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Abstract. An investigation about four supervised neural classifiers based on the Minkovski-r error and the
modified Fisher criterion is evaluated to classify a double textured SAR amplitude image. Regions around pre-
classified pixels are presented to train the neural network that learns a sub-optimal set of masks via back-
propagation algorithm. Classification performance is evaluated using kappa statistics. The neural classifiers
showed almost the same performance for different window mask sizes and training samples. However, the
Minkovski-r=1.1 error showed a slightly better performance than the others. Best results are obtained when the
neural classified image is followed by an erosion process via Median filter. The results outperformed the
classification performance of two statistical classifiers: the Minimum Bayes error and the Kullback-Liebler
distance.
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1. Introduction

Artificial neural networks (ANN) algorithms has been increasingly applied to remote
sensing for image classification in the last years, as indicated by classical papers such as
Benediktsson et. al. (1990), Bischof et al. (1992), Haraet al. (1994) and Chen et al. (1996).
The Synthetic Aperture Radar (SAR) is a microwave active imagery system that has been
largely used duetoitspossibility of day-and-night operationin almost all-westher conditions.
According to Oliver and Quegan (1998), the SAR system generatesimages by the coherent
processing of the scattering signals, so the resulting scene texture has an undesired
multiplicative speckled noisethat reducesdrastically the ability to distinguish the features of
the classes. Therejection of the speckle noise motivated many workswhere ANN algorithms
has been applied to SAR imagery classification, such as Ghinelli and Bennett (1997), Ito and
Omatu (1998), Tzeng and Chen (1998), Frate and Lichtenegger (1999), Gediraet al. (2000)
and Jacob et al (2002).

According to Hara et al. (1994) and Gedira et al. (2000), the rapid increase of ANN
applicationsin remote sensing imagery classification isdue mainly to their ability to perform
equally or more accurately than other classification techniques. In ageneral way, the major
advantages of the neural network method over traditional classifiersare: (1) easy adaptation to
different types of data and input configuration; (2) easy incorporation of ancillary data
sources, as textural information, which can be difficult or impossible with conventional
techniques; (3) does not use unreasonabl e assumptions about stati stics properties of the data,
that is, doesnot need a priori knowledge about parameters of distributions; (4) findsthe best
nonlinear function, in the optimal case, between the input and the output data without any
constraint of linearity or pre-specified nonlinearity which is required, for example, in
regression analysis, (5) may be implemented with reduced storage and computation
requirements.

Hara et al. (1994) also showed that supervised neural network classifiers (NC) have
outperformed unsupervised methods because thelast one utilizesno apriori classinformation.
Therefore, multi-layer feed-forward networkstrained by the back-propagationagorithmisthe
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most common ANN used for image processing due to its great classification potential and
implementation simplicity.

Fully polarimetric SAR datawere used to train amulti-layer feed-forward network using
adynamic Kalman filtering, asin Chen et al. (1996) and Tzeng and Chen (1998), while Ito
and Omatu (1998) used the classical back-propagation. These data were also used to
multitemporal dataclassification by Frate and Lichtenegger (1999) and Gediraet al. (2000).
Texture information was explored by Ghinelli and Bennett (1997) and Jacob et al. (2002).

Inthis paper, it wasinvestigated the classification performance for the supervised neural
classifiers based on two different cost functions: the Minkovski-r error and the modified
Fisher cost. The classification test was made viaamulti-layer feed-forward artificial neural
network, trained by using the back-propagation algorithm with the aim to extract filtering
masks around a center pixel to be assigned to one of the two classesfrom a double textured
SLC-SAR amplitudeimage with known edge. The performance was evaluated by using kappa
statistics asfunction of the size of the masks and the number of samplesused for learning. An
analysis about the edge degradation was also investigated. The results were compared with
two well-known statistical classifiers: the Minimum Bayes error and the Kullback-Liebler
distance. Median filter was also used in the post-processing to increase the classification
performance. In the next session, we describe the experimental dataused for evaluating the
classification performance. In section 3, the supervised neural network classifiers are
described. Experimental resultsand conclusionsare presented in section 4 and 5, respectively.

2. Experimental Data

Toinvestigate the performance of the supervised neural classifiers, aspacial correlated Single
L ook Complex Synthetic Aperture Radar (SL C-SAR) imageswith two classeswere simulated
taking into account the multiplicative speckle noise. The image was generated by using a
stationary circularly symmetric separable Gaussian Markov Random Field (GMRF), asin
Fernandes (1998), with a correlation coefficient equals to 0.7 between the range and the
azimuth pixels. This means the data employed in thiswork are realistic scenes.
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Figure 1. (a) 128x128 amplitude SAR image with two distinct classes and aknown edge. (b)
Histograms with 50x50 pixels per class region.

The aim here is to generate a simulated amplitude image with two distinct classes
separated by a priori known edge. Inthiscase, asinFigure1-(a), aresulting 128x128 pixels
amplitude SAR image was created with two distinct classes Rayleigh distributed with
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expectance 45.00for class A, the darker one, and 90.00 for class B. InFigure1-(b), a50x50
pixelsregion from each classwas put on a histogram that shows alarge overlap between the
distributions. The estimated val ues obtained were 45.09 and 579.58 for average and variance
of the class A, respectively, and 87.24 and 2021.37 for the class B.

3. Supervised Neural Network Classifiers

The ANN architecture used to classify the double textured amplitude SAR imageisa
multi-layer feed-forward network that receivesinput froma(2M+1)x(2M+1), M>0, ordered
and squared region around the pixel (r,c), or (row, column), to be classified. Theinput layer
feedsthrough hidden layersto asingle output node that assignsthe center pixel (r,c) to one of
thetwo classes, according to the output signal polarity. Conventionally, theweightsfromthe
input imageto thefirst hidden layer neuron are called mask and the total output signal vector
of thisfirst hidden layer is called feature vector. Thetraditional hyperbolic tangent function
was used in all the layers as the activation function dueto its speed of convergence and low
computational cost to implement the derivative.

The use of filtering masks based on regions classification as input images aims at
reducing the dimensionality of the feature space and, therefore, at facilitating the ANN
learning process due to reduction of the curse of dimensionality, as explained by Haykin
(1999). Themainideahereisif the ANN issuccessfully trained, thefirst hidden layer will
extract optimal filters obtained by the masks, thereby enabling it to emphasize intrinsic
characteristics in the classes of the image. Depending on data complexity, a subsequent
hidden layer will be necessary and it will be able to help extracting other internal data
representations. The single output neuron has the function to classify the center pixel (r,c).

Training the ANN means updating their synaptic weightsin such away that an objective
function, or cost function, is maximized or minimized. TheMinkovski-r Error (ME, ), or Lr
norm, isageneralized metric distance wherether exponent isuseful for various aspects of
representing information, that is,

1 :
ME, =X(y,- v,) 120, ®

where vy, is the output desired signal of the output neuron and vy, is its output signal
measured. According to Bishop (1995), small r exponents, or r <2, givelessimportancefor
large deviations in the error and tend to reduce the influence of outlier pointsin the feature
space during learning. For the case r = 2, the cost function (1) reducesto the usual sum-of-
squares error that boils down to the classical back-propagation deduction, as in Haykin
(1999).

Traditionally, Fisher criterionisatool to reduce the dimensionality of the input space of
datato be classified by using its average and variance, as in Fukunaga (1990). The proposal
here, according to Jacob et al. (2002), isto use themodified Fisher Error ( FE) (2) instead of
the compl ete one becauseit does not considerably affect the classification performanceandis
not so computationally expensive to train the network. So, we employ

FE :%(mA- m )2, @)

where m, i = A, B, arethe output signal neuron averaged by all thetraining datafrom class
A and class B, respectively. In this case, in contrast to ME,, the cost function must be
maximized to a successful learning.
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Here, to train the ANN we used a steepest descent/ascent algorithm implemented via
back-propagation. Therefore, the cost functions (1) and (2) may not reach the global
minimum/maximum and the filters extracted will not be optimal. To avoid this, genetic
algorithm could be used, but thiswould increase the computational complexity considerably.

4. Experimental Results

In this section, the performance resul tsof four supervised neural classifiers(NC) used to
classify the double textured amplitude SAR image fromFigure 1-(a) are presented. The goal
isto comparethe performancefor two different cost functions: the Minkovski -r Error andthe
modified Fisher cost, whereinthefirst casethree different exponentswereused: r=1.1,r=1.5
and r=2.0. It wasinvestigated the best classification performance based on kappa statistics,
see Bishop et al. (1976), versus the size of the mask and the influence of the quantity of
samplesin the training.

In both cases, Minkovski and modified Fisher costs, the back-propagation was applied
with a constant learning rate parameter and a speed-up momentumterm until 1500 iterations
were reached or when therate of changeissmal ler than 5x10™ for thefirst cost or 10°for the
second one. For the Minkovski's cases, if the output signal ispositive, the center pixel (r,c) is
assigned to class A, and if is negative, to class B. But for the modified Fisher cost, the
network performed aclassification based on the matching of the output signal polarity and the
apriori training data, because (2) has two possibl e solutions. Performance results based on
kappa statistics are shown in Figure 2. Kappa coefficient was eval uated with morethan 2500
pointsin each class. All datapresented here has cost function smaller than 10 for the M E

and larger than 1.8 for the FE, and the network topology has only one hidden layer with two
neurons. Other more complex network topologies were tested but the classification
performance improvement was only marginal.

Figure 2-(d) indicates that the network trained with the modified Fisher cost presented
difficulty to learn with 5x5 and 7x7 mask sizes, so just two pointswere obtained. In ageneral
way, all the cost variations, mainly in the Minkovski-r error, have almost the same
performance. However, the Minkovski-r=1.1 showed abit better resultsthan the others. So, as
discussed in Section 3, smaller r exponents decrease the effect of the outliersdatatraining
points. For all theMinkovski'sclassifiers, the best performance occurred with a5x5 size mask
and, except for r=2.0, the performance did not increase gradually as the number of data
training were presented, that is, the over fitting occurred.

The performance results of the supervised neural classifiers were also compared with
those obtained by two statistical classifiers: one based on the Minimum Bayes error, asin
Fukunaga (1990), that generates a Bayes decision rule for the minimum misclassification
error among classes; and other based on theKullback-Liebler distance (K-L), asdiscussed in
Carvalho (1999). For the both cases, it is assumed that the classes have a priori known
distribution functions, so their respective parameters are extracted to solvethe classification
problem.

InTablel, confusion matrices and their respective kappa coefficientswere computed to
represent the classification performancefor the statistical classifiers. Thebest classification
performance of the Minimum Bayeserror method, that is, itsoptimal result, has shown apoor
performance if compared to the K-L method. As showed in Figure1-(b), it occurs because
there is a higher misclassification error between the classes A and B. For the K -L method,
however, it was chosen 3 samplesof 11x11 window per classto extract the parametersfrom
the regions, and a 5x5 window performed the region attribution. In this last case, the
minimum distance method showed better classification performancethan the Minimum Bayes
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error and the supervised neural classifiers, asin Table 2-(a). Slightly better results were
obtained after a 3x3 Median filter (MF) decreases some speckled misclassifications.
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Figure 2. Classification performance varying the size of the masks and the number of training
samples using the following costs: (a) ME; 1. (b) MEs 5. () MEzo. (d) FE.

Table 1. Confuson matrices. Minimum Bayes eror, smple K-L and K-L with Median filtering
method for classes A and B.

Minimum Bayes Error K-L K-L + 3x3 MF
Known Classfication Known Classfication Known Classfication
Class A B Class A B Class A B
A 0.83 0.17 A 0.93 0.07 A 0.96 0.04
B 0.39 0.61 B 0.12 0.88 B 011 0.89

Kappa=044 Kappa = 0.80 Kappa=0.84

The supervised neural classified image, or supervised neural thematic map, also for the
best results, has ahigher number of misclassified points because the network had difficulty to
|earn the speckle noise. Thisoccurred mainly inthe class B, wherethe classvarianceisbigger
than the class A. Table 2 showsthe confusion matrices and their respective kappacoefficients
obtained by the supervised neural classifier (NC) trained with the Minkovski-r=1.1 cost, 5x5
window mask and 15 training samples per class. Thesimple NC obtained afair classification.
However, as presented in Table 2-(b) and (c), increasingly better results were reached when
using Median filters to erode the image.
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Table 2. Confusion matrices: 5x5 mask neural classifier based on ME;; smple and with Median
filtering for classes A and B.

Minkovski r=1.1 Minkovski r=1.1 + 3x3 MF Minkovski r=1.1 + 5x5 MF
Known Clasdsification Known Clasdsification Known Clasdsification
Class A B Class A B Class A B
A 0.93 0.07 A 0.98 0.02 A 0.99 0.01
B 0.24 0.76 B 0.14 0.86 B 0.08 0.92

Kappa = 0.69 Kappa=0.84 Kappa=0.91

Figure3-(a) and (b) show histogramsthat contain the number of pointsclassified in each
imagelineasclass A and class B the neural classified thematic map obtained by the 5x5 mask
Minkovski-r=1.1'sNC trained with 15 samples per class. These graphicsare able to show the
edge degradation and the classification performance in a qualitative way. Then, with a 5x5
size mask, the edge degradation is about 3 or 4 pixels around the ideal known edge and the
5x5 size mask Median filter, when passed through the edge, makes the region a bit more
uniform. Figure3-(c) and (d) present the result images without and with the Median filtering,
where the black pixels represent the edge effect occurred by the filtering masks.
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Figure 3. (a) Number of points classified as white samples or class A by image line. (b)
Number of points classified as gray samplesor class B by i mageline. (c) Neural classified
thematic map for the 5x5 size mask trained viaMinkovski-r=1.1 and 15 sampl es per class. (d)
Last image eroded by a 5x5 Median filter.
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Theinvestigation showed that the minimum Bayes error isnot agood method to classify
imageswith an elevated misclassification error dueto the Rayleigh distribution classes. The
K-L method has better results, however needs a higher amount of training information to
extract the well-known parameters of the distribution classes. In our case, for example, the
image does not have any additive thermal noise or other that represents any other undesired
information. For NC, in contrast, it does not matter if there are noise or not, because it does
not assume any parametric well-known distribution.

5. Conclusions

In this paper, four supervised neural network classifiers were applied to a simulated SAR
image with just two classes. The main goal was to carry out to a detailed performance
evaluation on the same data set, in contrast to the avail abl e literature, which usually dealswith
asingleapplication, thereby rising the question if abetter result could be obtained otherwise.
Additionally, the performance of the neural network classifiers, when compared with
statistical classifiers, was better than the minimum Bayeserror and slightly better thantheK -
L method, when aMedian filter is used in the post-processing.
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