was explored the local 
search operator in both algorithms: with certain 
probability (about 1%), the local search is applied to the 
offsprings.  

Observing the Table I (first set of trials), one can see 
that both overall performances were quite similar in 
terms of FS. None of them found the expected solution, 
but AHFCGA has reached good FS in Gri(300) and 
Gri(500),  whereas SRGA in Ras(300). Considering FC, 
AHFCGA seems to perform better, but they are also 
similar because both have reached the maximum top of 
20x106 function calls. The FC, which is showed in 
AHFCGA’s column, is just the average of all four 
demes. At last, with respect to ET is correct to suppose 
that AHFCGA have presented greater execution times 
probably due to the overhead inherent to the algorithm 
complexity. SRGA is free of exchange of individuals 
between population and buffers. Besides, the 
communication time between processors always affects 
the execution time of parallel algorithms and in this 
work the best configuration that minimizes its cost were 
not found. 

The Table I shows set of trials with different number 
of processors. Other tests were made and, for while, it 
was not found indications that the number of processors 
meaningfully affects the algorithm performance. The 
table shows only the best set of trials.  

The Table II (second set of trials) shows set of trials 
with 50 up to 200 dimension problems (number of 
variables N) running in 5 processors. Both algorithms 
apply local search to 1% of the offsprings. Both overall 
performances seem similar, except by functions Sch(N) 
and Ras(N), where SRGA has reached all expected 
solutions in all trials. 

With respect to FC, AHFCGA has presented the less 
values, in average, however the elite deme has reached 
the maximum top of 20x106 function calls, due to the 
local search operator. Finally, SRGA presented the 
lower execution times in all set of trials. 

5. Conclusion 
This work describes the preliminary results of a 

parallel implementation of an Adaptive Hierarchical 
Fair Competition Genetic Algorithm (AHFCGA) 
applied to the minimization of numerical functions. 
Some new features were implemented in order to reach 
a greater fidelity to the general Hierarchical Fair 
Competition model as the fully asynchronous exchange 
of individuals and the fully stratified subpopulation. A 
heterogeneous evolutionary environment with local 

search operator also was implemented. The potential of 
such model may show up when applied to very large 
optimization problems. In numerical optimization, these 
problems would have more than 100 variables as it is 
commonly seen in real-world problems in areas such as 
engineering. However, in early experiments with 
AHFCGA show poor results in comparison with a 
standard sequential genetic algorithm. The probable 
cause that AHFCGA needs careful adjustment of its 
parameters to avoid that each deme prematurely 
converge to a local optimum. This causes the stopping 
of the migration of individuals among demes and makes 
the whole population to converge prematurely. Besides, 
according to the problem, the asynchronous AHFCGA 
behavior may lead to an unbalanced load distribution 
among processors. Next, it is intended to perform a 
comprehensive set of tests in order to adjust the 
algorithm parameters, accelerate the convergence and 
improve the load balancing. Further step would be to 
compare the proposed model with standard parallel 
genetic algorithms, as the island or stepping-stones 
models. 

Acknowledgements 
The authors acknowledge FAPESP for support received 
in the research project “Paralelização de Aplicações em 
Física dos Materiais num Ambiente de Memória 
Distribuída”(proc. 01/03100-9) and CNPq for partial 
financial support (proc. 300837/89-5). 

References  
[1] Z. Michalewicz. Genetic Algorithms + Data Structures 

=Evolution Programs. Springer-Verlag, New York. 
1996. 

[2] J. Hu, E. D. Goodman, K. Seo, M. Pei, Adaptive 
Hierarchical Fair Competition (AHFC) Model for 
Parallel Evolutionary Algorithms, In Proc. of the 
Genetic and Evolutionary Computation Conference, 
GECCO-2002, New York, July, 2002, pp. 772-779. 

[3] M. Nowostawski and R. Poll. Parallel Genetic Algorithm 
Taxonomy. In Proc. of the Third Intern. Conf. on 
Knowlege-basecl Intelligent Information Engineering 
Systems KES'99, IEEE Computer Society, Aug. 1999, 
pp 88-92. 

[4] A.C.M. Oliveira, L.A.N. Lorena, Population Training 
Approach to Unconstrained Numerical Optimization. In: 
II WorCAP, São José dos Campos - SP. 2002. 

[5] De Jong, K.A, An analysis of the behaviour of a class of 
genetic adaptive systems. Ph.D. Dissertation, Univ. of 
Michigan, Ann Arbor.1975. 

[6] J. Digalakis and K. Margaritis. An experimental study of 
benchmarking functions for Genetic Algorithms. IEEE 
Systems Transactions, 2000, pp. 3810-3815. 


