

A Hierarchical Fair Competition Genetic Algorithm for
Numerical Optimization

Alexandre C. M. Oliveira

DEINF/UFMA
 S. Luís MA.

CAP/INPE
S. José dos Campos SP

Brasil.
acmo@deinf.ufma.br

Luiz A. N. Lorena

LAC/INPE
S. José dos Campos SP

Brasil.
lorena@lac.inpe.br

Stephan Stephany

LAC/INPE
S. José dos Campos SP

Brasil.
stephan@lac.inpe.br

Airam J. Preto

LAC/INPE
S. José dos Campos SP

Brasil.
airam@lac.inpe.br

Abstract.
The philosophy of evolution of the species, which is

copied by evolutionary algorithms, is intended to be
unfair. The best individuals compete against the worst
ones and generally supplant them. The competition is
unfair because individuals with different skills are
included in the same scenario, being evaluated in a
rudimentary way: only the best will survive. However,
the population diversity is important to preserve
important features that not always make the individual a
strong competitor. This diversity can be reached
keeping the competition among individuals fairer. In
this work, an adaptive hierarchical fair competition
genetic algorithm is implemented in a parallel
environment and is applied to standard numerical
optimization problems taken from the literature. The
code was paralleled using the MPI (Message Passing
Interface) communication library and executed in a
distributed memory parallel machine, a PC cluster.

1. Introduction
The basic idea of genetic algorithms is to store a

population of individuals (or chromosomes),
representing candidate solutions for concrete problems,
that evolves along the time (or generations) through a
competition process, where the most adapted (better
fitness) have better survival and reproduction
possibilities. The evolutionary process is based on
individuals' selection and modification of the solutions
that they represent through genetic operators as
crossover and mutation. In function parameter
optimization, real-coded genetic algorithms have been
successively applied and authors have reported the
easiness and flexibility of its implementation [1].

Sequential GAs have been shown to be very
successful in many applications and in very different
domains. However some problems could be better
addressed with some form of Parallel GA (PGA). For
some kind of problems, the population needs to be very

large and the memory required to store each individual
might be considerable. In some cases, this makes it
impossible to run an application efficiently using a
single processor. Besides, sequential GAs may get
trapped in a sub-optimal region of the search space thus
becoming unable to find better quality solutions,
especially for very large search space. PGAs can search
in parallel different search subspaces or in different
visions of such subspaces, thus making it less likely to
become trapped by low-quality subspaces.

However, the most important advantage of PGAs is
that in many cases they provide better performance than
single population-based algorithms. The reason is that
multiple populations permit speciation, a process by
which different populations evolve in different
directions. Thus, Parallel GAs are not only extensions of
the traditional GA sequential model, but they can
represent even a new paradigm that searches the space
of solutions differently. The only problem that one has
to face to use PGAs is to choose the parallel model to be
adopted.

A recent parallel model, the Hierarchical Fair
Competition (HFC), was proposed by (Hu et al., 2002)
and is inspired by stratified competition often observed
in society[2]. Subpopulations are stratified by fitness in
castes or classes of individuals with different skills.
Individuals move from low-fitness to higher-fitness
subpopulations if and only if they exceed the fitness-
based admission threshold of the receiving
subpopulations.

HFC was applied to real-world analog circuit
synthesis problem using a genetic programming (HFC-
GP)[2]. This work describes the preliminary results of
the HFC using a real-coded genetic algorithm (HFC-
GA) applied to numerical optimization. The HFC-GA
was paralleled using the Message-Passing Interface
(MPI).

This paper is organized as follows. In section 2, are
presented some parallel evolutionary models. Section 3

mailto:acmo@deinf.ufma.br
mailto:lorena@lac.inpe.br
mailto:stephan@lac.inpe.br
mailto:airam@lac.inpe.br

takes the guidelines of the HFC model. An adaptive
hierarchical fair competition genetic algorithm and the
results obtained for numerical optimization are
presented in Section 4.

2. Parallel Evolutionary Models

The way in which GAs can be paralleled depends
upon elements such as: a) how individual's evaluation
and genetic operators are performed; b) whether single
or multiple (how many?) subpopulations (demes) are
used; c) how individuals are exchanged; etc. Some of
the models found in the literature can be classified into
classes[3]:

a) Master-Slave (global) parallelization;
b) Subpopulations with migration;
c) Subpopulations with static overlapping;
d) Subpopulations with dynamic overlapping.

In Master-Slave model, only evaluation of
individuals and genetic operators are paralleled and
such parallel processes are all dependents of the master
process. This kind of global parallelization simply
shows how easy it can be to transpose any genetic
algorithm onto a parallel processor, without changing
anything of the nature of the algorithm.

Multiple-deme (subpopulations) GAs are the most
popular parallelization model. Depending upon number
and the size of the demes, they can be called coarse or
fine-grained models.

Coarse-grained algorithms are a general term for a
subpopulation model with a relatively small number of
demes with many individuals. These models are
characterized by the relatively long time they require for
processing a generation within each deme, and by their
occasional communication for exchanging individuals
(migration operator).

In fine-grained models, on the other hand, the
population is divided into a large number of small
demes. Inter-deme communication is realized either by
using a migration operator, or by using overlapping
demes.

The communication between demes can be
performed, basically, by migration or overlapping (static
or dynamic). The migration of individuals is controlled
by several parameters, such as:

a) The topology that defines the connections
between demes;

b) The frequency of migration and the amount of
individuals exchanged;

c) The strategy of migration, i.e., the profile of
the individuals to be exchanged.

In overlapping schema, overlapping areas are
defined between demes, following some kind of
topology, where some individuals belong to more than
one deme. The improvement obtained by one deme is
propagated through all demes by these areas.

In coarse-grained models, many topologies can be
defined to connect the demes, but the most common
models are the island model and the stepping-stones
model. In the basic island model, migration can occur
between any subpopulations, whereas in the stepping
stone demes are disposed on a ring and migration is
restricted to neighboring demes.

Choosing the frequency for migration and which
individuals should migrate appears to be more
complicated than the choice of the topology. Migrations
should occur after a time long enough for allowing the
development of goods characteristics in each
subpopulation.

The greater advantage of the coarse-grained and
fine-grained models is the possibility of better exploring
the parallel potentialities. However, the coarse-grained
model, in general, has smaller cost to be implemented
(minor complexity of hardware and software).

Figure 1 – Island and stepping-stones models.

3. Hierarchical Fair Competition model
The premature convergence of genetic algorithms is

a problem to be overcome. The convergence is
desirable, but must be controlled in order that the
population does not get trapped in local optima. Even
in dynamic-sized populations, the high-fitness
individuals supplant the low-fitness or are favorites to
be selected, dominating the evolutionary process. The
philosophy of evolution of the species, which is copied
by evolutionary algorithms, is unfair because
individuals with different skills are put in the same
scenario and are evaluated in one-dimensional way:
only the best will survive.

On the other hand, the population diversity is
important to keep samples of solutions dispersed in
search space, increasing the probability of finding out
the global optima in multi-modal optimization
problems. The population diversity could be reached
keeping the competition among individuals fairer.

The Hierarchical Fair Competition (HFC) model is
originated from an effort to avoid the premature
convergence in traditional evolutionary algorithms[2].
The fair competition is obtained in HFC model by

dividing the individuals in independent castes or classes
according with their skills.

Such model is frequently observed in several
advanced societies. In human society, competitions are
often organized in to hierarchy of levels. None of them
will allow unfair competition. For example, a primary
student will not normally compete against graduate
students in academic system. Even in cruel ecological
systems, one can observe mechanisms of parental care
to protect the young and allowing them to grow up and
develop their full potentials.

Figure 2 – Fair competition in educational system.

In HFC model, multiple demes are organized in a
hierarchy, in which each deme can only accommodate
individuals within a specified range of fitness. The
universe of fitness values must have a deme
correspondence. Each deme has an admission threshold
that determines the profile of the fitnesses in each deme.
Individuals are moved from low-fitness to higher-fitness
subpopulations if and only if they exceed the fitness-
based admission threshold of the receiving
subpopulations. Thus, one can note that HFC model
adopts a unidirectional migration operator, where
individuals can move to superior levels, but not to
inferior ones.

The following figure illustrates the topology of HFC
model. The arrows indicate the moving direction
possibilities. The access deme (primary level) can send
individuals to all other demes and the elite deme only
can receive individuals from the others. One can note
that, with respect to topology, HFC model is a specific
case of island model, where only some moves are
allowed.

Considering, the frequency of migration, authors
have proposed that individuals must be moved away in
regular intervals, using admission buffers to collect
qualified candidates from other populations. The
strategy to determine what individuals must be
exchanged is not flexible. All individuals with fitness
outside the fitness range of their deme (superior
individuals) must be exported to admission buffer of the

appropriate subpopulation. The amount of individuals to
be exchanged cannot be determined and will depend
upon the number of superior individuals of each level at
each exchange time.

An important feature can be incorporated to the HFC
model: to work with a heterogeneous evolutionary
environment. Once each subpopulation evolves
individuals with different profiles, subpopulations can
have different sizes, evolutionary operators and other
parameters [2]. The HFC model allows employing
different strategies of exploration and exploitation in
each subpopulation.

Figure 3 - HFC topology

The fitness range is determined considering the
problem at hand and the number of demes. The authors
suggest an adaptive schema using a calibration stage
with few generations to capture an initial range of
fitness values, based upon average fµ, standard
deviation σf, and the best fitness fmin. Afterwards, the
initial population is divided into subpopulations,
according to the individuals’ fitness and moved to their
respective demes. In regular generation intervals, the
admission thresholds of all demes (but the access deme)
are updated (update stage), evaluating fµ, σf, and fmin
again. The calibration and update stages together are
employed to avoid the need of previous knowledge
about the problem at hand, incorporating an adaptive
feature to the algorithm.

For maximization problems, the admission threshold
ALi of each level can be calculated by the following
formula:

Access level 0: AL0 = + ∞ (1)

Elite level N-1: ALN-1 = fmin - σf (2)

Admission threshold of the other intermediary levels
Li (i=1,…,N-2), where N is the number of demes, is
given by:

ALi = fµ + (Li-1) x (fmin - σf - fµ)/(N - 2), (3)

4. Computational tests
An Adaptive Hierarchical Fair Competition Genetic

Algorithm (AHFCGA) was implemented using
Message-Passing Interface (MPI) and was applied to
numerical optimization problems. In this section, the
novelties of this implementation and the computational
tests are presented.

4.1 The AHFCGA
Some new features were implemented in this version

of AHFCGA that was relevant to reach a greater fidelity
to the HFC model. Differently that has been done by the
authors, in previous works, the moving of the
individuals is fully asynchronous and individuals
belonging to superior levels do not participate anyway
of the evolutionary process in an inferior level. In other
words, the superior individuals are put on output buffer
to be exported as soon they are generated or selected.

At beginning, all processors in parallel do the
calibration stage. The average of fµ, σf, and fmin are
considered in calculation of the admission thresholds
(see (1), (2) and (3)). In the following update stages, the
same process is done, but fµ, σf, and fmin of the access
level is not considered, due to the greater instability that
can be inserted in the system. The authors suggest
somewhat similar, except by considering only elite
deme for calculations [2].

After the calibration stage, each deme has three
kinds of individuals: the inferior, the belonging and the
superior ones. The access deme has no inferior
individual and the elite deme has no superior one. In
previous works, the superior individuals are kept in
deme a number of generations afterwards they are
exported to their respective demes. This feature allows
the synchronous exchange of individuals, once all
demes can run a fixed number of generation and
stopping for receiving individuals. In this work, an
asynchronous exchange is implemented. Whenever a
superior individual is selected, it moved to output buffer
and it is not matched to crossover operation, not
participating of the evolutionary process in that deme.
Another individual is then selected out in his place to
crossover. In the same way, whenever a superior
individual is generated by crossover, it is moved to
output buffer immediately.

When output buffer is full or after a maximum
number of iterations, the evolutionary process is stopped
and all superior individuals are exported, emptying the
buffer. In following, incoming individuals (from inferior
levels) are received (if there exist) and moved from
admission buffer to regular subpopulation. The sending
and receiving movements are made asynchronously.
There is no exact time to exchange.

The pseudo-code of the AHFCGA is presented in
following. The procedure EvolveDeme(P,MAX_GEN) runs

a real-coded GA until the output buffer is full or a
maximum number of iterations. The worst individual is
always chosen to be replaced by the incoming
individual (steady-state updating)[4]. The stop criteria
can be a specific number maximum of generations or
the success to find the best-known solution. The
procedure Complement_Population(P) is run only in
access level, filling the free space caused by exported
individuals. One can say that access level would work
as permanent generator of individuals, feeding the
whole population with new genetic material during all
time life[2].

Initialize_Population(P);
Calibration_stage;
do
 if (UPDATING_TIME) then
 Compute_Local (fµ, σf, fmin);
 Compute_Global (fµ, σf, fmin)
 Send (Admission_Thresholds, ALL_DEMES);
 end_if
 EvolveDeme(P,MAX_ITERATIONS);
 while (OUTPUT_BUFFER NOT EMPTY)
 Send (Individual, RESPECTIVE_DEME);
 end_while
 if (ACCESS_DEME) then
 Complement_Population(P);
 else
 while (THERE_EXIST_INCOMING_INDIVIDUAL)
 Receive (Individual, ANY_WHERE);
 Update_Population(P, Individual);
 end_while
 endif
while(NOT STOP_CRITERIA);

4.2 The Test functions
There exist many applications related to function

parameter optimization (numerical optimization) well
suitable to evolutionary algorithm application, such as
neural network training, fuzzy set optimization, inverse
problems, and others.

Several test functions can be found in literature and,
frequently, many researchers have used them to study
the performance of optimization algorithms. In this
work, a small set of well-known test-functions was used
as benchmark. The test functions rosenbrock, schwefel,
griewangk, and rastringin are specially interesting due
to be generalized functions, i.e., they can be set with n-
dimensional variables. In the Figure 4, the test functions
are shown.

Figure 4 – Test functions

The parameter N of the test functions is the number
of variables to be optimized in order that the value of f
is minimized. In the experiments, N was set with high
values to try the effectiveness of the implementation for
large-scale problems. More information about the
benchmark can be obtained in [5-6].

4.3 The experiments
For the computational tests, some parameters of

AHFCGA were set. Following the suggestion found in
[2], the calibration stage was run with 10 generations
and the update stage procedure was called in intervals of
10 generations. The whole execution was limited to
20x106 of objective function calls (reached by anyone of
processors). The population and buffer sizes were set as
500 each. Other genetic parameter settings, as mutation
rate, and evolutionary operators can be found in [4].

Once adjusted, 5 trials were performed with each
one the 4 test functions. The best-found solution (FS),
number of function calls (FC) and execution time (ET)
were considered to evaluate the algorithm performance.
FS is the average of all best solutions found in all trials;
ET is the average of all worst execution times in all
trials and FC is increased whenever an individual is
evaluated with respect to objective function (fitness).

The access deme has the feature of complementing the
population and thus it has always a greater number of
function calls. The following equations show how FS,
FC and ET are calculated:

))((min td
DT FSaverageFS = (4)

))((td
DT FCaverageaverageFC = (5)

))((max td
DT ETaverageET = (6)

where <operation>T means an operation over all trials
(5 trials), <operation>D means the operation over all
demes (from 4 up to 8 demes).

In order to better evaluate the AHFCGA
performance, it was employed a Sequential Real-coded
GA (SRGA) similar to it with respect to parameters and
genetic operators. A first attempt of exploring a
heterogeneous evolutionary environment was made in
this work. Different set of evolutionary operators was
used in access and elite demes. In the access deme, a
more aggressive blind mutation was employed to cause
population instability (no convergence). Whereas, in the
elite deme, a local search operator had the objective of
accelerating the convergence rate.

 Table I – Comparison between AHFCGA and a SRGA without local search
Problem AHFCGA SRGA

Function(N) Expected solution Found solution Function calls Time(s) Processors Found solution Function calls Time(s)

Gri(300) 0,001 0,003 18.148.679,200 9.621,071 5 0,024 20.000.400,232 2.291,350

Gri(500) 0,001 0,008 14.652.728,600 16.404,450 5 2,735 20.000.941,554 2.724,560

Ros(300) 0,001 492,450 15.134.845,666 27.682,733 6 292,324 20.000.327,320 3.853,870

Ros(500) 0,001 293,881 14.906.582,000 13.900,931 8 508,006 20.000.743,199 4.929,760

Sch(300) -125.694,872 -112.666,556 15.423.303,500 9.489,012 6 -119.015,114 20.000.569,543 1.631,580

Sch(500) -209.491,454 -168.550,906 15.075.617,166 14.537,990 8 -152.370,806 20.000.998,011 2.139,420

Ras(300) 0,001 16,798 13.962.687,000 7.941,095 5 0,014 20.000.353,176 2.105,270

Ras(500) 0,001 47,210 19.265.249,200 13.875,082 5 56,252 20.000.513,101 2.767,930

Table II – Comparison between AHFCGA and a SRGA running in 5 processors with local search
Problem AHFCGA SRGA

Function(N) Expected solution Found solution Function calls Time(s) Found solution Function calls Time(s)

Gri(50) 0,001 0,002 6.760.905,000 609,786 0,015 20.000.733,453 401,980

Gri(100) 0,001 0,002 8.079.508,750 1.211,795 0,017 20.000.524,392 739,060

Gri(150) 0,001 0,003 9.670.970,750 1.945,880 0,003 20.001.981,220 1.072,310

Gri(200) 0,001 0,005 13.756.132,500 2.753,484 0,003 20.000.982,266 1.403,970

Ros(50) 0,001 0,027 9.470.336,750 814,264 0,003 20.000.577,098 490,120

Ros(100) 0,001 0,007 8.947.193,500 2.089,886 0,001 20.000.989,235 920,580

Ros(150) 0,001 0,014 10.846.004,250 2.425,631 0,053 20.001.928,033 1.350,070

Ros(200) 0,001 0,016 15.308.611,500 5.785,164 0,056 20.000.423,300 1.809,890

Sch(50) -20.949,145 -20.949,144 6.659.924,000 555,838 -20.949,144 20.000.128,226 217,830

Sch(100) -41.898,291 -40.003,274 7.704.175,000 1.577,982 -41.898,289 20.001.338,660 385,250

Sch(150) -62.847,436 -56.017,438 9.200.378,750 1.344,362 -62.847,433 20.003.759,500 518,790

Sch(200) -83.796,582 -71.696,182 10.634.924,250 2.823,487 -83.796,577 20.000.866,245 700,160

Ras(50) 0,001 0,001 1.287.368,000 120,828 0,000 201.691,235 2,970

 Ras(100) 0,001 0,001 6.190.600,750 1.450,926 0,000 1.208.324,330 38,760

 Ras(150) 0,001 1,048 6.569.484,250 1.745,440 0,000 3.930.745,200 149,340

 Ras(200) 0,001 6,950 10.451.448,000 2.057,527 0,001 14.795.927,100 752,850

In the first set of trials, it was explored variations in
the number of demes without local search in both
algorithms (AHFCGA and SRGA). Both algorithms
were stopped either by getting the expected solution or
when the maximum of 20x106 objective function calls.

In the second set of trials, it was explored the local
search operator in both algorithms: with certain
probability (about 1%), the local search is applied to the
offsprings.

Observing the Table I (first set of trials), one can see
that both overall performances were quite similar in
terms of FS. None of them found the expected solution,
but AHFCGA has reached good FS in Gri(300) and
Gri(500), whereas SRGA in Ras(300). Considering FC,
AHFCGA seems to perform better, but they are also
similar because both have reached the maximum top of
20x106 function calls. The FC, which is showed in
AHFCGA’s column, is just the average of all four
demes. At last, with respect to ET is correct to suppose
that AHFCGA have presented greater execution times
probably due to the overhead inherent to the algorithm
complexity. SRGA is free of exchange of individuals
between population and buffers. Besides, the
communication time between processors always affects
the execution time of parallel algorithms and in this
work the best configuration that minimizes its cost were
not found.

The Table I shows set of trials with different number
of processors. Other tests were made and, for while, it
was not found indications that the number of processors
meaningfully affects the algorithm performance. The
table shows only the best set of trials.

The Table II (second set of trials) shows set of trials
with 50 up to 200 dimension problems (number of
variables N) running in 5 processors. Both algorithms
apply local search to 1% of the offsprings. Both overall
performances seem similar, except by functions Sch(N)
and Ras(N), where SRGA has reached all expected
solutions in all trials.

With respect to FC, AHFCGA has presented the less
values, in average, however the elite deme has reached
the maximum top of 20x106 function calls, due to the
local search operator. Finally, SRGA presented the
lower execution times in all set of trials.

5. Conclusion
This work describes the preliminary results of a

parallel implementation of an Adaptive Hierarchical
Fair Competition Genetic Algorithm (AHFCGA)
applied to the minimization of numerical functions.
Some new features were implemented in order to reach
a greater fidelity to the general Hierarchical Fair
Competition model as the fully asynchronous exchange
of individuals and the fully stratified subpopulation. A
heterogeneous evolutionary environment with local

search operator also was implemented. The potential of
such model may show up when applied to very large
optimization problems. In numerical optimization, these
problems would have more than 100 variables as it is
commonly seen in real-world problems in areas such as
engineering. However, in early experiments with
AHFCGA show poor results in comparison with a
standard sequential genetic algorithm. The probable
cause that AHFCGA needs careful adjustment of its
parameters to avoid that each deme prematurely
converge to a local optimum. This causes the stopping
of the migration of individuals among demes and makes
the whole population to converge prematurely. Besides,
according to the problem, the asynchronous AHFCGA
behavior may lead to an unbalanced load distribution
among processors. Next, it is intended to perform a
comprehensive set of tests in order to adjust the
algorithm parameters, accelerate the convergence and
improve the load balancing. Further step would be to
compare the proposed model with standard parallel
genetic algorithms, as the island or stepping-stones
models.

Acknowledgements
The authors acknowledge FAPESP for support received
in the research project “Paralelização de Aplicações em
Física dos Materiais num Ambiente de Memória
Distribuída”(proc. 01/03100-9) and CNPq for partial
financial support (proc. 300837/89-5).

References
[1] Z. Michalewicz. Genetic Algorithms + Data Structures

=Evolution Programs. Springer-Verlag, New York.
1996.

[2] J. Hu, E. D. Goodman, K. Seo, M. Pei, Adaptive
Hierarchical Fair Competition (AHFC) Model for
Parallel Evolutionary Algorithms, In Proc. of the
Genetic and Evolutionary Computation Conference,
GECCO-2002, New York, July, 2002, pp. 772-779.

[3] M. Nowostawski and R. Poll. Parallel Genetic Algorithm
Taxonomy. In Proc. of the Third Intern. Conf. on
Knowlege-basecl Intelligent Information Engineering
Systems KES'99, IEEE Computer Society, Aug. 1999,
pp 88-92.

[4] A.C.M. Oliveira, L.A.N. Lorena, Population Training
Approach to Unconstrained Numerical Optimization. In:
II WorCAP, São José dos Campos - SP. 2002.

[5] De Jong, K.A, An analysis of the behaviour of a class of
genetic adaptive systems. Ph.D. Dissertation, Univ. of
Michigan, Ann Arbor.1975.

[6] J. Digalakis and K. Margaritis. An experimental study of
benchmarking functions for Genetic Algorithms. IEEE
Systems Transactions, 2000, pp. 3810-3815.

