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Abstract 

In this article is introduced the Generalized  Extremal Optimization algorithm. Based on the dynamics 
of self-organized criticality, it is intended to be used in complex inverse design problems, where 
traditional gradient based optimization methods are not efficient. Preliminary results from a set of test 
functions show that this algorithm can be competitive to other stochastic methods such as the genetic 
algorithms. 
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Introduction 

Recently, Boettcher and Percus [1] have proposed a new optimization algorithm based on a simplified 
model of natural selection developed by Bak and Sneppen [2]. Evolution in this model is driven by a 
extremal process that shows characteristics of self-organized criticality (SOC).  Boettcher and Percus [1] 
have adapted the evolutionary model of Bak and Sneppel [2] to tackle hard problems in combinatorial 
optimization, calling their algorithm Extremal Optimization (EO).  

Although algorithms such as Simulated Annealing (SA), Genetic Algorithms (GAs) and the EO  are 
inspired by natural processes, their practical implementation to optimization problems shares a common 
feature: the search for the optimal is done through a stochastic process that is “guided” by the setting of 
adjustable parameters. Since the proper setting of these parameters are very important to the performance 
of the algorithms, it is highly desirable that they have few of such parameters, so that the cost of finding 
the best set to a given optimization problem does not become a costly task in itself. The EO algorithm has 
only one adjustable parameter. This may be an “a priori” advantage over the SA and GA algorithms, since 
they use more than one adjustable parameter.  

In the next section we introduce the Generalized Extremal Optimization (GEO) algorithm. It was 
designed to tackle function optimization problems with multiple local optima. In this work the 
performance of the GEO algorithm is tested in a set of multimodal unconstrained functions, with side 
constraints on the design variables, used commonly to test GAs. The GEO algorithm is compared with a 
standard GA and the Cooperative Co-evolutionary GA (CCGA) proposed by Potter and De Jong [3]. 

The Extremal Optimization algorithm applied to function optimization 

Self-organized criticality has been used to explain the behavior of complex systems in such different 
areas as geology, economy and biology [4]. The theory of SOC states that composite systems evolves 
naturally to a critical state where a single change in one of its elements generates “avalanches” that can 
reach any number of elements on the system. An optimization heuristic based on a dynamic search that 
embodies SOC could evolve solutions quickly, systematically mutating the worst individuals. At the same 
time preserving throughout the search process the possibility of probing different regions of the design 
space (via avalanches), enabling the algorithm to escape local optima [1]. The basic EO algorithm showed 
good performance on problems like graph partitioning but when applied to other types of problems, it led 
to a deterministic search [1]. To overcome this, the algorithm was modified and an adjustable parameter 
introduced, so that the algorithm could escape local optima. This implementation of the EO algorithm 
received the name τ-EO algorithm and showed superior performance to the standard implementation, 
even in cases where the basic EO algorithm would not lead to “dead ends”.  

The GEO algorithm uses the same approach of the τ-EO, but the way it is implemented allows it to be 
applied readily in a broad class of engineering problems. The algorithm is of easy implementation, does 
not make use of derivatives and can be applied to either unconstrained or constrained problems. 
Moreover, it can deal in principle with any kind of variable, either continuous, discrete or integer. This 
make it suitable to be used in complex inverse design problems, where traditional gradient methods could 
not be applied properly due to, for example, non-convexities or use of mixed types of design variables. In 
the GEO, the design variables are encoded as binary strings and a fitness value is assigned to each bit. 
The algorithm mutates the bits trying to find the configuration that gives the best value for the objective 
function.   It is implemented as follows: 
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1. Initialize randomly a binary string of length L that encodes N design variables of bit length L/N.  
2. For the current configuration C of bits, calculate the objective function value V and set Cbest = C 

and Vbest = V.  
3. For each bit i do, 

a) flip the bit (from 0 to 1 or 1 to 0) and calculate the objective function value Vi of the string 
configuration Ci, 
b) set the bit fitness Fi as (Vi - R), where R is a constant. It serves only as a reference number and 
can assume any value. The bit fitness indicates the relative gain (or loss) that one has in mutating 
the bit.  
c) return the bit to its original value.  

4. Rank the N bits according to their fitness values, from k = 1 for the least adapted bit to k = N for 
the best adapted. In a minimization problem higher values of Fi will have higher ranking. 
Otherwise for maximization problems. If two or more bits have the same fitness, rank them in 
random order, but following the general ranking rule.  

5. Chose a bit i to mutate according to the probability distribution Pi_k = k-τ, where τ is an 
adjustable parameter.  

6. Set C = Ci and V = Vi. 
7. If  Fi  <  Fbest (Fi  >  Fbest, for a maximization problem) then set Fbest = Fi and Cbest = Ci. 
8. Repeat steps 3 to 7 until a given stopping criteria is reached. 
9. Return Cbest and Fbest. 
Constraints to the objective function can be easily incorporated to the algorithm simply setting a high 

fitness value to the bit that, when flipped, leads the configuration to an unfeasible region of the design 
space. Note that the move to an infeasible region is not prohibited, since any bit has a chance to mutate 
according to the Pi,k distribution. Moreover, no special condition is posed for the beginning of the search 
process, it can even start from an infeasible region. 

A slightly different implementation of the GEO algorithm can be done changing the way the bits are 
ranked. Instead of ranking all the bits according to steps 3-4, we can rank them separately for each 
variable. In this way the bits of each variable “j” will have a rank “kj” ranging from 1 to L/N. Now the 
mutation is done simultaneously for all design variables. That is, in step 5 one bit of each variable “j” is 
flipped according to the probability distribution Pj,i,k = kj

-τ. We will call this implementation hereinafter as 
GEOvar. 

Results 

The GEO and the GEOvar algorithms were applied to a set of test functions described in [3]. They are 
multimodal multidimensional unconstrained functions with variables bounded by side constraints. As in 
the GAs used in [3], each variable is encoded in a binary string of 16 bits. All functions have one global 
optimum, where the value of the objective function is zero.  In Figures 1 to 5 below, the performance of 
the GΕΟ algorithms for the set of test functions is shown together with the results for the GAs. All data 
points on the graphs below represent an average of 50 independent runs. The best objective function value 
found in the search is shown against the number of function evaluations. 
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Figure 1 – Results for the Rosenbrock
function.  aFrom [3]. 

Figure 2 – Results for the Rastringin
function. aFrom [3]. 
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Figure 3 – Results for the Schwefel
function. aFrom [3]. 
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Figure 5 – Results for the Ackley
function. aFrom [3]. 
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Figure 4 – Results for the Griewangk
function. aFrom [3].
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Conclusions 

The results shown above indicate that the
GEO can work successfully. Although it
performed very poorly for the Rastrigin
function, when compared to the GAs, it was
quite competitive for the other test functions,
mainly when the variables were tackled
simultaneously (GEOvar). In fact, it must be
remembered  that does not exists a “best of
all” optimization algorithm [5], and  it is not
expected that the GEO algorithm would
outperform all the other kinds of stochastic
algorithms in all cases. Rather, the present
study intends to show that it is a potential
candidate to be incorporated into the
designer’s tool suitcase. Ongoing research is
aimed at the study of the implementation of
the GEO algorithm to constrained function
optimization and application to real inverse
design problems.  
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