
1An Approach for Concurrent FSM-based Test Case Generation

1 Workshop de Teses e Dissertações da CAP/INPE- novembro de 2003 – São José dos Campos-SP- Brasil

Ana Maria Ambrosio 1

1Ground Systems Development
Division (DSS)
ana@dss.inpe.br

Eliane Martins 3

3Institute of Computing (IC)
State University of Campinas

(UNICAMP)
eliane@ic.unicamp.br

Solon V. de Carvalho2

Nandamudi L. Vijaykumar 2

2Associated Laboratory of
Computing and Applied

Mathematics (LAC)
National Institute for Space

Research (INPE)
{ solon, vijay}@lac.inpe.br

Abstract

This paper presents an approach for black-box
test case derivation from a set of concurrent FSM,
in which the product machine is not generated.
The approach is based on the concept of
independent and communicating transitions. An
algorithm to recognize the communicating
transitions from the concurrent-FSM-based
specification is presented. A set of test cases was
generated supported by an existing tool able to
generate tests for simple FSM-based specification,
the Condado. The test case suite generated
according to the approach was then compared
with the test suite generated from the product
machine, also using the Condado. In order to
evaluate the effectiveness of the test suite
generated by the proposed approach, a set of
automatically generated mutants was used. The
code-based interface mutants were used as a fault
model to support the comparison between both the
test case sets. A simple example illustrates the
approach and a comparison is made to an
empirical study. Preliminary results pointed out
simplicity and effectiveness of the approach over
the fault model in the empirical evaluation.

1. Introduction

Space agencies, such as the National Institute
for Space Research are nowadays more involved
in acquiring third party software products
developed by industrial and commercial

companies. These products should be integrated
with others and have to be reliable. Then it is
important to develop technologies to test such
products during the acceptance phase of the
delivery software. The contractors make the
software specification as part of contract before
the development starts and have to ascertain
whether the delivered implementation really
conforms to the respective specification.

One important kind of verification to support
the acceptance process is the conformance testing,
as defined for ISO protocol testing [5]. One-way
to check the conformance of the specification
against the implementation is to apply a test suite
and compare actual against expected results. In
this case, the test case suite should not be
designed on code-basis, as it is not available,
instead, it should be based on the specification
requirements, which indicates how the software
should behave.

This effort, known as conformance testing, has
been strongly explored in protocol area [1], [3],
[6], [7], etc. The difficulties in conformance
testing are related to insufficient techniques and
supported tools to test design [11].

Some kind of concurrent systems of the space
area, like a satellite simulator, which has several
components, each one having its own behavior,
may be specified as a set of Finite State Machines
(FSMs). So the test techniques applied to
protocols may be also applied to other
applications whose specification can be given as a
set of FSMs. Each FSM specification represents

the behavior of a different parallel component.
The global state of such a system is, then, given
by the product of the FSMs.

In the literature, specification with a set of
FSMs is generally found as Communicating FSM
(CFSM). To generate test cases from a CFSM-
based specification one may not count on the
conventional approaches of automatic test case
generation, in which the whole system behavior,
given by the product of the machines, has a
considerable size.

Techniques to avoid the state explosion in the
CFSM-based specification test cases generation
may be found in [4], [8], etc.

We propose an approach to systematically
derive test cases from a set of FSMs designed as
Meale machines [10], where the communication
transitions are not limited to the rendezvous of
CFSM specification. The rendezvous
communication means the synchronized message
exchange between two processes [7].

The approach suggests to incrementally
generate test cases based on the classification of
the transitions, viz., independent and
communicating. First, test cases related to each
component are separately generated. In this phase,
the test cases based on the independent transitions
are created. Later, the communicating transitions
are identified from the set of FSMs. Then,
considering only the communicating transitions, a
new FSM is created. Each FSM undergoes
through an existing tool named ConDado [9],
which is used to derive the test cases. Details of
the approach are presented in Section 2. The
method of how the test cases are generated by the
ConDado is described in Section 3.

Having the test suite generated according to
the proposed approach, the question now is: what
is the effectiveness of this test suite? In order to
answer this question we have performed an
experimental evaluation of the coverage of the test
suite against the set of code-based interface
mutants. The resulted mutation score was
compared against the results of the mutation
applied to a test suite created from the product
machine of the set of the specified FSMs.

The specification that illustrates this
experiment has 3 components. The behavior of
each component is modeled by a FSM comprising
3, 2 and 2 states. The system behavior, given by
the product machine has 12 states and 22
transitions.

The mutants were automatically generated by
the tool named ProteumIM [2] whose
characteristics are given in section 3.

Section 4, summarizes the experimental
evaluation and section 5 concludes the paper
pointing out future directions.

2. The Approach

Model

We assume that the specification of a
concurrent system be given in a set of FSMs,
where each FSM represents an orthogonal
component of the system. Each FSM comprises a
set of states connected by transitions. Each
transition comprises an event (input) and an action
(output). Events may be external (explicitly
stimulated) or internal (automatically stimulated
by an output of any transition); an action may
cause an output or trigger another event. A
transition links a source-state to a target-state, and
it is represented as: t = (source-state, target-state,
event [condition], actions).

Figure 1 illustrates a specification with three
orthogonal components, M1, MB and M2. M1

comprises three states: W1, P1 and F1. In the
transition from the state W1, to P1, there is a
condition [not inB1] associated to the event a,
which means the transition will be triggered only
if the component MB is not in the state B1. And,
in the transition from W1 to P1 the action i will
cause a transition in the component MB.

The proposed method to generate
specification-based test cases is founded in the
definition of communicating and independent
transitions, whose definitions are given in the
following.

a [n o t in B 1]
--- - - - - - - - - - - - -
a c t io n 1 0 , i

p
- - - - - - - - - - - - - - -

a c t io n 1 1

W 1 P 1

b [n o t in B 0]
--- - - - - - - - - - - - -
a c t io n 2 0 , d

c
- - - - - - - - - - - - - - -

a c t io n 2 1

W 2 P 2

F 1

f
- - - - -- - - - - - - - - -

a c t io n 1 2
r

- - - - - - - - - - -- - - -
a c t io n 1 3

M 1 M 2

i- - - - - - - - - - - - - - - -
t ru e (n o t in B 0)

d
- - - - - - - - - - - - - -- -

t ru e (n o t in B 1)

B 0 B 1

M B

Figure 1 – Specification example

Communicating and independent transitions

A communicating transition is a transition
from one state to another in the same FSM that
comprises one of the following features:
- broadcast event – event that appears in more

than one machine,
- event caused by an action specified in another

machine,
- condition associated to state – condition that

indicates the transition will be fired only if
another machine is in such a specified state.

In Figure 1, four communicating transitions are
illustrated, which are:
(W1, P1, a[not in B1]; action10, i),
(W2, P2, b[not in B0], action20, d),
(B1, B0, d, true(not in B1)),
(B0, B1, i, true(not in B0)).
The others are independent transitions.

Method

In short, the method to generate test cases
from a set of FSMs-based specification consists of
the following steps:

(i) Generate a set of test cases to each FSM,
separately;

(ii) identify the communicating transitions
among all the FSM;

(iii) create a FSM, named communicating
machine, comprising all the
communicating transitions;

(iv) generate test cases to the communicating
machine;

(v) apply, on the implementation, the test
sequence containing the test cases
generated in both steps (i) and (iv).

Communicating machine

The algorithm to generate the communicating
machine is the following:
1. To each machine Mk do:

� Create a transition set TS(k), where each
element is a transition t = (source-state,
target-state, event, [condition], actions).

� Identify the initial state, q0 of Mk

2. Create a set SS(i) with the communicating
transitions, to each machine:

� To each TS(i):
 /* identify broadcast events */

o Include the transitions ti to SS(i) where
ti.event � TS(i) � tj.event �TS(j);

/* identify state-dependable transitions */
o Include the transitions ti in SS(i) where

ti.cond depends on a state sj and Mj � Mi
o Insert transitions tj of Mj in SS(j), which

inputs or outputs the state sj identified in
previous step

/* communicating transitions */
o Insert the transitions of Mi and the

transitions of Mj in SS(i) and SS(j), where
ti.action � tj.action and Mj � Mi

/* make each machine SS initially connected
o insert in SS(i) the transitions that:
o take any state in SS(i) to the initial state.
o allow the states of SS(i) to return, by any

path, to the initial state.
o allow the machine in SS(i) be connected.

3. Create the communicating machine as a
product of the machines in all SS(i).

3. Testing tools: ConDado and ProteumIM

For the experimental evaluation two tools in their
prototype versions were used. These tools were
developed in the context of academia researches:
ConDado of the University of Campinas
(IC/UNICAMP) and ProteumIM of the University
of São Paulo (ICMC/USP). Their general
description is given below.

ConDado
ConData [9] is used to create the behavioral

test cases from a FSM-specification. This tool
implements the transition-tour method for graph
tour, with depth-first search. Each path, which
comprises a set of transitions from the initial state
to the initial state, is a test case.

The FSM specification should be written in a
private protocol specification language to be
interpreted by the tool.

The criterion adopted for deriving the test suite
is to cover all-path with one-loop. With this
ambitious criterion, the suite comprises a large
number of test cases, as it may be seen in Table 1.

ProteumIM

The ProteumIM tool [2] has a set of mutation
operators, which are automatically inserted in a C
program generating the mutations from the
original program. The mutation operators are only
code-based covering interface errors for C
programs. Besides generating the mutants, the tool
also supports the test execution of a set of test
cases (by test cases, in this context, we mean
inputs to the programs). Each test case is
submitted over every created mutant. Among the
analysis information obtained from the test
execution, the ProteumIM provides the user with
the number of mutants that are alive and
equivalent. Mutants that are alive are those
programs in which the inserted error was not
detected by any of the test cases. The equivalent
mutants are those mutants that did not modify the
logical flow of the program. Any mutant set as
equivalent is not considered in the mutation score.
The mutation score is calculated by the expression
presented in figure 3:

.

.

mutequivalenttotal

mutdead

�

Figure 3: Mutation score

4. Experimental evaluation

In order to evaluate the goodness of the test
suite, we performed an experiment consisting of
the following steps:

(i) implement, in C, the specification given in
Figure 1;

(ii) generate code-interface-based mutants
using ProteumIM,

(iii) generate the specification-based test suite
named TSNEW, according to the new
approach: each machine Mi and the SS

machine were individually undergone to
ConDado. The Mis are the M1 M2 and
MB, as illustrated in Figure 1. The SS
machine generated for this example is
illustrated in Figure 2. Each Condado run
generated a small set of test cases
comprising 2, 1, 1 and 18 test cases
respectively. TSNEW is the union of each
small set of test cases consisting of 22 test
cases;

Figure 2. SS machine

(iv) generate the product machine from the
components M1 M2 and MB.
PerformCharts [12] tool may generate this
product automatically, but in this example,
the product was done manually. The
product machine comprises 12 states and
22 transitions. Each state is named with the
mnemonic of the state it represents. The
resulted FSM is illustrated in Figure 3;

W1 B0 W2
p

W1 B0 P2

W1 B1 W2

W1 B1 P2

P1 B0 W2

P1 B0 P2

P1 B1 W2

P1 B1 P2

F1 B0 W2

F1 B0 P2

F1 B1 W2

F1 B1 P2

c

b/d a/i

f

b/d

c

f

f

f

a/i

b

r

c

r

r

c

c

p

p

p

b/d

9

5

6

7

10

1

2

3

4
8

11

12

Figure 3. Product machine

W1 B0 W2
p

W1 B0 P2

W1 B1 W2

W1 B1 P2

P1 B0 W2

P1 B0 P2

P1 B1 W2

P1 B1 P2

c

b/d

a/i b/d

c

a/i

c

c

p

p

p

5

6

7

1

2

3

4 8

(v) generate the test suite named TSPM, by
undergoing the product machine
specification to ConDado. For the given
FSM product, 766 test cases were
generated;

(vi) apply both test suites, TSPM and TSNEW to
the programs (original and mutants)
generated by ProteumIM;

(vii) analyze the interface code-based fault
coverage of both test suites. These results
is presented following in this section.

Experimental Results

The resulting figures of the experiment
described above are summarized in the tables.

Table 1 shows the figures related to the test
suite sizes. The columns represent each of the test
suites TSPM and TSNEW. The first line states the
number of test cases generated by ConDado for
each set. The second line shows the number of test
cases that effectively killed any mutant. The
difference shows that a small number of test cases
are enough to find errors caused by mistakes on
interface among coded functions.

Table1: Number of test cases

Test cases: TSNEW TSCM

 Generated 22 766
 Effective 7 6

Table 2 gives the total mutants. It is worth
observing that the number of mutants depends
only of the source code (C program).

Table2: Mutants Number

Number of Mutants:

 Total 1019

Table 3 and 4 show the fault coverage for two
situations respectively: (i) before setting
equivalent mutants and (ii) after setting them.

Table3: Fault coverage –all mutants

Mutants: TSNEW TSCM

 Alive 143 149
 Equivalent 0 0
 Score 0.8597 0.8538

Table 4: Fault coverage –without equivalents

Mutants: TSNEW TSCM

 Alive 7 17
 Equivalent 137 132
 Score 0.9932 0.9808

Equivalent mutants, in this version of
ProteumIM should be manually marked. In setting
them, the score was considerably augmented. For
the TSNEW set of test cases the score reached 0.99
as illustrated in Table 4. In this case, the score
would be 1 if the system were strongly specified,
as the mutants that are alive correspond to errors
in the parts of code dealing with non-specified
events. For example, the code treats the situation
when none of the events: a, p, r, f, b, c, i and d is
an input to the program and the specification says
nothing about any different event. For a correct
conformance, the code should have no treatment
to them. However, some code has already a
structure to treat non-specified events as the
command switch of C. The default is part of the
command forcing the programmer to include at
least a message of error in the code.

5. Conclusion and Future Work

The work presents an approach for black-box
test derivation and an experimental evaluation of
the generated test cases. Every test case was
derived from simple FSM-based specification by
the ConDado tool. The approach is an alternative
to avoid generating the product machine from a
set of FSMs-based specification. In this way, the
number of automatically generated test cases is
also reduced. The approach is yet helpful and
simple for concurrent applications.

Although part of the approach was applied
manually, the experiment was invaluable as it
mimics a real world situation when the contractor
has to validate a system, when the code is not
available.

The work also showed a kind of measuring for
conformance testing: the test cases derived from a
high level specification were checked against
code-based interface faults. All the mutation was
applied and automatically analyzed with the
support of the ProteumIM tool.

The results pointed out that the proposed
approach seems to be useful and feasible. In the
case of many orthogonal machines, different
communicating machines may be combined for
test purposes.

Future works shall be carried out on
combining test cases generated for conformance
test, obeying the standard for protocol testing, the
ISO-9646, and the fault cases provided by the
fault injection techniques for validating the
robustness of a software system.

References

[1] Bochmann, G.; Petrenko, A . – Protocol
Testing: Review of Methods and Relevance for
Software Testing – Proceedings of the 1994
International Symposium on Software Testing and
Analysis, p.109-124, August 17-19, 1994 –
Seattle, Washington, USA.

[2] Delamaro, M.E. Mutação de Interface:
Critério de Adequação Interprocedural para o
Teste de Integração – Ph D. Thesis – Instituto de
Física de São Carlos - Universidade de São Paulo,
1997.

[3] Dssouli, H.; Salek, K.; Aboulhamid, E; En-
Nouaary, A ; Bourhfir, C. Test Development for
Communication Protocols: Towards Automation.
Computer Networks 31, 1999, 1835-1872.

[4] Henninger, O. On test case generation from
asynchronously communicating state machines.
10th International Workshop on Testing of
Communicating Systems, September, 1997.

[5] International Organization for
Standardization/International Electrotechnical
Commission – “Conformance Testing
Methodology and Framework”, International
Standard IS-9646. ISO, Geneve, 1991. Também:
CCITT X.290-X.296.

[6] Lai, R. A survey of communication protocol
testing. The Journal of Systems and S/w, 62,
2002, pp. 21-46.

[7] Lee, D.; Yannakakis, M. Principles and
Methods of Testing Finite State Machines – a
Survey – Proceedings IEEE, 84 (8): 1090-1123.
1996.

[8] Li,J.J.; Wong,W.E. Automatic test Generation
from Communicating EFSM (CEFSM)-based
Models. Proceedings of the 5th IEEE Intnl
Symposium on OO Real-Time Distributed
Computing, 2002.

[9] Martins,E; Sabião,S.B; Ambrosio, A.M.
ConData: a Tool for Automating Specification-
based Test Case Generation for Communication
Systems. S/w Quality Journal, 8 (4) (1999) 303-
319.

[10] Menezes, P.B. – Linguagens formais e
Autômatos – 2001 - 4a. edição - número 3 -Ed.
Sagra Luzzatto.

[11] Tretmans, J.; Belinfante, A. Automatic
Testing with Formal Methods. In Proceedings of
the Conference on Software Testing, Analysis and
Review. EuroSTAR´99, November, 1999.

[12] Vijaykumar, N. L.; Carvalho, S. V.;
Abdurahiman, V. On proposing Statecharts to
specify Performance Models. International
Transactions in Operational Research, 9(3),
(2002) 321-336.

