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A unifying synthesis of the hydrologic response of a catchment to surface runoff is attempted by link-

. ing the instantancous unit hydrograph (IUH) with the geomorphologic parameters of a basin. Equations
©of general character are derived which express the ITUH as 2 function of Horton's numbers &, Ry, and

' R, an internal scale parameter Lg; and a mean velocity of streamflow v. The IUH is time varying in

~ character both throughout the storm and for different siorms. This variability is accounted for by the var-
*iability in the mean streamflow velocity. The underlying unity in the nature of the geomorphologic struc-
" ture is thus carried over to the great variety of hydrologic responses that occur in nature. An approach is

- initiated to the problem of hydrologic similarity. : ;
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INTRODUCTION : A basic question at this moment is, Given an ordered sys-
tem of the geomorphologic elements of a basin and given that
dramatic advances since the 1960’s, mainly after this system, in all its wany possible forms and natural appear-
[1966] classical paper which led the way for a theorel- 32065, is well described by laws which respond to well-defined
foundation of Horton's well-known empirical laws and theories {Shreve, 1966, 1967], is there a manaer to relaic this
ed perspective for many other problems in fluvial Order t0 hydrologic response characteristics? The implications
P v. Although these developmeats are of great omﬁon are many. Basically, an undersianding
ce for hydrologists, there has been a void in the cou- would be provided of the role of the geomorphologic proper-
quantitative geomorphological analysis with the most ties i _watershed hydrology instead of the so many and not
hydrologic variable, namely, the streamflow re- very iiluminating regreswons we keep using m the field. The
surface runoff of the geomorphological unity, the ;50“ question also holds the key for ood analysis in areas of
- This paper is a first step in that direction with the insufficient or inexistent data as well 35 Tor e fransposition
that the search for a theoretical coupling of quan- of ramrall’ln_moﬂ‘ evem‘;iaaa' fr_o'm“dnc'basm to another.
S ololoey and hydrolosy B an arce which will, - HYdrologists are (amiliac with the fantastic varicty of foris
the most exciting and basic developments of _ and shapes that drainage networks may possess, and they are
: S T T familiar with the variety of ways that nature may respond fo
shows a .ﬁYpOthetiml watershed with the Strahler “precipitation inpyts.into. a 5‘—’495_?‘"*""“'_" kn,o o ﬂ.m
dure: (1) Channels that originate at a source are thqs-e shapes and forms of tht_: drainage basin arise in Iheu'lm-
e first-order streams. (2) When two streams of or- finite variety from some basic themes, the geomorphological
Stream of order w + 1 is created. (3) When two !EWS, that nature plays 1o mterpret the structures we encounter
differcnt order join, the channel segment immedi- i natural watersheds. It seems to us that there also should ex-
stream has the higher of the orders of the two com- ist some basic tlhemes in the structure of the hydrologic re-
4% The quantitative expressions of Horton’s laws Sponse of a basin. These themes should be related to the na-
4 i s ~ture of the geomorphological structure and should contain the
. key to the grand synthesis which hydrologists always dream
of. Many researchers long ago declared that this synthesis
could aever be quite attained. We do not share this view.

Even more important is the point that just the quest for the g
key or for pieces of it at feast will iead to exciting new pes-
spectives in hydrology and will get not only inio the questions,
What will happen.. . . 2, but even more importantly into the
questions, Why will it happen ... % from which we seem to
have been drifting during the last years because of pressing
> operational probiems. 3
where N_ is the number of streams of order w, The search for a link between geomorphologic laws and hy-
length of streams of order w, and A, is the drologic response needs some measure of description of the
basins of order w. Rs R., and R, represent hydrologic response structure of a basin. The description used
here is the instantaneous unit hydrozraph (TUH) that is equiv-

: are normally between 3 and 5 for R,, be- alent to the unit impulse respoase function of the basin.

3 for K, and between 3 and 6 for R,. . :
Gescription of channel networks (which also  THE TiME HISTORY OF ONE DRoP
Oustanding synthesis of the geomorphologic as- OF EFFECTIVE RAINFALL

@ISt in. hydrologic response analysis) is that of ' )
2 refer to Smart’s work for an in-depth under-
the implications of the above laws.

q:iantitaﬁw:'analysis of drainage networks has gone

Consider a watershed such as the cne in Figure | with a
bucket at the outlet of the basin. We are interested in how fast |
,_ % _ the bucket is filled when a volume of rainfall cxoe§$’bf ceitain |

By the American Geophysical Union. temporal and spatial characteristics is imposed on the water- ]
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;g ' tbinssﬁmplerandte;enera]ﬂélheﬁmﬂu.as
cafne the input is a unit volume of effective precipitation uni-
ormly distributed over the basin and instantancously
* imposed upon it. The bucket at the outlet will start empty and
" will reach a final volume equal to the total volume of rainfall

excess over the basin. A plot of this volume throughout time is

total volume yiekded as output up o a certain time f,

The derivative of the observed V(1) gives the hydrograph of
discharges 4(7) resulting from the rainfall input. This hydro-
graph g() s the [UH. A different manner in which io look at
 the previous situation will be to search for the probability that
a rainfall drop chosen at random from the input has reached
' the bucket at time r. A function describing this probability will
-appearasshowninl:igurel,starﬁngaturoaxthsmiginmd
reaching unity as time goes 0 infinity. The ordinate axis of
Figure 2 can be interpreted as the percentage of drops reach-
'ing the outlet of the watershed at time  and thus is equivalent
. to ¥ in (1). The derivative of W(1), as in Figure 2, is the IUH
~ ofthebasin. iy Ha

© A STATISTICAL FRAMEWORK FOR THE IUH

. Lienhard [1964] provided an approach to the study of the
JUH from a purely statistical mechanical point of view. Our
approach is necessarily different, ‘since we want the geo-
.morphologic structure to play an explicit role. The derivation
of the probability that a sainfall drop chosen at random has
'feachedmeouﬁelmﬁmcrwill_bctackiedbydeﬁningﬁrst
1. State is the order of the stream in which the drop is lo-
ted at time . When the drop is still in the overland phase,
e state is the order of the stream to which the land drains di-
rectly. A drop may begin in any state, but all drops eventually
terminate in the highest numbered state, @+ Lo cgim i
" Transition is the change of state. b B
3. Nis the number of states, ie., & 2 1, where @ is the or-
der of the basin and the extra state is the bucket or trapping
The
de thraugh its transition probability matrix:

-

Pu .If‘u_' P
Pu Pn Pa
i T pad e

‘where 5, is the probability that the drop makes & fransition
“from state i to state j. This is the same as the proportion of
~drops that, having entered state i, move next to state j. The
Nth state is the bucket which is a trapping state. | s
" The P matrix is not enough to describe the basin for our
purpuses because it does not take into account the dynamic
haracteristics which influence the time a drop spends in 2
 state onats way fo the outlet. = o
~1If the process of a drop going

the cumulative response of the basin, or what is the same, the

__':'u_) :

~ Suppose, nevertheless
- step the drop makes a

i-sfobabilistic 'deéﬁiption of the drainage network is

through the .ba.sin Qlerc ._.o.ne ' ;

t:lT;cwin; ﬁ.uu ;
with Strahler's ordering system md.ita

Third-order basin
. trapping state. .

Fig. 1.

where in each time step the drop made a transition {or, in
other words, we were worried about the number of transitions
and not interested in the time dimension as such), then P
would be enough to describe the situation. But transitions oc-
cur at various fimes, not at the same time. Indeed, because
there are an infinite pumber of drops and because time i
‘treated as being continous, the simple concepts of Markov
chains do not apply without modification to this problem.
and for the moment, that in each time
transition, and suppose that the transi-
“tion from one state to the nexi state only depends on the stale
where the drop is at this monent (Markovian hypothesis,
which is reasonable), then our problem would be reduced 10
‘finding the state probability matrix o) -

' ;0 'P\I_Pls. . pa 0 3
mas an
‘ 00 0 ~ Pa O
sibn0 o u0 im0 . g3
@

 em=00- o) -?_9';«0) b

where O(n) is a row vector whose elements 8{n) give the prob
ability that the process (drop) is found in state jatstep . 27
matrix @(n) is the multistep transition probability matit
whose elements ¢ (n) give the probability that the prﬂ":
goes from state i 1o state j after a tr itions. Vector 80

. the initial state probability vector (a row vector) whos®

wms:tsﬂl"‘

]

ments 8(0) give the probability that the process



@Uﬂfoﬂunauly, the simple schemc dm1bcd above' is not
i able to our problem bccausc the state at a given time

drop because different streams in the same catchment have _ :
é‘. i fleren t dyn.muc charactensucs We think of this as a semi- P ﬂ H(‘l‘) w(‘.} P'(‘l')
darkovian process whose suocesswc state occupancies are
' '.ed by the transition pmbablllm:s of a Markov process T’unm be:waen ewnm are weﬂ dmibed by thc fane-
hose time of stay in any state is described by a random  tionally appealing expouenual dcnmy function. Thus
ble that depends on the state presently occupied and on wam.ng time of the drop on a stream of order j given by
te to which the next transition will be made. Thus at G
sition instants the semi-Markovian process behaves just == 3*‘4" el =en
y Markov process. We call this process the imbedded where A, isa dlﬂ'crem mean wanmg Lﬂ:ne for mh smm or-
ov process. Nevertheless, the times at which transitions  der. a
ir regoverncd bya dlﬁ'erent probabilistic mechanism. e A.'Eumpuon l is qmle rcal stic for lhe tmvelmg of a drop;
ok .' assumpuon 2 will be shown io be a masonable hypethcsu
: ; ~later on in this paper. .
; . order of Lhc strea.ms uocupwd by the drop on sumwe The mean wa:tmg time matnx 18 A‘ where e

THE an MODE[.

bedded Markov proom., But the time 7, that the drop SR rk, PO e _{)'{ :
| spend in state i before making a transition to state j is a ; e

theh being the i inverse ofthe mean wa:.ung umem stmnnof
order i.

The two previous hypolhm allow a drasuc s:mphﬁutmn
of (6) Deﬁnmg a uans:uon rate matrix as 75

A-A(P B

atrix of holding time density functions, N N: o 3s
ey E Pu - e

‘% N diagonal matrix whose ith diagonal element
the uncanduumal wal tmg I.u:ne dens:l}' fam:tmn g

A

; \.rolumul ﬁq(i]dh\r{lhd\ﬂﬂ :uum-qm

o I s

PEI H("'} stands 10" mulnphcauon °f Cor- F"g 2 E.ﬂ‘euwe mnfa.ll volume collected at .l.b.e Irl.pp'l.rl,g state. s
Rineta- o ; & ﬁmcnonofhmc,ruuﬂmgfmaum&mpulofmp&mom

S



?:_thc mterval mnsmon pmbab:.hty matux .becomes [Howm-d

heree":sdeﬁncdasl & A:+(A2r=/2r)+
“Our final goal is the state probability matm 8(:) whose ele-

9(0 3(0) 'b(f)

" with the same interpretation we gave it in (3). The 8(0) de-

. pends on the spatial character of the rainfall, but under our

. assumption of uniform prcc:pnanon it will be cxuemcly easy
' to compute. i

e Really, we are mterested only in the lasr. term of the row
_"'_vector #(r), which gives us the probability that our drop is at

- the bucket or outlet of the basin at time ¢ and which we have

pictured in Figure 2. Howard [1971] shows thst lhe ex- . it

< ponmtual transform of (7} is g,wen by :
_ A ®)
'I‘hus in order to find ®(r) we nccd only 10 carry out (9) and

then make a straightforward inversion of the transform. We
will show this in detail for a third-order basin.

Q‘(r} =[s1 -

; -~ THIRD-ORDER BASIN 1UH
_'-‘ln :h:s case, N =4, and we have

Eod L s+h =Apu —Apu 0
lﬂ—ﬁ Gl 0 et h B i o
: T el U o P N T
0 miealite 25

'hcrensehasbcen made ofthefact that . ;
Pza"‘P:-“l :
V, & el i

Pu’=p;4-_—0

._._, s

ext we evalua!e the inverse matn.x {.s'l =

and prowod lo._vi_rrile itina part_i_al fraction cxpansio:h form,
[cﬂ'l + drr}

an

A[b’i 3+A s+A[

transttmn probability matrix is obtaired by inverse ex-
i panenual transformation, :

¢(:) = [a,] + e'“"{b_,,] + e"‘"[cq} + e“‘""'[d ,] {;2)

As we dlscusscd for (8), we are only interested in I.he ierms of
© the last column of ®(z), namely, $u(r), where i = 1,2, 3, 4.

. This column, when multiplied by the row \rector 0(0) of (&),
'_; yields 8,(r), or state probability for state 4. :

- Itis straightforward to obtain the abovc tcrms_. o

cnts &(r) gnre the pmbabzhty that l!:le drop oocuprex state z at -

§ where 9(0) repre%ems the initial state pmbablhr.y row vector

 draining directly into a stream of order t and .{r is m*‘-

- Thc pmbabﬂlly that ; drop chosen at random in siate i (
1 2, 3 4}has re.achedt.heouﬁctat ume nxgwenby
,[Az ~Apul
o )*l}(-;\l )*;}
Xhoe
- e
2 (_Az = AJ)(’\S Az} 5

'L.;\:—Mﬂu.uu s

i LA
J\;)

.;.,.(:) = :

"B =R

%

e e

}L
b &

(14)

(l)== i+

=

Mf? - l = 9
Trappmg state o '

i o ¢«(:) = ! : :
lllseasymcheckthmmaﬂcases,whenr-»w ¢.{:)-a- )
“and when 1 — 0, ¢.(1) — 0, w!uch have to huld fmm a phys»
‘ical point of view. i i ¢
- The probability that a dmp chosen at l'andom has n:ached
the audet. at {or before) time ¢ is given by

8.0 =8, ¢u{f) F 0:(0} d’u(‘) + 9:(0) ._4&4(') { 17}

: el
{’I.”._fl. .=__f(é’_+_ A6 + A+ A) s 2
: S+ AN + ) -ﬁu"u.(s + Aa) ShiAapyy + slu"u(-? + i\.-_} A.;\;M? 2 +'h| 1P|3(3 Tl
RSTRTY e _J(S + }h)(f‘i' A‘)} . SsAo{s+A) s AZ;\?{""- A‘) :
io oot S s+ A +_?\z) MG HANs A

-_{.r+ A )(s+ A,){s+ 4\,)

 where use has been made of the fact that 4,(0) = 0 At this

point we should add the irrelevance of the random eniry, €27
tering a continuous Markov or semi-Markov process at & 1fan-
‘dom time rather than when a transition is completed does 20t
affect the statistics of the process in any way [Howard, 1971}

We have defined 60) as the probability that the pIOW“
starts a1 state 4 or in other words that the drop stnrts is tl‘8 |
in a stream af orden ’I'hus we can write LT

a(e)u—-— - 32(0)- —*

where A2 (i =}, 2. 3) :epresems 1he total area ofor'jcr

i

area of the basm.




AL SC I

the average the number of streams of order l_‘_;h_al:"
s roams is B3

Simila_.rly

i A - Having written the p, as a function of Horon's g2ésmorpho-
er reams 5 1i W
rdm :;twh}-, df;f“&i ::‘:n:g ;('Exrﬁa;_d : k)glc parameters, we will proceed now to do the same with the
comorphologic parameters? The reason for this s  "itial probabilities #(0) of (19). Equation (18) shows
 of the main goals of this research is to find out if the ; ' S
rphologic order of things is related to the hydrologic re-
us instead of using (19) (or similar equations for’ .
other orders) as just a tool for synthetic IUH deriva- . A i
ach particular case it is important to write it as a func- W) = < ==
@osgpmammrswhichcxpmmegeomorphologlc Paoit ol B e i
result of the structural dictates of space. This we see  some analysis being necessary 1o rewrite A,* and A ¥
f bringing harmony and explanation to the infinite  The number of streams of order | available to be tributaries
lydrologic response that nature creates and that of orders 2 and 3 is N, — 2N.; of those the number going into
from the working of a few formal themes. Thus ~ second-order streams may be writtenas o ¢ i

el e
: '92{0)- A A, __"RSR‘ .'

T

T

2N1) tkl.lmberof links of order 2 :
‘total number of links of orders 2 and 3

‘streams of order of which 2N, make up for
r 2. The remaining (¥, — 2ZA,) streams of
reams of orders 2 and 3, Foilowing Smart
assume that the lengths of interior links in a
ire independent random variables drawn from
- This assumption impiies that the dis-
terior link lengths isindependmt-'ﬂf order, mag- =~
other topologic characteristic, and then we may
2N.) streams of order 1 joi :
to

- We proceed along similar lines o write 4,(0) as a function
of Horton’s ratios. There is one stream of order 3 into which
drain ali the N streams of order 2. In addition, therc are .. -

B

£ links of order 2 equals N{(N, 1)/ N~ Ei%%‘{-—f—“-’—’l-iﬁ, '
and (2) the number of links of order 3 o b bt R
DI - [(¥; - 1)/2N, — 1}, say, y. ini

/(x + y) gives No/(N; — 1)
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of a third-order basin as a continious
Markov process.

Fig. 3. Representation

The area A,* draining directly into the third-order stream
can then be wniten

Ar_szii“fi\lN! _M_zyzl

2N, - 1
Finally,
Ry 1 TR(Rs —3Rz+12)
93(0”"'.6:'37{'__—"—_—”3( ;er ] (26)

There are some mathematical restrictions imposed on the
vaiues which Ry and R, can take. Obviously, all the 8(0) have
15 be between zero and | and also ¥, 8(0) = 1. Thus from the
expression of 840) for § = 3 or for any other { one immedi-
ately needs R, > R . Similarly, other restrictions appear in the
ratio R,/Rj for higher-order #(0). From a simple evaiuation
of the equations we concluded that the generalization of the
8,(0) as a function of R, and R, can be carried out wherever
the ratio R,/Rs = 1.2. Even for much smaller values than 1.2,
in most cases the generalization 15 still valid. The above
mathematical problem. that for highly uausual values of R,
and R, one may get negative (0} (which of course have no
meaning), does not seem 10 impose major hmitations for the
study of drainage basins. in any case these restrictions follow
from the basic assumption of random topologic development
of drainage networks. Going back to (19), the only remaining
terms to be expressed in a general manner are the parameters
Mi=1.2.3). The waiting time of a drop in a state of order i is
assumed to be a random variable exponentially distributed
with parameter A, Therefore

E [waiting time in state i=A""

2N

In this manner, A,”" is the meax time spent by a drop in state
when consideration has beer: made of both the ume spent as
overland flow and the time spent as streamflow. The impor-
tance of the overland waiting time appears 1o be rather
smaller than that of the stream wailing time under the frame-
work of analysis taken in this paper. When one considers
drops traveling through a stream of order i, most of them will
come from the Lwo streams of order i — 1, which make up for

the stream in question, or from {ributary streams which drain
along the route of our stream of order i. The only drops af-
fected by overland waiting time will be those draining directly
by overland flow into the stream of order L These drops are in
number considerably fewer, in general. than the above omnes,
and thus we feel that in average (erms the mean waiting time
in state i will be the streamflow waiting time. Only for streams
of order 1 would one expect that most of the drops. except for
channel precipitation, are affected by overland wailing tme:
because of the smailer size of the order 1 areas, this time is
nevertheless considered to be of minor importance in the
overall ITUH.

It would also be possible 10 extend Horion's stream order
concepl to make the first order be overland flow under the
frame work presented in this paper. Nevertheless, this was not
done in our analyses in order to maintain the simplicity of the
results.

THE WAITING TIME MECHANISM

As mentioned earlier in this paper. the impacting advances
of quantitative geomorphology show dramaticaily how the at-
tribures of a watershed are decided by the constraints of
space. This is even more explicit when one considers the small
range of variation that Horton ratios have in natural river bas-
ins. Most of the basic principles governing the hydrologic re-
sponse are believed to be known, but the apparent complexity
of the phenomena prevents us from understanding and ex-
plaining them. As Weiskop/ [1977] beautifully put it in his def-
inition of the external frontier of science, ‘the external frontier
delimits the exploration of those realms of nature that lie
beyond currently understood principles . .. an understanding
of the principles by no means implies an understanding of the
world of phenomena.’ To explain the world of hydrologic
phenomena, it will be necessary to develop scientific theories
of general character. In respect to the structure of the hydro-
logic response these theories by necessity will have to be
linked to the geomorphologic structure.

The IUH by (19) has been expressed as a function of R,
R, the watershed order &, and the A, We know that river ba-
sins can change the shape of their [IUH in response 1o a
change in scale, and yet, at the same time, and in seeming
contradiction, have the same shape at different scales. Since
the scale does not depend on R, Rg, Of Q. the reason for the
above observation should lie in the A, which should contain
both a size effect and the dynamic component of the response.

E w realistic is the assumption of an expenential distribu-
tion for the random variable describing the waiting time for
streams of order i7 We feel it is quite a workable one: consider
a basin of, say, order 3 with L, =250 m and assume a velocity
of 2 m/s. For the first-order streams the time of residence is
1.25 min for those drops traveling the whole course of the av-
erage first-order stream. With an R, = 3 (L, = 2250 m) the
time of residence for the drop traveling the whoie third-order
stream is about 18 min. Thus except for long streams of the
highest order in larger-order basins the average waiting time
of a drop seems 10 be localized in the first two intervals in
which we will be estimating the [UH (for example, intervals
of 10 min). The true distribution for the waiting time will be
something like a gamma type starting at zero and positive
skewness; if the mean of this distribution is as we have seen
above, close (for our purposes) 1o the origin, then the mode
will be even closer to the origin, making the exponential as-
sumption a realistic one.



For the stream of the highest order we prefer to modify the

exponential distrib

1. As discussed

2. More important
exponential distribution is

ution for (wo reasons:

before, the mode starts 1o shift to the right.
is the fact that the assumpticn of an
equivalent to that of a linear reser-

voir. This for the highest-order stream implies that the basin
excited by an instanianeocus input responds with an ex-

ponential type of outflow.

This exponential type of response

coming from the highest-order stream will produce a hydro-

graph for the whole basin which
an ordinate equal to the ordinate
unit impulse response

order subbasin.

does not start at zero but at
at the origin of the partial

function corresponding to the highest-

Since the mathematical theory becomes extremely cumber-
some for nonexponential distributions of the waiting times,
the subbasin of the highest order is artificiaily represented as

two linear Feservoirs.

This is shown in Figure 3, which pic-

tures the connections between the different parts which make

up the structure of the basis for

the case £} = 3. Notice that

drops in the second-order streams can only go to the third-or-

der stream, but now the
3g and 3b. Siate 3a receives
second-order streams, part of first-order streams,

by two states

third-order siream 1S representied
the drops from all
and those

drops draining directly into the third-order stream. All these
drops are passed © the state 3b, which is the one that feeds the
bucket. We wish that the combination of 3a and 3b, that is Lo

say, the third-order state,

had a mean waiting time of A

corresponding to the dynamic characters of the third-order

streamn. We assign to 3@ and

3p identical exponential distribu-

tions with mean waiting times of 0.5A,~"; the sum of these two

exponentials is pictured in Figure

4. The distribution of the

“waiting time for the {hird-order stream is IOW

wi(r) = ire ™ @8)

with mean value of A, = 2
The adoption of the extra state 3b changes the expressions:

#for ya(f)s baalf), and S3alt) given

by (13), (14), and (1), but the

methodology to obtain them remains exactly the same.

For a basin of order 3 the tramsition

mow given by

=

)

i}nd the transition

probability matfix is

P2 P 0 0
0 1 0 0
0 0 1 of @
|
0 0 0 1 \
0 0 0 1 J1
rate matrix becomes
-\ AP A 0 0
0 ~X; A 0 0
0 J =2\, 2 Qo2 (30)
0 0 0 2N A
0 0 0 0 Q

Calling the bucket state 5 and calling former states 3g and
3b states 3 and 4, respectively, one finds '

7 dis() _ dibys(1) débys(1) desll)

HIH = — == 00—+ 60—+ 60—
(30

where use has been made of the fact that 8.(0) = 0. The deriv-

ative terms in (31) are given by
duln=1+ A ™+ Ade ™+ Ayt e+ A
where A,* = 2A, and
= '.A!*_-'.i;\LPI)")‘!i i ‘
YT - AT - A
[0 Y
(‘\3 = ?\J(:\:‘ =A :)]

e M — AAstpisl
T = AT Aa)

BOLY — 2aA*

A=

A= {(M')J)‘;Pu(-\;’ = hl')(Az __5'3‘} =
- AN Kn}‘zl{}‘-}'z()\aijz — M palh
+ [P = AT Aty

-(kjt}z _H A-“Az —.\‘-l .
wisl=ge ' Coas
L2 — Az) et
A — A"

&35{‘) =1i- A:'e';\!" o p - e—)\".

The partial TUH corresponding to the highest-order sub-
hasin {3 in this case) is given by dbss(1)/dr and will now start
from zero at the origin.

The equations for the initial probabilities 6(0) and for the
transition probabilities p;, as function of the Horton numbers
remain as given before, since they are unaffected by the exira
state 3b.

As discussed at the beginning of this section, the A, shouid
contain both a size or scale effect and .he dynamic component
of the response. We need a number of A, equal to the order L
of the basin: nevertheless. this can be tackled in a simpie man-
ner. Let » be the average strearnflow velocity in the catchment.
Then

A =v/L, (32)

which implies

A=viL, A=A R S (33

assuming that for a given rainfall-runoff event the velocity at
any moment is approximately the same throughout the whole
drainage network.

The above assumption is based on the pioneer work of
Leopoid and Maddock [1953] and has been experimentally
validated by many studies, the most recent one by Pilgrim
[19771. Leopold and Maddock show that the change in veloc-
ity in the downstream direction when considering & discharge
of given frequency throughout the basin is very small.
Changes in width, depth, and possibly roughness more than
compensate for the cffects of slope, producing in theory a very
small increment in the velocity when advancing downstream
during a discharge of fixed frequency. Pilgrim found from
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Equation (33) now gives all the A, 43 l’qm.;ma onlw: e
namic parameter v. the Horton length raucll‘ L r_‘:-"ulh'lr e
size factor L, (or any other L,). 5ince Ly s ca,:g grger
with higher precision than L,, il ;\}cucr to
factor and write the A, as function of Aa- Sl

The analvtical derivation of the {UH was carrrﬂi :1 b
=34, and 5. The resulting equations lsl_‘mw Siomce‘::cml st
which immediately suggest the possibility of 31_ & i
thesis. which will be attempted laicr i this paper.
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Figure 5 shows examples of IUH’s computed for different
values of the geomorphologic parameters but with a fixed ve-
locity. Figure 6 shows examples of IUH’s computed for the
same set of geomorphoiogic parameters when v is varying.

THE GEOMORPHOLOGIC [TUH

We have expressed the [UH as a function of R, 7, R,, the
velocity v. and the scale parameter L;,, What is the meaning of
the velocity v? It tells us that the TUH varies both from storm
to storm and also throughout the same storm. It gives us the
key to the ume-varying IUH analysis. The dependence of the

V=2 Smismc
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Fig. 6. Examples of the changes in the {UH when the geomorphologic characteristics are kept constant and the velocity
vares.

[UH on velocity has serious implications in the ways o ap-
proach a design problem or. in geperal. in the estimation of
the peak flow and time to peak flow of real storms when using
unit hydrograph methods. This topic is discussed by Rod-
riguez-Tturbe et al [1979]. We believe that many of the criti-
cisms of the TUH analysis based on the fact that different
[UH#s are obtained for different storms and which are com-
monly attributed to the nonlinearities of {he system. which of
course exist, may be addressed in terms of a time-varying
[UH. This is substantiated in the resuits of the companion pa-
pers by Valdés et al. [1979] and Rodriguez-Iturbe € al. [1979].
The effect of v on the {UH wiil be shown in the experiments of
the next section of this paper. What we are saying is that the
results indicate that the nonlinear effects imbedded in the rc-
sponse of a basin mantfest themselves i the velocity of the
discharge: thus a time-varying linear framework evolving with
the velocity is a valid one to the problem.

To test the framework described 1n the previous section.
four natural basins and three synthetically built ones were an-
alyzed in great detail, and a very disaggregated representation
of each of them was carried out by means of a ramnfall-runoff
model. Through very controlled experiments & set of [UH’s
for each basin was derived from the rainfail-runoff model
such that each TUH corresponded 1o & different flow velocity
kept constant during the event. These IUH's were compared
{0 the [UH's derived from the geomorpholcgic approach. The
expeniments, the results, and their implications are described
in the papers by Valdés et al. [1979] and Rodriguez-Tiurbe éi
al [1978]. In all cases the agreement was excellent, suggesting
the proposed framework is 2 valid one. Nevertheless, let us

point out again that the goal of this research is not to imple-
ment a design tool usetul by iself specially in ungaged basins.
We need the experiments in order to feel confident we arc on
stable grounds. but the aim of the effort is to understand the
pature and development of existing hydrologic hierarchies.
This requires a much deeper insight into the interactions and
their manifestations than we have gained today in hydrelogy
and geomorphology.

The proposed raathematical framework also makes it pos-
sible to study on 2 systematic basis

(1) some effects of nonupiform rainfail in the derived re-
sponse function (This study may be carried out by varying the
initial state probabilities 8,0 and will shed light on the rela-
uve impertance of the different structures which make up the
basin in the hydrologic response of the watershed. A forth-
coming paper Dy the authors analyzes this problem.) and (2}
the effect of infilration and other losses in different geo-
morphologic subunits of the basin in the hydrologic response
of the watershed (This study is carried out by adding another
state to the representation of the basin. This state accounts for
the transformation from precipitation (0 effactive rainfall, and
there is a transition probability from each stream order to this
pew state.). An important point is that the above analyses can
he carried out on a general hasis without being subscribed to
particular basins.

As mentioned before. this paper gives the equations for the
geomorphologic {UH of a third-order basin. But equations for
higher-order basins can be derived with exactly the same
framework. Although the derivation is simple, the procedures
are quite lengthy. This is irrelevant, pevertheless, because the
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equations for all orders are refated as will be shown in the
next section of this paper. It is important Lo notice at this mo-
ment that different hydrologists may assign different Q to the
same basin, depending on judgment and the scale of the map.
R, R and R, on the other hand, do not depend on the scale
of the map. Clearly, the [UH should be the same for both hy-
drologists, but the equations are different in their functional
structure because they represent two differents £2. It turns out.
as the experiments of the next section show, that both IUH’s
agree almost perfectly as long as one compares, say, an IUH

of fourth order with a certain £, with an TUH of third order
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Exampies of the variation of the time to peak of the [UH as function of the flow velocity.

with [,* = L, - R, maintaining in both cases the same R, R,
and R;.

THE PEAK AND TIME TO PEAK OF THE [UH:
A GEOMORPHOLOGIC SYNTHESIS

The most important characteristics of an [UH are the peak
q, and the time to peak 1,. As long as these two factors are cor-
rect, the exact form of the [UH is not very important, and a
triangular approximation is quite satisfactory [Henderson,
1963]. Unfortunately, the sum of exponential functions in the
[UH expression does not lend itself to mathematical manipu-

_____j___-—-—-—-————"'_.

4 5 W m /e

Fig. 8. Examples of the variation of the peak of the [UH as a function of the flow velocity.



{ation in order to obtain the maximum of the function. Thus
we resorted to an accurate approximation involving values of
g,and 1, obiained in the computer from the expressions of the
[UH for different velacities in the range 0.5-6 m/s and for &
- =13,4,5 with L, (the scale factor) varying from 125 to 2000 m.
These calculations were carried out for 126 combinations of
~ yalues of Ry R, and R, in the ranges 2.5-5.0, 3.0-6.0, and
1.5-4.1, For fixed R, Rg Ru. £, and Q one notices that g,

" and 1, are very simply related to the velocity v.

Figures 7 and 8 show the points obtained for g, and ¢, from
the TUH equations for a typical computation and illustrate
how these points can be fitted extremely well by some simple
functional dependence with . The chosen relationships are

(34)
(35)

g.=8-v
t,=k/v

~ where ¢ and X depend on R Rs Ry £,, and 9. Equations
(34) and (35) adjust extremely well the dependence of g, and
. t,onv, the R? are indistinguishable of 1, and, more important,
. each value of the geomorphelogically derived g, and f, was
! compared with the ones yielded by (34) and (35). This was
carried out for all the 126 combinations of Ry, R,, and R,
which are calculated for each £, and for cach Q. In all cases.
differences between the exact values of the [TUH equations
and those of (34) and (35) were under 10%.
The functional dependence of g, and 1, on v contained in
(34) and (33) is somewhat expected; if one approximates the
i [UH with a triangle, then

(‘h"p}/z" 1 |

~ where t, stands for the base time or total duration of the IUH.

The 1, is the time that it takes the last drop of the unit impulse
" rainfall to reach the outlet of the basin. Thus £, is some length
overa certain velocity, and g, then will be a velocity over a

spectively.

The task is now to find the geomorphologic dependence of
§ and k. With fixed [, and & 2 regression analysis was per-
~ formed hetween the 126 combinations of Ry, R, and R, ver-
* sus # and k. The regressions giving a better fit are of multipli-

cative form, for example,
k= u_RﬂP'tRAﬂl Lﬂ?

With all the R? above 0.97 and most of them above 0.99
they are shown in detail in the report by Rodriguez-Turbe et
al. [1979).

It is crucial to understand that the regression analyses per-
formed here are not empiricak we knew the functional rela-
ticnship of the geomorphoiogic [UH, and thus the regressions
~ have to yield excellent fits. Their only purpose is of an opera-
" tional character in order to preseni general results which are
very difficult to obtain with straight mathematics from [TUH
equations because their form. sum of exponentials, does not
tend itself to clean mathematics.

The generalization of the results may be better understood
_in terms of an example taken from the computations. For a
third-order basin (£ = 3) and a size paramelter L, =500 m the
following regression equations are obtained for # and k:

=06 R =0 (36)

k v=) 0.22Rsu.56R ,_O‘”RL"“ RJ — 0993 (3,.”

length. Therefore & and k have dimensions of [-'apd L, e--

ForQ=3and £, = 1000 m the equations are
§=131R 77 R = 0997

k= 0‘44‘1{30 seR_‘_.n.usRLl.u

(38)
R = 0992 (39)
The important point is that for fixed £ the exponents of Ra,
R,, and R, variables remain practically the same for all values
of L. The coefficient in front of the equation for both # and k
is in almost exact proportion to the size of L, in all the ana-
Lyzed cases. [n this manner, for @ = 3 we can write the general
equations

g=1a1/0, R
k= 0_44L‘R80.55RA—455‘RL1 62 7

(40)
(4

where [, is expressed in kilomeiers. since we have used the
coefficients obtained for £, = 1000 m. o

The role of @ is detected when it is noticed that for the same
[, one finds
(42)
43)

Bﬂ-‘-i i BW’{RL-}H
koo = ka- (R, .

Notice that while £ is dependent on map scale and subjective
judgment, the Horton aumbers are not. and thus (36) and (37)
yield the same values of 8 and k for a basin that two hydrol-
ogists may have identified with different £. This is a conve-
nient and necessary feature for the framework to have practi-
cal value.

Equations (42) and {43) hold extremely well for all the indi-
vidual cases. One may then rewrite (40) and (41) for2 =3 as

1.31
G

k= U'MLDRLL-QRBMSR‘J.%RLLQZ

RL—l.bT

(]

and for any Q and any L, one has

4o 8

= LQRLI—Q

RL— 157

-3
R,

k= OIMI‘QRLI—-DRgassx‘JJ,SSRLI_ﬁZRLﬂ-‘

which simplify to
f=131/Lg  R® (44)
ke 0 ALl SR =R (43)

the basic general equations whach
peak and time to peak of the [UH

Equations (44) and (45) are
allow the estimation of the
through the relations
=0 t,=k/v

In (44), @ represents the slope of the line g, (h™") versus v
{m/s); thus with Ly in kilometers one estimates § by means of
(44) and multiplies its value by the velocity in meters per scce
ond to obtain g, (h™)- Similariy, the k obtained by {45), when
divided by v (m/s), gives the estimate of 1, in hours.

It is interesting to notice that the product g, * I is independ-
ent of the velocity v and the scale variable L. Calling this di-
mensionless product IR, one may write

IR =g, -1, = 0.58(Ra/R )% - R
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with £,* = L, - R, maintaining in both cases the same R, Ry
and R,.

THE PEAK AND TIME TO PEAK OF THE IUH:
A GEOMORPHOLOGIC. SYNTHESIS

The most impartant characteristics of an ITUH are the peak
g, and the time to peak ,. AS long as these two factors are cor-
rect, the exact form of the IUH is not very important, and a
triangular approximation is quite satisfactory [Henderson,
1963]. Unfortunately, the sum of exponential functions in the
[UH expression does not lend itself to mathematical manipu-
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_ Jation in order to obtain the maximum of the function, Thus
. we resorted to an accurate approximation involving values of
. g, and (, obtained in the computer from the expressions of the
| {UH for different velocities in the range 0.5-6 m/s and for 2
=3, 4, 5 with L, (the scale factor) varying from 125 to 2000 m.
. These calculations were carried out for 126 combinations of
| _values of Ry, Ry, and R, in the ranges 2.5-5.0, 3.0-6.0, and
© 1.5-4.1. For fixed R, Rs Ry, L,, and Q one notices that g,
| and ¢, are very simply related o the velocity v.

I Figures 7 and 8 show the poinis obtained for g, and ¢, from
the IUH equations for a typical computation and illustraie
how these points can be fitted extremely well by some simple
 functional dependence with v. The chosen relationships are

(34)
(35)

q.=8r
t,=kv

where @ and & depend on R,, Rs Ri, L., and ©. Equations
' (34) and (35) adjust extremely well the dependence of g, and
. g,onv, the R? are indistinguishable of 1, and, more importast
" each value of the geomorphologically derived g, and J, was
| compared with the ones vielded by {34) and (35). This was
~ carried out for all the 126 combinations of Rs R, and R,
which are calculated for each L, and for each &. In all cases.
differences between the exact values of the IUH equations
and those of (34) and (35) were under 10%.
' The functional dependence of g, and 7, on v contained in
| (34) and (35) is somewhat expected: if one approximates the
TUH with a triangle, then :

(g, )2 = 1

- where 1, stands for the base time or total duration of the ITUH.
©  The 1, is the time that it takes the last drop of the unit impuise
* rainfall to reach the outlet of the basin. Thus 7, is some length
over a certain velocity, and g, then will be a velocity over 2
length. Therefore § and k have dimensions of L™ and L, re-
spectively.

 The task is now 1o find the geomorphologic dependence of
" and k. With fixed L, and @ a regression analysis was per-
formed between the 126 combinations of &g, R, and R, ver-
“sus ¢ and k. The regressions giving a better fit are of multipii-
_ cative form, for example,

k= aRﬂ_ﬂ.R"ﬂ:RLﬁa

' With all the R® above 0.97 and most of them above 0.9
' they are shown in detail in the report by Rodriguez-iturbe &
~ al [1979).

It is crucial «o understand that \}v;.n:gxession analyses per-
formed here are not empirical; we knew the functiopal rela-
tiouship of the geomorphologic IUH, and thus the regressions
have to yicld excellent fits. Their only purpose is of an operz-
_ tional character in order to present general results which are
- very difficult to obtain with straight mathematics from [UH
~ equations because their form. sum of exponentials, does nat
lend itself to clean mathematics.
 The generalization of the results may be better understoos

in terms of an example taken from the computations. For 2
 third-order basin (2 = 3)and a size parameter L, = 500 m the
following regression eguations are obtained for 6 and &:

R* =10.997

6=261 R (36)

o k=022RSERONR,E R =0993 @

" ForQ =3 and L, = 1000 m the equations are
§=131R,"7  R*=0997

k = 044R >R, ©*R,'*

" @38)
(39)

The important point is that for fixed & the exponents of R,,
R, and R, vaniables remain practically the same for all values
of L,. The coefficient in front of the equation for both § and &
is in almost exact proportion to the size of L, in all the ana-
tyzed cases. In this manner, for £ =3 we can write the general
equations

R*=0992

8=131/L,-R;=""

Lo 1)
k=0-44£|,R30'55R1_0'ﬁR;_|'ﬂ xS

)

where [, is expressed in kilometers, since we have used the
coefficients obtained for L, = 1000 m.

The role of @ is detected when it is noticed that for the same
L, one finds

g, = fa/ (R
koo =ka (R

(42)
{43)

Notice that while §2 is dependent on map scale and subjective
judgment, the Horton numbers are not. and thus (36) and {37)
yield the same values of # and & for a basin that two hydrol-
ogists may have identified with different £. This is a conve-
nient and necessary feature for the framework to have practi-
cal value.

Equations (42) and (43) hold extremely well for all the nd:-
vidual cases. One may then rewrite (40) and (41) for @ =3 as

s
LoR,2

k= B_MLHRL{—QRSB}SR_‘—MRLMZ

3 R’—I.S'.l

and for any © and any £, one has

8= 1::-}?3‘:5__“ Ryt R:s:-—;
k=044LoR, "R VR, ORI PR
which simplify to
8= 131/Ly" R (44)
e AL BT S5p —omp ~eos {45

Eqnations (44) and (45) are the basic general equations which
allow the estimation of the peak and time to peak of the IUH
through the relations
g,=8-v L=k/v

[z (44), 9 represents the slope of the line g, (h™") versus »
im/s): thus with Ly in kilometers one esumates & by means of
{44} and multiplies its value by the velocity in meters per sec-
ond to obtain g, (h™'). Similarly, the & obtained by (45), whea
divided by v (m/s), gives the estimate of £, 1a hours.

Tt is interesting to notice that the product g, - 1, is independ-
ent of the velocity v and the scale variable L, Calling this di-
mensionless product /R, one may write

IR=gq,t,= 0.58(R,/R.)"% - R, %



For the range of values one may possibly find in nature. iR
simplifies w0

IR = 0.58(Ra/R)" (46)

The ratio IR is a constant for each basin and indicates that
the TUH description can be acomplished in practical terms
with only one parameter (in this case, either 1, or g,). This ob-
servation has been made in the past in empirical terms by
many hydrologists. It also appears that IR could play an inter-
esting role when trying to approach the elusive and difficult
problem of hydrologic similarity or. in other words., when
trying to make inferences about the structure of the hydro-
logic response of different basins.

CONCLUSIONS

i. The structure of the hydrologic respofise is intimately
linked to the geomorphologic parametcs of a basin. When
the hydrologic response is represented by the IUH, it is found
that it can be expressed in a general manner dependent on R,
Ry Ry, 2 scale variable [q, and a dynamic parameter v. Thus
the IUH varies from storm to storm and throughout the same
storm as a function of the velocity v which occurs in the differ-
ent instances of time throughout the basin.

2. Equations (44) and (43) combined with (34) and (35)
represent 2 general relationship which allows the estimation
of the peak and time 0 peak of the TUH of a watershed.

3. The dimensionless ratio IR is a characteristic variable
constant for each basin which is independent of the storm
characteristics and which is intimately linked (O the geo-
morphology of the watershed and to its hydrologic response
structure.
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