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The Codó Formation records the initial evolutionary stages of an intracontinental rift system formed along the Brazilian
equatorial margin in the Late Aptian. Deposits of this unit exposed on the eastern margin of the Grajaú Basin include gypsum,
bituminous black, shales and limestones. These lithologies were formed in a low energy, well stratified, anoxic and hypersaline
lake system developed in a dominantly arid/semi-arid climate. This lacustrine succession is internally organized into three
categories of shallowing-upward cycles, with the first- and second-order cycles being related to seismic activity associated with
fault reactivations, and the third-order cycles recording climatic fluctuations. Studies emphasizing petrography and analysis of the
geochemical tracers Fe, Mg, Sr, Mn, Na and Ca helped to identify the sedimentary facies that kept a primary signal, which were
thus appropriate for isotopic investigations aiming paleoenvironmental and paleohydrologic reconstructions. The results of this
study revealed a wide distribution of dominantly low carbon and oxygen isotope values in carbonates, ranging from −5.69‰ to
−13.02‰ and from −2.71‰ to −10.80‰, respectively. This paper demonstrates that at least in the particular case of oxygen, the
isotope ratios vary according to seismically-induced shallowing-upward cycles, with values in general lower at their bases, where
central lake deposits dominate, and progressively higher upward, where marginal lake deposits are more widespread. In addition to
confirming a depositional signature for the analysed samples, this behavior allowed the development of a seismic-induced isotope
model. These lighter isotope ratios appear to be related to flooding events promoted by subsidence, which resulted in the
development of a perennial lake system, while heavier isotope values are related to ephemeral lake phases favored by uplift and/or
increased stability. Furthermore, the results show that a closed lake system dominated, as indicated by the overall good positive
covariance (i.e., +0.42 to +0.43) between the carbon and oxygen isotopes, though open phases are also recorded by negative
covariance values of −0.36. During closed phases, the δ18O displayed the highest range of variation (i.e., −3.63‰ to −4.89‰) due
to increased residence time, while this variation was low (i.e., −0.09‰ to −1.87‰) during open lake phases, when there was a
balance in the water isotope composition maintained by continuous basin inflow.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

δ13C and δ18O records have been successfully used
for reconstructing the evolution and circulation patterns
of oceanic basins throughout the geological time (e.g.,
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Abell and Williams, 1986; Charisi and Schmitz, 1995;
Hendry and Kalin, 1997). These studies are mostly
based on the principle that the organic matter in marine
sediments is characterized by extremely uniform
isotopic compositions, which vary according to climate,
as well as oceanic hydrology and limnology. The
interpretation of these geochemical indicators in lacus-
trine settings is more complex, mostly because lake
environments are more diverse, as evidenced by a wider
distribution of carbon isotope ratios ranging from
−25.9‰ to −10.5‰ (Bird, 1991). Since the pioneer
work of Stuiver (1970), several studies of modern and
Quaternary lake systems have provided the basis for
discussing the many parameters that might influence the
isotopic composition of the total inorganic carbon
dissolved in lake waters (e.g., Katz et al., 1977;
Anderson and Arthur, 1983; McKenzie, 1985; Hil-
laire-Marcell and Casanova, 1987; Bellanca et al., 1989;
Gasse et al., 1989; Talbot and Kelts, 1990; Rosenmeier
et al., 2002; Herczeg et al., 2003; Russell et al., 2003).
Despite these efforts, distinguishing among the mechan-
isms that lead to variations in isotope composition of
lake waters is not straightforward, as local causes might
be mistaken by externally forced environmental changes
(Talbot, 1990). In addition, in contrast to marine and
modern lacustrine systems, the record of chemical
changes in ancient lake deposits is yet very limited
(Bird, 1991; Lister et al., 1991; Szulc et al., 1991;
Camoin et al., 1997; In Sung and Kim, 2003), and this
has precluded a wider use of these geochemical tracers
for paleoenvironmental purposes. Therefore, geochem-
ical analyses from a larger range of lacustrine analogs
where local causes can be distinguished from those of
regional scale are still needed in order to provide a full
understanding of the mechanisms controlling lacustrine
carbonate sedimentation.

Despite the complex response, the available infor-
mation concerning carbon and oxygen isotope varia-
tions has arrived at some important generalizations. The
most significant one for paleoenvironmental interpreta-
tion was the recognition of a covariance of these
geochemical tracers in hydrologically closed lake
systems, as opposed to a non-covariance in inlet lakes
(e.g., Eicher and Siegenthaler, 1976; Gasse et al., 1987;
Gasse et al., 1989; Talbot, 1990; Talbot and Kelts,
1990). Carbon and oxygen isotopes have been also
applied for climate reconstructions of lake systems (e.g.,
Talbot and Kelts, 1990; Lister et al., 1991; Valero-
Garcés et al., 1995). These applications are, however,
highly dependent on a full understanding of facies
distribution and of the possible modifications occurred
during burial.
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The goal of this paper is to contribute to the
documentation of δ13C and δ18O values in ancient
lacustrine systems, and discuss the causes of varia-
tions in these values by analysing their relationship
with shallowing-upward cycles within an Upper
Aptian succession formed during the early stages of
a passive marginal rift. This unit, represented by the
Codó Formation, is well exposed in several quarries
along the eastern margin of the Grajaú Basin, where
detailed studies focusing facies and facies architec-
ture, stratigraphy, petrography, as well as Sr and S
isotopes, have provided a basis to support the
conclusion of deposition in a dominantly lacustrine
setting (e.g., Rossetti et al., 2000; Paz and Rossetti,
2001; Rossetti et al., 2004). An integrated approach
combining facies and isotope geochemistry provides
the basis to analyse the distribution of carbon and
oxygen isotopes in this ancient lake system, as well
as to investigate the main parameters controlling the
lake hydrology.

2. Geological setting

The Codó Formation records the first deposits
accumulated within a broad and shallow depression
formed by mild tectonic stretching before the main
rifting stage that culminated with the formation of the
Equatorial South Atlantic Ocean during the Albian.
These deposits are well represented in the Grajaú Basin
(Fig. 1A), a semi-graben formed by combination of pure
shear stress and strike–slip deformation (Azevedo,
1991; Góes and Rossetti, 2001). This rift, which is
connected to the São Luís Basin in the north, became an
aborted intracontinental structure as the continental
break up migrated northward.

The sedimentary fill of the São Luís-Grajaú Basin
(Fig. 1B) reaches up to 4000m in the depocenters, and
consists chiefly of Cretaceous deposits organized into
three depositional sequences, i.e., S1, S2 and S3, formed
during the Late Aptian/Early Albian, Early/Middle
Albian and Middle Albian/Late Cretaceous, respectively
(Rossetti, 2001). The lowermost sequence S1 contains
the Codó Formation, subject of this paper, and
represents a succession up to 450m thick of sandstones,
gypsum, shales and limestones. This sequence displays
a tripartite subdivision into systems tracts (Rossetti,
2001), with the lowstand systems tract consisting of
deposits that grade progressively southward from
shallow marine to continental (i.e., fluvial, deltaic, and
lacustrine). These are overlain by strata formed in the
transgressive systems tract, which consists of a wedge of
richly fossiliferous (mostly bryozoa, echinoderm, foram
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Fig. 1. (A) Location of the study area in the Codó region, eastern margin of the Grajaú Basin. (B) Stratigraphy and main tectonic stages of the São
Luís-Grajaú Basin.
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and dinoflagellate) shales that pinches out to the basin
margins. The highstand systems tract consists of shallow
marine to continental deposits typically displaying
stratal patterns varying upward from aggradational to
progradational.
The maximum thickness of the Codó Formation in
the Grajaú Basin is 150m (Rezende and Pamplona,
1970). Its paleontologic content mostly includes pollen,
continental ostracods, insects, and fish, which are all in
agreement with a dominantly lacustrine depositional
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system. Pollen data allowed the establishment of a
precise late Aptian age with basis on the presence of
Sergipea variverrucata (Batista, 1992; Lima, 1982;
Rossetti et al., 2001). The Codó Formation either grades
downward into fluvial and deltaic deposits of the Grajaú
Formation (e.g., Mesner and Wooldrigde, 1964), or
sharply overlies an unconformity over older Paleozoic
and Triassic basement rocks. Its upper contact is an
unconformity with Albian shallow marine, green to
brownish-red mudstones interbedded with fine- to very
fine-grained, cross-stratified sandstones of the Itapecuru
Group (e.g., Rossetti and Truckenbrodt, 1997; Rossetti
et al., 2001).

3. Facies architecture and depositional system

The detailed facies analysis and characterization of
the cyclic nature of the Codó Formation exposed in the
eastern margin of the Grajaú Basin have been previously
reported elsewhere (e.g., Paz and Rossetti, 2001, 2005).
However, a summary of the main descriptions and
interpretations will be provided in the following, as they
are critical to understand the carbon and oxygen isotope
signals.

3.1. Description

The Codó Formation consists of a lacustrine
succession up to 25m thick. In the eastern margin of
the basin, this unit displays deposits attributed to three
main sub-environments (Fig. 2): (1) central lake
deposits, consisting of gypsum and bituminous black
shales; (2) transitional lake deposits, represented by
laminated argillites and limestones, and occasionally,
massive sandstone; and (3) marginal lake deposits,
including massive blocky pelites, fenestral calcarenites,
ostracodal and pisoidal limestones, rhythmites of lime-
stones and microbial mats, as well as tufas. Paleosols,
karstic features, meteoric cement and vadose pisoid,
typical of subaerial and/or meteoric exposure, are
frequent in the marginal lake deposits.

Three categories of cycles have been recognized in
this unit (Fig. 3). Third-order cycles consists of
millimetric interbeddings (individual beds are usually
<5 to 10mm thick), encompassing facies that vary
according to the position in the lake setting. Hence, the
central lake deposits show interbeddings either of
bituminous black shales and gypsum, or bituminous
black shales with streaks of lime-mudstone and
bituminous black shales with lenses of native sulphur.
The transitional lake deposits display bituminous black
shale interbedded with peloidal limestone or green to
TE
D
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F

gray laminated argillites interbedded either with lime-
mudstone or peloidal wackestone–packstone. The
marginal lake deposits show either green to gray
laminated argillites and ostracodal wackestone to
grainstone, as well as alternations of ostracodal and/or
lime mudstones, microbial mats and vadose pisoidal
packstones.

Second-order cycles consist of either complete or
incomplete successions with upward transitions from
central to marginal lake deposits, with the latter
displaying high internal facies variability when com-
paring one cycle to another. These cycles are character-
ized by limited lateral extension, as well as frequent and
random thickness changes, which vary from few cm up
to 5m.

First-order cycles define four episodes of shallowing
(Fig. 4), organized from bottom to top as units 1 to 4.
Unit 1 is only partly exposed at the base of the sections,
consisting of bituminous black shales interbedded with
lime-mudstones, and are attributed to central and
transitional lake settings. Unit 2 reaches up to 8m
thick and contains, at the base, black bituminous shales
interbedded with gypsum, which grade upward into
limestones, laminated argillites and massive block
pelites displaying a variety of features related to
transitional and marginal lake settings. The gypsum is,
in general, absent or occurs only as millimetric lenses or
isolated crystals of gypsum. Unit 3 reaches up to 4m
thick and is constituted by transitional and marginal lake
deposits similar to the underlying unit, but with an
increased frequency of the latter. A remarkable and
exclusive feature of this unit 3 is the presence of oolites
and calcareous (i.e., ostracodal packstone) concretions
in its upper portions, which constitute important
stratigraphic markers. The uppermost unit 4 is up to
5m thick, being represented by laminated argillites
containing only thin (<1mm thick) laminae of gypsum
or lime-mudstone.

The first-order cycles closely match with stratigraph-
ic horizons displaying syn-sedimentary soft sediment
deformation that occur between undeformed deposits
(Fig. 4), an observation that was crucial for revealing
their genesis. Hence, units 1 and 2 correspond
respectively to undeformed strata and deformation
zones 1 and 2 described in Rossetti and Góes (2000).
Deformation zone 1 consists of spar-filled cracks
interconnected with small-scale faults, fissures and
stylolites inclined at a high angle to bedding. Deforma-
tion zone 2 consists of strata with complex convolute
folds associated with thrust faults, pseudonodules, and
mound-and-sag structures, the latter corresponds to syn-
clines and anticlines mantled by sigmoidal laminations
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Fig. 2. Diagram illustrating the proposed lacustrine depositional model for the Codó Formation, characterized by central to marginal lake deposits.
(A) General view of marginal lake deposits between transitional lake deposits. (B) A detail showing the upward gradation from interbedded
limestones (Lm) and laminated argillites (Al; transitional lake) to rhythmites (Rh; marginal lake). (C) Fenestral calcarenite from marginal lake
deposits. (D) Rhythmite of limestones (lighter color) and microbial mats (darker color) from marginal lake deposits. (E) General view of central lake
deposits (Gy=gypsum). (F) Bituminous black shales (Sh) interbedded with gypsum (Gy) (person for scale=1.70m tall). (G) Laminated gypsum (lens
cap=10cm in diameter).
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Fig. 3. Shallowing-upward cycles of the Codó Formation. (A) Examples of first- and second-order cycles (person for scale=1.50m tall). (B–D)
Third-order cycles formed by alternations of bituminous black shale with streaks of lime-mudstone (Bsl) and bituminous black shales with native
sulphur (Bss) (B), ostracodal grainstone (Gro) and vadose pisoidal packstone (Pp) with microbial mats (M) (C), ostracodal grainstone (Go) and
wackestone (Wo) (D).
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inclined toward the sag centers. Unit 3 is equivalent to
deformed strata with normal faults and fissures that are
vertical to near vertical, present ragged morphologies
with small, delicate edges, and taper both downward and
upward after a few centimeters, being associated with
intraformational boulders up to 2.5m long. The upper-
most unit 4 consists of shales with irregular convolute
folds.

3.2. Interpretation

The several facies described in the Codó Formation
are attributed to a low energy, well stratified, anoxic and
hypersaline lake system developed under a dominantly
arid/semi-arid climate (Paz and Rossetti, 2001). The
third-order cycles record minor changes in depositional
conditions, which resulted in packages comprising
alternations between mud settling and chemical precip-
itation of gypsum or limestones. This characteristic,
added to the regular thickness variation, is consistent
with climatic fluctuations, with individual laminae
reflecting mud deposition and chemical precipitation
taking place during less and more arid phases,
respectively.

The higher-order cycles seem to have a different
origin. The second-order cycles record successive
episodes of upward gradation from deeper to relatively
shallower lake environments, resulting in superposition
of marginal lake deposits upon transitional and/or
central lake deposits. The high facies variability when
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comparing one cycle to another, the limited lateral
extension and the frequent and random thickness
variations are attributes that match better with tecton-
ically driven (e.g., Martel and Gibling, 1991; Benvenuti,
2003), rather than more regular climatic cycles (e.g.,
Olsen, 1986; Goldhammer et al., 1990; Smoot and
Olsen, 1994; Steenbrink et al., 2000).

The first-order cycles also appear to have resulted
from syn-sedimentary tectonics (Fig. 4), as suggested by
their good correlation with deformation zones attributed
to contemporaneous seismic activity related to fault
reactivation (Rossetti and Góes, 2000). Based on this
fact, it has been proposed that the Codó lake system was
affected by alternating periods of extension and even
compression (Paz and Rossetti, 2005). The prevalence
of central lake deposits at the base of the first-order
cycles would have formed during higher subsidence,
promoted by extension. On the other hand, the more
widespread distribution of marginal lake deposits in the
top of these cycles would record periods of higher
UN
CO

RR
EC

Fig. 5. Photomicrographies of nondiagenetically modified samples utilize
B=scanning electron microscopy). (C) Ostracodal grainstone (crossed nicho
grainstone, formed by densely-packed, columnar calcite crystals of primary
RO
OF

stability or uplift. In addition to affecting the develop-
ment of the shallowing-upward cycles, these processes
appear to have had a strong control on the isotope
evolution of this lake system, as discussed in this paper.

4. Experimental methods

13C and δ18O data were obtained from freshly
exposed samples along quarries to guarantee they
were free from influence of modern weathering.
Although these isotopes are more commonly measured
from fossils, the analyses were performed here using
whole-rock limestones due to the fact that only
ostracods are present in the studied deposits, and their
distribution is not uniform to provide a good record of
the individual cycles throughout the succession. Stable
isotopic analysis has been successfully performed in
whole-rock carbonates (e.g., Camoin et al., 1997).
According to these authors, this type of sample has the
advantage of minimizing possible deviations related to
TE
D
P

d for isotopic analysis. (A, B) Lime-mudstone (A=crossed nichols;
ls). (D) Electron micrography illustrating ostracod shells of ostracodal
origin.
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vital effects, and even diagenesis. Twenty milligrams of
powered sample reacted in vacuum with 100% of
orthophosphoric acid at 25°C during 12h. The released
CO2 and H2O were captured with liquid N2. The CO2

was separated from the water with a solution of alcohol
and acetone in an off-line gas extraction line, and
thereafter taken to the VG Isotech SIRA II mass
spectrometer in the Stable Isotope Laboratory at the
Universidade Federal de Pernambuco (LABISE/UFPE).
The results are reported in δ notation, which is defined
as the per mil deviation from the Viena Peedee
Belemnite Standard (‰ V-PDB). Analytical data were
normalized to the NBS-20 sample standard. Replicate
analysis gave a standard deviation (2σ) lower than
0.02‰ for δ13C and 0.03‰ for δ18O.

It is noteworthy to comment that the decision to
undertake the present carbon and oxygen work was
UN
CO

RR
EC

Fig. 6. Distribution of the trace elements Fe (A), Mn (B), Mg (C), and Sr (
III=diagenetic calcite; after Tucker and Wright, 1990).
OO
F

made only after that detailed petrographic, SEM, as
well as strontium and sulphur isotope studies, had
supported a primary lacustrine origin for the gypsum
associated to the limestones (Paz et al., 2005). This
study led to suspect that the limestones interbedded
with the primary gypsum also had a great potential to
preserve their depositional characteristics. In order to
eliminate the diagenetic influence, the limestones were
evaluated petrographically, with the analyses being
undertaken using selected facies displaying primary
characteristics.

Furthermore, the trace elements Fe, Mg, Mn, and Sr
were also analysed in order to better detect any possible
diagenetic imprint. This procedure consisted in drying
1.5g of sample at 1000 °C for 2h, fusing them
afterwards with lithium tetraborate and lithium fluorite,
and analysing by X-ray fluorescence spectrometer.
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D) in the analysed samples (I=marine calcite; II=continental calcite;
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5. Evaluation of diagenetic overprint

Petrographic analysis of 83 limestone samples from
the Codó Formation allowed an evaluation of diagenetic
changes by observing the amount of lime mud,
recrystallization, replacement, cementation, and fractur-
ing. Several authigenic processes were observed, the
most important ones including recrystallization of
calcite, cementation and filling of fractures and
secondary porosity by mosaics of calcite, replacement
of micrite and ostracod shells by chert and chalcedony,
and pyrite formation either within ostracod shells or
dispersed in the lime-mudstones. Despite these mod-
ifications, it was possible to select 53 samples consisting
of microfacies either not affected or only mildly affected
by diagenesis, which enhanced their potential to
preserve a primary carbon and oxygen composition.
The samples used in this study included mostly lime-
mudstone (36%) and ostracodal wackestone to grain-
stone (45%; Fig. 5), and subordinately fenestral
calcarenite (8%), pisoidal packstone (6%), and peloidal
packstone to grainstone (6%).
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Fig. 7. Binary diagrams of the trace elements Sr, Mn, Na and Mg a
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Geochemical analyses of the trace elements Fe, Mg,
Mn, and Sr helped to corroborate that the selected
samples were not significantly modified after deposi-
tion. These elements are the main tracers in the calcite
structure of both marine and non-marine limestones.
Considering that their values remained constant through
time, which seems to have been the case at least for most
of the Phanerozoic (Holland, 1978), a comparison
among values commonly expected from stratal waters
provides information for detecting potentially signifi-
cant diagenetic influences. The results (Fig. 6) show
that, in general, all the samples that appeared to be
petrographically suitable for isotope analysis contain
geochemical tracers in proportions expected for conti-
nental deposits not affected by diagenesis. Exceptions
are a few samples displaying high Fe content, though
these were also included in the isotope analysis
presented here, considering that: (1) the other geochem-
ical tracers are within the range expected for diagenet-
ically non-affected rocks; (2) the isotope values do not
show any divergence with respect to the other samples;
and (3) they derive from facies that have high volume of
TE
D

gainst Ca, with the correspondent correlation coefficient (r).



UNCORRECTED PROOFFig. 8. Lithostratigraphic profiles representative of the Codó Formation exposed in the study area, with the stratigraphic distribution of facies associations, first- and second-order cycles, and δ18O and
δ13C values, and the contents of CaO and MgO.
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Table 1t1:1

δ13C and δ18O values obtained for the studies depositst1:2

t1:3 Prof Sample δ18O δ13C

t1:4 A 01 pisoidal packstone −5.49 −10.10
t1:5 02 ostracodal packstone −7.24 −11.80
t1:6 03 lime_mudstone −8.91 −10.03
t1:7 04 lime_mudstone −9.17 −9.13
t1:8 05 lime_mudstone −9.15 −8.96
t1:9 06 fenestral calcarenite −8.36 −6.65
t1:10 07 ostracodal packstone −8.45 −9.92
t1:11 08 ostracodal packstone −8.36 −10.92
t1:12 09 lime_mudstone −7.22 −9.26
t1:13 10 lime_mudstone −8.92 −5.15
t1:14 11 lime_mudstone −8.16 −6.09
t1:15 12 lime_mudstone −8.62 −6.31
t1:16 13 ostracodal packstone −8.28 −8.50
t1:17 B 14 ostracodal packstone −6.05 −11.99
t1:18 15 ostracodal packstone −7.02 −12.67
t1:19 16 ostracodal packstone −3.39 −7.98
t1:20 17 ostracodal packstone −4.75 −9.6
t1:21 18 pisoidal packstone −4.28 −10.8
t1:22 19 ostracodal packstone −6.62 −10.48
t1:23 20 ostracodal packstone −6.51 −10.71
t1:24 21 ostracodal packstone −5.27 −12.39
t1:25 22 lime_mudstone −10,8 −11.47
t1:26 23 lime_mudstone −10.36 −11.27
t1:27 24 lime_mudstone −10.44 −11.14
t1:28 25 lime_mudstone −7.58 −11.89
t1:29 26 ostracodal packstone −7.6 −12.56
t1:30 27 ostracodal packstone −4.77 −12.16
t1:31 28 ostracodal packstone −3.01 −6.81
t1:32 29 ostracodal packstone −2.71 −7.55
t1:33 30 lime_mudstone −4.80 −9.04
t1:34 C 31 ostracodal packstone −6.87 −10.96
t1:35 32 ostracodal packstone −5.32 −9.30
t1:36 33 ostracodal packstone −7.69 −10.95
t1:37 34 pisoidal packstone −7.62 −11.51
t1:38 35 ostracodal packstone −8.38 −11.00
t1:39 36 ostracodal packstone −7.83 −11.87
t1:40 37 lime_mudstone −8.69 −11.72
t1:41 38 lime_mudstone −9.41 −11.03
t1:42 39 peloidal packstone −9.36 −10.89
t1:43 40 peloidal packstone −9.15 −12.38
t1:44 41 fenestral calcarenite −9.83 −10.70
t1:45 42 fenestral calcarenite −8.00 −10.00
t1:46 43 ostracodal packstone −8.64 −12.12
t1:47 44 fenestral calcarenite −994 −11.80
t1:48 45 lime_mudstone −8.83 −11.74
t1:49 46 ostracodal packstone −8.18 −11.57
t1:50 47 lime_mudstone −8.99 −12.12
t1:51 48 lime_mudstone −9.24 −13.02
t1:52 49 lime_mudstone −8.62 −11.23
t1:53 50 lime_mudstone −9.29 −11.18
t1:54 51 peloidal packstone −8.06 −6.10
t1:55 52 ostracodal packstone −6.65 −10.14
t1:56 53 ostracodal packstone −7.42 −5.69
t1:57
t1:58 Prof Sample δ18O δ13C

t1:59 A cd 319 pisoidal packstone −5,49 −10,10
t1:60 cd 318 ostracodal packstone −7,24 −11,80
t1:61 cd 380 lime_mudstone −8,91 −10,03

t1:63Table 1 (continued)

t1:64Prof Sample δ18O δ13C

t1:62A cd 321 lime_mudstone −9,17 −9,13
t1:63cd 313A lime_mudstone −9,15 −8,96
t1:64cd 357 fenestral calcarenite −8,36 −6,65
t1:65cd 356a ostracodal packstone −8,45 −9,92
t1:66cd 356b ostracodal packstone −8,36 −10,92
t1:67cd 317 lime_mudstone −7,22 −9,26
t1:68cd 316 lime_mudstone −8,92 −5,15
t1:69cd 315 lime_mudstone −8,16 −6,09
t1:70cd 314b lime_mudstone −8,62 −6,31
t1:71cd 355 ostracodal packstone −8,28 −8,50
t1:72B cd 125 ostracodal packstone −6,05 −11,99
t1:73cd 178 ostracodal packstone −7,02 −12,67
t1:74cd 177 ostracodal packstone 3,39 −7,98
t1:75cd 166 ostracodal packstone −4,75 −9,6
t1:76cd 132 pisoidal packstone −4,28 −10,8
t1:77cd 179 ostracodal packstone −6,62 −10,48
t1:78cd 167 ostracodal packstone −6,51 −10,71
t1:79cd 3 ostracodal packstone −5,27 −12,39
t1:80cd 134 lime_mudstone −10,8 −11,47
t1:81cd 176 lime_mudstone −10,36 −11,27
t1:82cd 175 lime_mudstone −10,44 −11,14
t1:83cd 250 lime_mudstone −7,58 −11,89
t1:84cd 136 ostracodal packstone −7,6 −12,56
t1:85cd 158 ostracodal packstone −4,77 −12,16
t1:86cd 159 ostracodal packstone −3,01 −6,81
t1:87cd 154 ostracodal packstone −2,71 −7,55
t1:88cd 162 lime_mudstone −4,80 −9,04
t1:89C cd 371 ostracodal packstone −6,87 −10,96
t1:90cd 367 ostracodal packstone −5,32 −9,30
t1:91cd 368 ostracodal packstone −7,69 −10,95
t1:92cd 196 pisoidal packstone −7,62 −11,51
t1:93cd 198 ostracodal packstone −8,38 −11,00
t1:94cd 364 ostracodal packstone −7,83 −11,87
t1:95cd 362 lime_mudstone −8,69 −11,72
t1:96cd 195 lime_mudstone −9,41 −11,03
t1:97cd 111 peloidal packstone −9,36 −10,89
t1:98cd 110 peloidal packstone −9,15 −12,38
t1:99cd 193 fenestral calcarenite −9,83 −10,70
t1:100cd 199 fenestral calcarenite −8,00 −10,00
t1:101cd 191 ostracodal packstone −8,64 −12,12
t1:102cd 192 fenestral calcarenite −9,94 −11,80
t1:103cd 377 lime_mudstone −8,83 −11,74
t1:104cd 106 ostracodal packstone −8,18 −11,57
t1:105cd 112 lime_mudstone −8,99 −12,12
t1:106cd 375 lime_mudstone −9,24 −13,02
t1:107cd 101 lime_mudstone −8,62 −11,23
t1:108cd 84 lime_mudstone −9,29 −11,18
t1:109cd 121 peloidal packstone −8,06 −6,10
t1:110cd 189 ostracodal packstone −6,65 −10,14
t1:111cd 188b ostracodal packstone −7,42 −5,69

(Prof= lithostratigraphic profiles as indicated in the Fig. 8). t1:112
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organic matter, pyrite or pedogenetic influence associ-
ated with marginal lake deposits, which are situations
that might have naturally affected the iron content
during or shortly after deposition, not implying in
carbon and oxygen fractionation.
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Fig. 9. Correlation curves of carbon and oxygen isotope data from the
Codó Formation in the eastern Grajaú Basin. The positive correlation
in profiles B and C is attributed to episodes of dominantly closed lake
system, while the negative correlation in profile A records lake
opening.
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Binary diagrams of trace elements plotted against Ca
might be useful for further evaluating the diagenetic
influence in limestones. The results revealed that the
analysed samples were not significantly modified after
deposition, which is particularly suggested by the low
correlation of Mn, Sr and Na with respect to Ca (Fig. 7).
On the other hand, there is a high inverse correlation
between Mg and Ca, which could be interpreted as
resulting from diagenesis, when Mg might replace Ca in
the carbonate structure. However, considering the non-
covariance of the other trace elements, this correlation
between Mg and Ca might be related not to diagenesis,
but to a change in depositional conditions, probably
indicating more evaporative phases. This alternative
interpretation is supported here by the fact that the total
Mg content increases downward in the sections, where
evaporites become more frequent (Fig. 8). Therefore,
the good negative correlation between Ca and Mg is
related to a change in depositional conditions rather than
diagenetic alteration.

6. Results

The δ13C isotope curves obtained from the studied
profiles show values ranging from −5.69‰ to
−13.02‰. In general (Table 1), there is no perfect
match when all the studied profiles are compared.
However, all sections show an overall slight decrease
in carbon values, while the oxygen values first
decrease and then slightly increase upward (Fig. 8).
In addition, the changes in δ13C isotope values are not
random when several intervals of the curves are
contrasted, but they have good correspondence within
the lowest frequency, shallowing-upward depositional
cycles. Hence, unit 2 displays values that, in general,
decrease upward, with a tendency for stabilization or
slight increase at the top. On the other hand, the
carbon values in unit 3 of profiles B and C display an
opposed pattern (Fig. 8), varying upward from lighter
to heavier. Fluctuations in carbon isotope ratios are
variable within individual second-order cycles, but a
general trend can be recognized when all sections are
contrasted. Hence, it is interesting to observe that the
second-order cycles located lower in the sections
display carbon values that decrease upward, while up
in the sections there is a dominance of cycles with
tendency to either increase or increase and then
slightly decrease in carbon values.

Similarly to carbon, the oxygen isotope ratios
obtained for the Codó Formation are dominantly low,
ranging from −2.71‰ to −10.80‰. The behavior of the
curves up the profiles within first- and second-order
TEcycles shows patterns that resemble the ones described
for the carbon.

Comparisons of carbon and oxygen data from all
studied samples revealed that profiles B and C display
curves that are, in general, more covariant than profile A
(Figs. 8 and 9). In those profiles, however, there are
segments with good covariance that alternate with non-
covariant intervals, which is reflected by moderate
correlation coefficients ranging from +0.42 to +0.47,
respectively. Profile A, which is the least covariant,
shows an overall negative covariance of −0.36 (Fig. 9).

7. Discussion

The carbon and oxygen data presented here has
valuable application for further support of the lacustrine
signature of the Codó Formation, as well as reconstruct
its paleohydrology and evolution through time. This
procedure was made possible only considering the
primary signature of these data, as confirmed by the
petrographic and geochemical tracers discussed earlier
in this paper. In addition, the wide variation of the
carbon and oxygen values throughout the analysed
profiles and the comparable trends observed among the
profiles considering first- and second-order shallowing-
upward cycles are more consistent with a depositional
control.
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Several observations related to the carbon and
oxygen isotope data are in agreement with a lacustrine
interpretation for the Codó Formation exposed in the
eastern margin of the Grajaú Basin, as proposed in
previous publications (e.g., Campbell et al., 1949;
Aranha et al., 1990; Rossetti et al., 2000; Paz and
Rossetti, 2001). First, a non-marine or marginal
terrestrial/marine setting is supported by the exclusive
occurrence of values lighter than −5.69‰ for the
carbon, which is well below the range of about −2‰
and +5‰ expected for marine limestones (e.g., Deines,
1980; Hoefs, 1980). Second, the carbon values obtained
in the study area are consistent with Upper Aptian
continental influenced deposition, since marine lime-
stones of this age display values ranging from +2‰ to
+4‰ (Jones and Jenkins, 2001a,b). Third, the ratios of
−2.71‰ to −10.80‰ for the oxygen isotopes are also
consistent with a continental setting (Talbot, 1990; Bird
et al., 1991). Marine-influenced continental environ-
ments might show lighter values of up to −5‰ (e.g.,
Ingram et al., 1996; Hendry and Kalin, 1997; Fig. 9), but
this hypothesis is very unlikely in this instance because
91% of the analysed samples are below this value.
Fourth, the overall wide range of both δ13C and δ18O
values is typical of continental-derived waters, as
UN
CO

RR
EC

Fig. 10. Plots of carbon and oxygen stable isotope data from several marine an
Kalin, 1997), and their comparison with data obtained in the Codó Forma
Formation is much more in conformity with isotope data from lacustrine lim
D
PR

OO
F

considered in a number of works (e.g., Talbot and
Kelts, 1990; Casanova and Hillaire-Marcell, 1993;
Camoin et al., 1997; Fig. 10). Fifth, the presence of
segments with oxygen and carbon covariant trends (Fig.
10), though not exclusive to, is more consistent with a
non-marine setting (Turner et al., 1983; Gasse et al.,
1987; Marcell and Casanova, 1987; Talbot, 1990; Talbot
and Kelts, 1990; Charisi and Schmitz, 1995). Recent
studies focusing on Sr and S isotopes have also arrived
to the conclusion that the Codó Formation exposed in
the eastern Grajaú Basin was deposited in a dominantly
continental setting (Paz et al., 2005).

In addition to supporting a non-marine deposition,
the carbon and oxygen isotope data revealed to be
valuable for reconstructing lake paleohydrology. Both
of these isotopes have been used directly or indirectly to
interpret climate. In fact, temperature and hydrologic
balance are the main controllers of isotopic composition
in lake systems (Kelts and Talbot, 1990; Lister et al.,
1991). It is well known from studies of modern settings
that temperature causes fractionation of the oxygen in a
constant ratio of 0.26‰/°C in the bicarbonate–water–
carbonate system (cf. Craig, 1965; Friedman and
O'Neill, 1977). The wide range of δ18O values observed
in the Codó Formation, though, would require a
TE

d lacustrine deposits throughout the world (modified from Hendry and
tion. This diagram shows that the isotopic composition of the Codó
estones than with marine limestones.
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temperature gradient equivalent to about 40 °C, which is
not expected considering the low paleolatitudinal
location (>10°) of the study area during the Late Aptian
(Scotese et al., 1989). On the other hand, the balance
between influx and evaporation causes drastic changes
in lake isotopic composition (Talbot, 1990; Lister et al.,
1991). Evaporation leads to enriched 18O, as lighter 16O
escape to the atmosphere. Conversely, high water inflow
results in the return of 16O from the atmosphere, causing
depletion in δ18O values. Thus, low δ18O values have
been related to higher lake levels, while high δ18O are
attributed to lower lake levels, parameters that have been
indirectly related to climate (e.g., Talbot, 1990; Camoin
et al., 1997; Lister et al., 1991).

Carbon isotope ratios also have a direct relation to
climate. Hence, higher δ13C values have been associated
with aridity, while lower δ13C values indicate relatively
more humid climates (e.g., Talbot and Kelts, 1990;
Valero-Garcés et al., 1995). In general, this interpreta-
tion is based on the fact that dry climates favor
evaporation, increased influence of C4-path vegetation
type, lower influx, and lake stratification, which
ultimately lead to organic matter preservation with the
consequent output of 12C from lake waters. Except for
vegetation type, which has not been adequately studied
yet, all these conditions, including a vegetation type
dominated by algal components (Mitsuru Arai, oral
communication), can be inferred from the sedimento-
logic characteristics of the Codó Formation, responding,
at least in part, to increase the δ13C values. However,
other causes might have been involved in this particular
instance, as discussed below.

A close relationship between the carbon and oxygen
isotope ratios and the first- and second-order shallow-
ing-upward cycles is recorded in the study area (Fig.
11A–F). These changes are analysed in the following in
terms of facies development, which is not necessarily
related to climate changes, as widely applied in the
literature (e.g., Olsen, 1986; Smoot and Olsen, 1994;
Goldsmith et al., 1990; Steenbrink et al., 2000; Hofman
et al., 2000; Aziz et al., 2000). In this instance, the good
correspondence in both isotope values when first and
second-order depositional cycles are compared among
the profiles is suggestive of facies control. In particular,
the changes from decreasing to either increasing or
increasing and then decreasing values in second-order
cycles located in the base and top of the profiles,
respectively, can be related to the presence of either
complete or incomplete cycles with well developed
marginal lake deposits upward in the sections. Such
facies stacking requires alternating episodes of lake
deepening and shallowing, which in this instance is
TE
D
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F

associated with increased subsidence (Fig. 11A, C, E)
and the return to relative stability or even uplift (Fig.
11B, D, F), respectively, as previously mentioned.
Heavier isotope values recorded during shallowing
could be attributed to a significant enhancement of the
isotopic exchange between the lake surface and the
atmosphere. This is because as the water became
extremely shallow, evaporation increased significantly
due to heating. Differences in carbon values according
to location in the lake system, with marginal areas
displaying higher values, have been also noted by other
authors (e.g., Camoin et al., 1997; Casanova and
Hillaire-Marcell, 1993). The loss of 12C to the
atmosphere leading to enrichment in the 13C in the
dissolved inorganic carbonate appears to be an active
process in the epilimnion of lakes with low water inflow
(Stiller et al., 1985; Talbot, 1990; Talbot and Kelts,
1990). The cycles located up in the sections that display
an increase and then a slight decrease in values probably
record extreme shallowing, which culminated with
periods of desiccation, as indicated by deposits with
paleosols. During subaerial exposure, there is a greater
chance that the deposits were in contact with meteoric
waters, which might have brought lighter carbon and
oxygen, contributing to decrease the isotope values.

A facies control on the isotope values obtained from
the study area is also consistent with the corresponding
trends obtained for the curves when first-order cycles
are compared among all the profiles. As presented
earlier, these cycles record main episodes of lake
desiccation superposed upon the second-order cycles,
in this instance associated with decreasing subsidence.
Hence, the overall decreasing values observed through-
out the first-order depositional unit 2 would reflect a
period when the lake was established, with deeper water
lake deposits prevailing over shallower water lake
deposits, which resulted in low isotope values. Marginal
lake deposits that could record increased evaporation,
contributing to increase the isotope values through
atmosphere exchange, as proposed above are, in
general, lacking in the upper portions of this unit. As
the lake evolved, increased evaporation decreased the
water level, and progressively enhanced the isotope
values, a trend exemplified by depositional unit 3.
Decreasing subsidence during deposition of this unit
would have promoted a better development of marginal
lake deposits, and the consequent maximum isotope
values.

Pulses with heavier carbon isotope values observed
in the middle portion of depositional unit 2 could be
related to lake stratification and bottom anoxia. The
mechanism responsible for sulphate precipitation in this
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Fig. 11. Summary of the depositional model proposed for the origin of the Codó lake system in the eastern Grajaú Basin, illustrating the close
relationship of facies development, and thus the distribution of oxygen and carbon isotopes, with alternation between syn-sedimentary fault
displacement and uplift. (A) Offset of few meters along faults displaced along the basin margins resulted in the creation of accommodation space
along subsiding areas, where the lake system developed, giving rise to first-order cycle represented by unit 2. (B) Uplift contributed to decrease the
lake level with the consequent spread out of marginal deposits at the top of unit 2, culminating with lake dryness and formation of a discontinuity
surface with paleosols. (C) Fault reactivation resulted in a renewed phase of lake deepening, with deposition of central and transitional facies deposits
recorded by unit 3. (D) Renewed uplift promoted the fall in lake level and widespread formation of marginal deposits represented by pisoidal
packstone to grainstone and rhythmite, which culminated with lake exposure and soil development at the top of unit 3. (E) Fault reactivation with
renewed deposition of laminated argillites, recorded by unit 4. (F) Increasing stability led to progressive decrease in water level resulting from the
abandonment of the lacustrine deposition in the study area, with subaerial exposure and formation of an unconformity at the top of the Codó
Formation.
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Utype of setting is not well understood yet, but stagnating,
disaerobic environments are naturally enriched in
dissolved sulphates. These might precipitate under
increased evaporation (Burns et al., 2000; Dell Cura et
al., 2001), resulting in large gypsum deposits inter-
bedded with black shales, as commonly recorded in
many other central lake settings throughout the world
(e.g., Kirkland and Evans, 1981; Warren, 1999; Land-
mann et al., 2002). An important point to highlight
concerning the carbon isotope behavior under such
environmental condition is that continuing sedimenta-
tion leads to 12C burial, consequently increasing the
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amount of 13C dissolved in central lake waters (Herczeg,
1988; Talbot and Kelts, 1990). If this interpretation is
considered, then the subtle upward decrease in carbon
isotope values could be attributed to the gradation from
central to transitional lake environments, where this
effect was less significant.

The moderate positive covariance between the
carbon and oxygen isotope curves shown in profiles B
and C are attributed to periods with a tendency for lake
closure (Fig. 9). Covariance between carbon and oxygen
isotope values is an attribute verified in many other
ancient and modern lake systems throughout the world
(e.g., Eicher and Siegenthaler, 1976; Gat, 1981; Gasse et
al., 1987; Gasse et al., 1989; McKenzie, 1985; Janaway
and Parnell, 1989; Talbot, 1990; Talbot and Kelts, 1990;
Lister et al., 1991). This occurs because, as the system
remains closed, the supply of 16O and 13C to the basin is
greatly reduced. No external inflow, added to an
increase in residence time, resulted in the consequent
release of 16O and 13C to the atmosphere due to
evaporation, particularly considering arid climates as
envisaged for the study area during the Late Aptian.
This process might have contributed to further increase
the isotope values in this instance. The alternation of
covariant and non-covariant carbon and oxygen values,
however, which resulted in correlation coefficients
ranging from +0.42 to +0.47 in these profiles, suggest
moments of lake opening. Such situation appears to
have dominated the deposition of profile A, which is the
least covariant. The fact that sandstones occur only in
this profile (see Fig. 8, base of profile A) is consistent
with a lake connected, at least temporarily, to a sand
influx.

It is noteworthy that the δ18O values displayed the
highest variation during closed phases, ranging from
−3.63‰ to −4.89‰, compared to the variations of
−0.09‰ to −1.87‰ that characterize open phases. This
is because closed lakes have a better chance to show
oscillations in water levels, due to the increase in
residence time as explained above, leading to higher
δ18O values. Conversely, the isotopic composition of
open lakes is more stable due to the balance caused by
the continuous basin inflow, as recorded in several lake
systems, such as Lake Henderson (Stuiver, 1970), Lake
Huleh (Stiller and Hutchinson, 1980) and Lake
Greifensee (McKenzie, 1985).

8. Final remarks

The carbon and oxygen isotopic composition of
carbonates in the Codó Formation in the eastern Grajaú
Basin can be directly related to facies changes, as
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revealed by the correspondence between the isotope
values and the shallowing-upward cycles when all the
profiles are compared. Deciphering the causes of these
changes through time, whether related to climate
fluctuations or to any other variations in the basin,
such as subsidence or sediment inflow, is not so
straightforward. There has been an agreement among
the authors in relating carbon and oxygen isotopes with
lake hydrology, which is often used directly or indirectly
to make inferences about climate (e.g., Smoot and
Olsen, 1994; Steenbrink et al., 2000; Hofman et al.,
2000; Aziz et al., 2000). In study this is not the case and
significant changes in carbon and oxygen isotope
composition of lake waters, resembling climatic cycles,
can be related to fluctuations in subsidence rates caused
by syn-sedimentary seismic activity. In this case, the
combination of isotope and sedimentological data
provides the key for distinguishing which of these
factors left the most significant imprint in the sedimen-
tary record.

In this paper we have shown the close relationship
of both carbon and oxygen isotopes with the first- and
second-order shallowing-upward cycles that character-
ize the studied unit. The dominant asymmetric nature
of these cycles, inferred on the basis of high facies
variability when comparing one cycle to another, the
limited lateral extension, as well as the frequent and
random thickness changes, lead us to propose that
climate was not their prime controlling factor. On the
other hand, sedimentological data favors the attribution
of these cycles to syn-sedimentary seismic activity
associated with the early tectonic evolution of the São
Luís-Grajaú Basin during the Late Aptian. The Codó
Formation was deposited just prior to the main rifting
that culminated in the process of opening of the South
Atlantic Equatorial Ocean. During this initial time,
there was the development of a shallow, but extensive
subsiding intracontinental basin (Azevedo, 1991; Góes
and Rossetti, 2001). This suggestion matches well with
the presence of shallow lakes in marginal areas of the
basin, where faults with reduced offsets are expected to
have prevailed. Subsidence gave rise to local water
accumulation, forming closed and perennial lake
systems, but as compression took place, and the area
was uplifted, the development of ephemeral lakes
appears to have been favored. This situation is recorded
in the studied profiles by a change from shallowing-
upward cycles with dominance of central and transi-
tional lake deposits to cycles with well-developed
marginal lake deposits, as occurs in the lower and
upper portions of the first-order cycles, respectively.
Such facies arrangement records the upward transition
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from periods of maximum flooding to periods when the
lake fell to lower levels. The carbon and oxygen
isotopic composition of such lake basins is expected to
be characterized initially by light values, but as the
residence time increases due to shallowing, heavier
values are reached due to increased evaporation in a
shallowing lake.

Because an arid climate prevailed along the
Brazilian equatorial margin during the Late Aptian
(Lima et al., 1980; Lima, 1982; Batista, 1992;
Rodrigues, 1995; Rossetti et al., 2001), gypsum
precipitation took place in central lake areas, a process
that was probably induced by water stratification and
bottom anoxia. The highest carbon isotope values
coinciding with the moment of maximum formation of
gypsum and bituminous black shales are consistent
with this interpretation.

Therefore, different styles and/or intensities of
seismic pulses alternating with sediment deposition
might cause changes in the lake level, promoting
alternating periods of rise and fall in lake level, and
resulting in well-developed asymmetric shallowing-
upward cycles. Such a scenario ultimately affects the
overall isotope composition of lake waters.
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