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Abstract. Tone and texture are two fundamental characteristics of remotely sensed images. Current research on
the remote sensing of tropical forest biomass uses the tone (i.e., backscatter) of Synthetic Aperture Radar (SAR)
images as thisisrelated directly to biomass (albeit up to the backscatter/biomass asymptote). Asatropical forest
canopy ages so its unevenness increases, progressing from smooth to rough. Therefore ameasure of SAR texture
that is independent of SAR tone has the potential of increasing the biomass maxima that can be estimated with
SAR data. This experiment used simulated SAR images designed to reproduce forest canopies and different
patterns of tone (or contrast) and texture (or clumpiness). Twenty six texture measures (derived from local
statistics, the grey-level co-occurrence matrix (GLCM) and variograms) were calculated for these simulated
images. Measures sensitive to texture (clumpiness) and/or tone (contrast) were identified using Analysis of
Variance (ANOVA). Seven texture measures were recommended for the estimation of tropical forest biomass
with SAR images.

Keywords: SAR, texture, simulated images, forest canopies.
1. Introduction

Texture in remotely sensed imagery can be defined as vaiation in grey leve tone within a
neighbourhood. This variability reflects the spatid relations between pixels and is dependent
upon (i) the spatid frequency of the neighbourhood and (ii) the spatid resolution of the
remotely sensed data (Mather 1999).

Texture has proved to be a useful adjunct to tone for forest type discrimination with
Synthetic Aperture Radar (SAR) data (Miranda et d. 1998, Kurvonen and Hallikainen 1999,
Saatchi et d. 2000).

The three main approaches to the quantification of texture in remotely sensed images are
fird, local statistics, such as mean, skewness, kurtosis and coefficient of variation (cv) for an
image window (Soares et d. 1997, Kurvonen and Hdlikainen 1999). Second, second-order
statistics (such as entropy, energy, contrast) which describe datisticad dependence between
pixels in a given digance and direction. These can be cdculated from Hardick's grey-leved
co-occurrence matrix (GLCM) (Hardick et d. 1973) or the Sum and Difference Histogram
(SADH) (Unser 1986). Third, the variogram and its descriptors as a concise characterisation
of the scale and pattern of spatia variability (Curran et d. 1998).

Microwave backscatter & recorded on SAR imagery as tone (Raney 1998) and is related
positively to the biomass of forests up a waveength-dependent asymptote (Imhoff 1995). For
tropicd forests the canopy becomes more uneven or “clumpy” with increesng biomass
(Richards 1996). I has been hypothesised that texture (as a measure of both canopy biomass
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and unevenness) could be related postively to biomass up to and beyond the asymptote of the
backscatter/biomass relationship.

This experiment used smulated images (Woodcock et d. 1988) and was part of a larger
sudy concerned with the SAR backscatter/biomass reationship for tropica forest and
pasdure. The objective here was to identify texture measures that maximised the
discrimination of textura information independently of tone (i.e., backscatter). Such measures
would potentialy increase the biomass range that could be estimated with SAR data

2. Simulating images of forest canopies

Different levels of image contrast (tone) and “clumpiness’ (texture) were created by means d
nine matrices. These matrices were conceved as Smulated digital images of foret, with DN
vaying from 1 to 9. The trees were digposed in big clumps, smdl clumps and randomly.
Insgde these three basic types of spatid arrangement (or texture) the contrast was smulated as

high, medium and low. The mean (Y) DN was held congant in the images and the standard
deviation (S) was adjusted to create the intended contrast (Table 1).

Table 1. Simulated images, with different clumpiness and contrast. Standard deviations (S) defining
contrast level (high, medium, low) are shown and b refers to big clumps, s refersto small clumps and r
referstorandom.

CLUMPINESS
b Big clumps Small clumps Random
é High (S3 2.5) bhigh shigh rhigh
e Medium (S @1.5) bmed smed rmed
8 Low (S£1) blow slow rlow

This smdl smulated data set was created in order to evauate agorithm sengtivity to a
wide range of textures (clumpiness) and tones (contrast). The smulation of red SAR images
would include an even wider DN range and noise (to account for speckle). The nine matrices
adong with ther representation as smulated digitd images (in which minimum and maximum
DNs were represented as black and white, respectively), are shown in Figure 1 Interestingly,
the random arrangement (Figure 1.g,h,i) of the smulated images is visudly smilar to the red
SAR images of tropicd vegetation.

3. Texture measures

Twenty six texture measures were calculated for the smulated images:

* Deived from locd datigics mean absolute deviation (med), median (med), entropy
(ent), energy (ene), skewness (ske), kurtosis (kur) and coefficient of variation (cv).

*Derived from the grey-level co-occurrence matrix (GLCM) and Sum and Difference
Higogram (SADH): contrast (conh), entropy (enth), energy (eneh), homogeneity (hom),
corrdation (cor), chi-square (chi), mean of the sum vector (sme), variance of the sum vector
(sva), entropy of the sum vector (sent), energy of the sum vector (sene), mean of the
difference vector (dme), variance of the difference (dva), entropy of the difference vector
(dent) and energy of the difference vector (dene) (Soares et a. 1997).
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g. h. I

Figure 1. Smulated images with mean (X =3.56) and variable standard deviation (§). a Big clumps, high
contrast &=3.75), b. Big clumps, medium contrast &=1.51), c. Big clumps, low contrast (S=0.5), d. Small
clumps, high contrast §=3.52), e. Small clumps, medium contrast §&=1.66), f. Small clumps, low contrast
(5=0.57), g. Random, high contrast (S=2.62), h. Random, medium contrast =1.4) and i. Random, low
contrast (S=0.72).

* Derived from the variogram semivariance a lags 1, 2 and 3 (lagl, lag2, 1ag3), sl and
range.

Twenty one texture measures derived from the GLCM, SADH (using 3 x 3 pixd window)
and locd datistics were cdculated for the smulated images. Vaiograms were computed,
fitted with sphericdl models and used to caculate a further five texture measures. The loca
datisticss, GLCM and SADH texture measures were caculaied usng a code written for
IDL/ENVI (Rennd et a. 1998) and the variograms were caculated using the software GSTAT
(Pebesma and Wessdling 1998).

The mean DN of texture bands created from smulated images and descriptors from the
modeled variograns were input to an Andyss of Vaiance (ANOVA), with differences

assessed at the 5% (8=0.05) levd of dgnificance ANOVA highlighted the ability of any
given texture measure to differentiate between leves of clumpiness (texture) regardless of
contrast (tone).

4. Resaults and discussion

This section will review the ability of twenty dx texture measures to differentiate between
three levels of texture and three levels of tone.

4.1. Texture measuresderived from local statistics

The locd datigics mean absolute deviation, median, skewness and kurtoss, did not
differentiate cdlumpiness (Table 2). Entropy was sendtive to cdlumpiness as it resulted in low
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vaues for big and small clumps images and high vaues for random images (i.e, higher
heterogeneity). Energy vaues, however, were less sendtive to clumpiness and contrast. The
coefficient of variaion decreased with image contrast for each clumpiness levd making it
unsuitable for quantifying texturein red data

Table 2. Texture measuresderived from local statisticsfor simulated images.

mad med ent ene ske kur cv

High contrast 198 153 009 0.34 0.12 051 034

Big ° Mediumcontrast 183 179 011 031 0.03 -0.69 0.18
caumps - o contrast 172 172 011 030 0 078 006
High contrast 183 179 0411 0.31 0.03 069 018

Small  * Medium contrast 165 152  0.15 0.25 0.11 091 023
dumps | o contrast 174 172 017 0.23 0.13 082 008
High contrast 168 131 022 0.20 0.10 096 039

Random *  \jedium contrast 183 170 0.28 0.15 0.22 -0.50 0.18
" Low contrast 176 192 015 0.28 -0.56 008  0.09

4.2. Texture measuresderived from GLCM and SADH

The values of GLCM derived texture measures (x) were normaised ((X — X min) / (X max — X min))
for comparison here (Figure 2) and this produced val ues ranging between only 0 and 1.

Vaues of GLCM contrast and entropy were smilar and incressed with decreasng
cdumpiness (Figure 2). These measures contain information about DN disorder and scatter
and are, therefore, more likdly to differentiate clumpiness than contrast.

GLCM energy and homogeneity vaues were smilar for big clumps and small clumps
images (Figure 2). In addition, for both measures random images exhibited minimum and
maximum vaues for medium and low contragt, respectivedy, indicating their sengtivity to
contrast. The theory underlying these measures is related to uniformity and local smilarity of
pixd vaues and therefore these measures are unlikedy to be suiteble for differentiating
between clumpiness.

GLCM correation and chi-square vaues varied with clumpiness (Figure 2). Contrast
levels were not digtinct, as in big clumps images corrdaion mean vaues were amilar. High
corrdation values corresponded to low chi-square values and vice versa, indicaing the
different information captured by these two measures.

The first two measures derived from sum of vector technique - mean and variance - varied
according to clumpiness and to a lesser extent, contrast. Entropy of the sum vector vaues
varied with contrast, especidly for small clumps and random images. Energy of the sum
vector vaues, however, did not differentiste ether clumpiness or contrast. The mesasures
derived from the difference vector — mean and variance - did discriminaie clumpiness and
contrast. For entropy and energy of the difference vector, the discrimination of clumpiness
and contrast was less gpparent. Vaues of entropy and energy of sum and difference vectors
were Smilar with the same trends and magnitudes (Figure 2).
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Figure 2. Normalised mean values of GLCM and SADH derived texture measures from simulated images.
Codes for the simulated images are: b for big clumps, sfor small clumps and r for random; high, med and
low for high, medium and low contrast.

4.3. Texture measures derived from the variogram

A summay of the variogam descriptors is presented in Table 3. The modeed variograms
contained no nugget variance as there was neither noise nor sub-pixd spatid variability.

Vaues of range tended to increase with clumpiness and indicated the Sze of dements
within the images. In big clumps images, range corresponded roughly to the size of the
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clumps (three pixes). For small clumps images ranges were smdler than in big clumps
images and were indicative of the average spacing of clumps (one pixd). Random images
presented decreasing vaues of range for increesng contrast leves. Range was the only
variogram-derived measure that was invariant with contrast (T able 3).

Table 3. Semivariance at lags 1, 2 and 3, sill and range of variograms produced from simulated images
and fitted with spherical models.

lagl lag2 lag3 sill range
High contrast 4.8 9.34 13.76 15.17 3.62
Big °  Medium contrast 1.2 2.03 2.65 2.34 2.56
clumps - L ow contrast 012 0.21 03 0.26 257
High contrast 13.96 13.72 13.7 12.38 0.97
Small * Medium contrast 2.16 3.59 2.47 2.77 1.7
clumps - L ow contrast 031 048 0.29 0.33 1.26
High contrast 9.14 5.27 755 6.87 0.97
Random - Medium contr ast 1.89 2.02 1.94 2.02 1.27
’ L ow contrast 0.45 0.58 0.49 0.51 1.42

Semivariance vaues decreased with decreasing contrast and had increasing vaues with
lag for big clumps images. For small clumps and random images there was no paitern and the
semivariance ether increesed or decreased with lag. Sill values differentiated between
contrast levels and indicated the totd variance of the images, they were high for high contrast
and decreased for medium and low contrast images.

4.4. Statistically significant differences in texture for different levels of clumpiness and
contrast

Andyss of variance (ANOVA) was used to determine if differences in the vaues of texture
measures were daidicaly dgnificant for different levels of contras and cdumpiness (Table
4).

None of the texture measures were able to discriminate contrast and clumpiness
concomitantly. Contrast (tone) was differentiated by five texture messures. coefficient of
variaion (cv), semivariance a lags 1, 2 and 3 and variogram sll. Cv has been shown to be a
useful measure for discriminating between tropical forest regeneration stages (Luckman et d.
1997, Yanase e d. 1997) and borea forest types (Kurvonen and Halikainen 1999).
Semivariance estimates have been used for the successful classfication of tropicad vegetation
(Miranda et d. 1998). Sl is a measure of image variance and was expected to vary according
to contrast (Cohen et a. 1990).

Loca datidtics entropy (ent) and GLCM derived measures of contrast (conh), entropy
(enth), corrdation (cor), chi-square (chi) and mean of the sum vector (sme) differentiated
clumpiness. Contrast, entropy and corrdaion are anong the more common measures that can
be derived from the GLCM (Barddi and Parmigiani 1995) and have been used extensvely for
texture andyss in forest mapping (Ulaby et d. 1986, Kushwaha et d. 1994), land cover
mapping (van der Sanden and Hoekman 1999) and crop discrimination (Soares et a. 1997).
Clumpiness (texture) was dso differentiated by range, a measure of image “coarseness’ and
aso of the Sze of image e ements (Treitz and Howarth 2000).
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The remaining measures did not show any dgnificant sendtivity ether to dumpiness or
contrast in the smulated images sudied here.

Table4. P-valuesfor differencesin contrast and clumpinesslevels. The statistically significant values at
a=0.05areindicated in bold.

TEXTURE CONTRAST CLUMPINESS TEXTURE CONTRAST CLUMPINESS
MEASURE MEASURE

mad 0.595 0462 sme 0.942 0.029
med 0.300 0973 sva 0.546 0524
ent 0.753 0.044 sent 0.083 0314
ene 0.733 0.078 sene 0.248 0.759
ske 0.342 0.688 dme 0.070 0612
kur 0.789 0463 dva 0.082 0.617
cv 0.020 0.865 dent 0.269 0.196
conh 0.838 0.031 dene 0519 0.198
enth 0974 0.049 lagl 0.013 0.736
eneh 0.627 0.664 lag2 0.011 0.734
hom 0.105 0.485 lag3 0.001 0.886
cor 0.904 0.006 sill 0.003 0.855
chi 0.943 0.012 range 0.991 0.005

SUmmary

The experiment presented here highlighted the spaiad variation content of imagery and
therefore the need to condder texture as additiona information when andysing the
backscatter/biomass relationship in SAR images. Smulated images proved to be a ussful tool
for gandardising the evauation of twenty Six texture measures.

The seven measures that were sendtive to clumpiness (texture) but not contrast (tone)
were loca datistics entropy (ent), GLCM contrast (conh), GLCM entropy (enth), GLCM
corrdation (cor), GLCM chi-square (chi), SADH mean of sum vector (sme) and variogram
range (range). These measures have potentid for drengthening the backscatter/biomass
relaionship a high levels of biomass.
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