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Abstract: We review some linear programming models for the cutting stock problem. We compare the models, 
pointing out their advantages and disadvantages. 
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1. INTRODUCTION  

In this work some linear programming models for the One-Dimensional Cutting Stock Problem are presented. 
Many companies in the paper industry, furniture, glass, metal, textile etc. face daily the problem of cutting 
smaller pieces from larger ones. To make the best use of the available resources there has been an increasing 
interest in techniques that seek the optimization of the cutting process.  
 
To evaluate different solutions of cutting large objects into smaller items, some criterion has to be used. 
Objectives functions such as waste minimization, production cost minimization and others have been observed in 
the literature. 
 
In the next sections we present linear programming models suggested by Gilmore and Gomory (1961), Carvalho 
(2002), Dyckhoff (1981). 
 
2. GILMORE AND GOMORY’S MODEL 
 
The works of Gilmore and Gomory (1961, 1963) were very helpful in the search of a practical solution for the 
cutting stock problem. Gilmore and Gomory (1961) formulated the cutting stock problem as an integer 
programming problem.  
 
Let  
 
W be the length of the objects in stock; 
wd   be the length of the items, d = 1, 2, …, m; 
bd   be the demand of item d, d = 1, 2, …, m; 
Aj = (a1j, …, adj, …, amj)T be a cutting pattern, d = 1, 2, …, n, where adj is the number of items d in the pattern;  
xj be the frequency that the pattern j is cut. 
 
The cutting stock problem can be modeled as 
 

Min ∑         (1) 
∈Jj
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≥ bd  d = 1, 2, …, m    (2) 
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∀ j∈J                 (3)  

   xj ≥ 0 and integer              ∀ j∈J                 (4) 

   adj ≥ 0 and integer            ∀ j∈J, d = 1, 2, …, m               (5) 

 

The objective function (1) minimizes the number of objects used. Constraints (2) impose that the amount cut of 
each item is sufficient to fulfill its demand. Constraints (3) impose the condition of a pattern to be feasible; 
constraints (4) and (5) impose the integrality and non-negativity of the decision variables. 
 
This model is non linear due to constraints (2). However, if all cutting patterns that satisfy constraints (3) are 
enumerated we obtain an integer linear problem composed of (1), (2) and (4) where the adj for all d and j are all 
parameters.  
 
The difficulty in using this model is the large number of patterns to be enumerated in practical problems. The 
number of possible patterns increases exponentially as we increase the number of different items and the 
demands. If the number of patterns is large, so is the number of integer variables in the problem. The difficulty in 
solving integer programming problems usually increases with the number of integer variables involved. 
 
Gilmore and Gomory (1961) propose to solve approximately this integer programming problem by using the 
linear programming relaxation of the problem and column generation. After obtaining the solution, if not integer, 
some rounding procedure can be used. This approximation usually provides good quality solutions (small errors 
compared with optimal solution values) when the demands are high, that is, when a large number of objects are 
used to cut the required items. However, the quality of the solution may be poor for instances when the demands 
are low. 
 
A advantage of this model is that it presents the same structure for 1, 2, 3 or multidimensional cutting stock 
problems. The difficulty arises only in the generations of feasible patterns to the model.     

3. BIN PACKING PROBLEM 

The bin packing problem consists of allocating items to objects (bins) without exceeding the bin’s capacity and 
minimizing the number of bins used. The mathematical model for this problem is  
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   yi = 0 or 1   ∀ i∈I     (9) 

   xij = 0 or 1   ∀ i∈I ,∀ j∈J    (10) 

where 

yi  is a binary variable that takes the value 1 if bin i is used and 0, otherwise  
xij  is a binary variable that takes the value 1 if item j is allocated to the bin i and 0, otherwise. 
 
The objective function (6) minimizes the amount of objects used to allocate all the items; constraint (7) 
guarantees that the sum of the items in bin i does not exceed its capacity; constraint (8) guarantees that each item 
is allocated to a single object only; constraints (9) and (10) impose that the decision variables are binary.  
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In this model we have a variable for each item while in the Gilmore and Gomory’s model of we have a variable 
for each item type.  
 
The extension of this bin packing model to bi-dimensional or multi-dimensional problems is not immediate. 
Constraints regarding the generation of the patterns have to be included in the model.  

4. ARC FLOW MODEL 

Let G = (V, A) be an acyclic directed graph with vertices V = {0, 1, 2, …, W} where W is the size of the object in 
stock and A = {(i, j): 0 ≤ i < j ≤ W} is the set of arcs.   There exists a directed arc (i, j) in this graph G if there is 
an item d of size wd and j – i = wd. 
 
Carvalho (1999) modeled  the one-dimensional cutting stock problem as an arc flow model. In this model, a unit 
of flow from node 0 to node W corresponds to a cutting pattern since it defines a path from node 0 to node W 
where the addition of the sizes of the items in correspondence to the arcs in this path is smaller than the size of 
the object. The arc flow model has the following form: 
 
  Min z        (11) 
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   xij ≥ 0 and integer  ∀ (i, j)∈A                 (14) 
     
 
where 
z is the flow in a feedback arc, from vertex W to vertex 0 
xij  is the flow in arc (i, j) 
bd  is the demand of item d, d = 1, 2, …, m. 
 
The objective function (11) minimizes the amount of flow from vertex W to vertex 0, that is, minimizes the 
number of objects used; (12) are flow conservation constraints;  constraints (13) guarantee that the demand of 
each item is satisfied; (14) are the non-negativity and integrality conditions for the decision variables. 
 
In Figure 1 we present a graph associated with an instance with bins of capacity W = 5 and items of sizes w1 = 3 
and w2 = 2. In the same figure, a path is shown that corresponds to 2 items of size 2 and 1 unit of loss. Several 
paths exist between 0 and 5, that lead to different cutting patterns and that can be used to satisfy the demand of 
the given items. 
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This model can be used only to solve unidimensional cutting stock problems. It cannot be extended to 2, 3, or 
multidimensional problems, at least in a straightforward manner.  

Figure 1. Graph and Cutting Pattern 
 

5. ONE-CUT MODEL 

The one-cut model was proposed by Dyckhoff (1981). In this model a single cut in the object is considered at a 
time. This cut divides the object into two pieces and it is imposed that at least one of the pieces has the size of a 
demanded item (see figure 2). 
 

1w

1W   
 
 
 
 
 
 
 
 
 Figure 2: one-cut 
 
 
Let  
S be the set of the (sizes of the) original objects, p∈{W1, W2, …, WK} N ⊂
R be the set of the (sizes of the) residual pieces obtained after cutting an item from an object or a residual 

piece itself 
D be the set of the (sizes of the) items q∈{w1, w2, …, wm} N . We assume without loss of generality 

that S∩ D =
⊂

φ   
yp,q be the number of  pieces of size p that are divided into a piece of size q, and a residual piece of size p -
 q 
zk be the number of objects of size Wk used 
Nq be the demand of items of size q 
Bp be the number of objects of of size p in stock, p = 1, 2, …, K. 
 
Dyckhoff’s (1981) model is: 
 

 Min ∑                    (15) 
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  zk ≤ Bk  k = 1, 2, …, K      (18) 
  yp,q ≥ 0 and integer, p∈S∪ R, q∈D, q < p     (19) 
  zk ≥ 0 and integer, k = 1, 2, …, K      (20) 
 
The objective function (15) minimizes the sum of the sizes of the objects used; constraints (16) impose that the 
amount of each object is sufficient to fulfill its demand; (17) impose that the demand of each item must be 
satisfied; constraints (18) guarantee that the number of objects used does not exceed the available number of 
each size; constraints (19) and (20) impose the integrality and non-negativity of the decision variables. 
 
To exemplify this model, let S = {9, 6, 5} be the sizes of the objects in stock, D = {4, 3, 2} be the sizes of the 
items, with demands 20, 10 and 20, respectively. Enumerating all possible one-cut operations, we obtain the 
following set of residual pieces:  R = {7, 6, 5, 4, 3, 2}. In Figure 3 the coefficients of the set of constraints of the 
one-cut model are presented for this instance. 

 
 Figure 3: One-cut model 

Reproduced from Carvalho (2002) 
 
 
 The major disadvantage of this model is the increasing number of variables as the number of items increases. 
The possible sizes of residual pieces can be large and they need to be enumerated to solve the problem.  
 
This model also cannot be extended, at least in a straightforward manner to bi-dimensional or multidimensional 
cutting stock problems.  
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