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The impurity conduction of n-type Ge and CdS is calculated via a previously developed theory for impurity bands in
doped semiconductors. Rough agreement with experimental data over a wide range of impurity concentration is found. The
comparison with AMO—MT calculation shows a large enhancement due to a stronger electron correlation.

In doped semiconductors (of n-type) three different regions appear in impurity conduction, as quoted by
Fritzsche [1]: the low-concentration region (<10?® cm=3 in Ge) where the conduction is due to electron hopping
between impurities (compensation is essential for conduction), the intermediate-concentration region where an_
activation encrgy for conduction is observed and the high-concentration region (>>1018 cm=—3 in Ge) where the
impurity level spreads into an impurity band overlapping the host conduction band, ang the conduction is metal-
lic. Many experiments [2—5] have confirmed such classification as the general property of doped semiconductors.
These experiments as well as theoretical investigations [6] suggest that the Mott—Hubbard—Anderson (MHA)
model [7], in which electron correlation and Anderson Jocalization play the most essential roles, provides a proper
description of the novel behavior of doped semiconductors. Matsubara and Toyozawa [8], who will henceforth
be referred to as MT, carried out one of the earliest studies along the line of the MHA scheme. They have treated
only the random distribution of impurities by the Green’s-function technique, but neglected the correlation be-
tween electrons. Recent improvements on the MT scheme have been done [9] by incorpoerating the alternant-
molecular-orbital (AMO) method [10] in order to introduce the correlation effects. The comparison of their calcu-
lation [11-13] with the measured resistivities is very encouraging.

Here we apply the previously developed theory [14] of MT, which, by use of a Heitler—London (HL) two-
particle wave function, takes into account the correlation effects. The calculated resistivities (instead of conductiv-
ities, for convenience) of Ge:Sb, Ge: As, CdS:C1 and CdS:In, at zero temperature, show rough agreement when
compared to the experimental data over a wide range of impurity concentrations at low temperature (1.7—4.2K).
The results of the AMO—MT calculations are also shown for comparison.

For the sake of simplicity we will briefly outline the HL-MT scheme, while the reader should refer to the orig-
inal works for details. The original MT scheme for doped semiconductors starts from a tight-binding hamiltonian,

H= Zt; Efa:ai + ;Z;&E V(Rl‘,)a:a} ) (l)

for a single impurity band, where a; and 4; are the creation and annihilation operators respectively of an electron
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at the ith impurity site. The site energy values E; can be assumed to be independent of / *!. As measured from the
host conduction band, this can be taken as —¢y, the ionisation energy of an isolated impurity. Here we take this

as our energy origin. One assumes no compensation in order to make £;=0 [or Vj; = V(Rﬁ) = 0} for all sites. As-

suming compensation, we must take into account the diagonal part EfI:'fa;a,-, where E; differ from site to site
[15]; the charged minority gives rise to a spatially fluctuating potential. The V(Rﬂ-)(E Vi,r') is the integral for the
transfer of an electron from the fth site to the jth site:

Vi=[ot-R) Ir%lR;! B — R})dr = —Vo(1 + aR ;) exp (—aR ;). @ ;

calculated by using the hydrogenic 1s state wave function, with ¥ equal to twice the ionisation energy and 1/«
is the radius of the 1s orbit,

¢(r—R;)= (a3fm)1? éXp (—ar —R}). 3)

The Green’s functions defined by

1 1. -
Gran(E)= Ol 7= rs1c 40 GounlE) =y i [GHNE) — GLEN, @3)

enable us to calculate the dc conductivity. (They are calculated from (1) with configuration averaging over the
random distribution of impurities.) Defining

£ =2, 6 (), ©)

where the bar means configuration averaging and Z, = E # i¢, then £(*) satisfies the equation

£2) 8322 Y 1 - (WEW/Z, ) u(k)

where v{k) is the Fourier transform of V(R i)
The dc conductivity is calculated by making use of the Greenwood—Kubo [16] equation

g B
0= lim, I @ [ dnexp(snuimyen, @®)
=Y 0

where § =1 ,"kB T, kg is the Boltzmann constant, { ) means the quantum statistical average under no external field,
and J(?) is the Heisenberg representation of the electric-current operator J. By decoupling the current—current
Green’s function into a sum of products of one-electron Green’s functions connecting impurity sites, evaluated at
the Fermi energy £, one gets

2
o= 3% =(E)[~df(E)/dE] dE , ©)

where f(E) is the Fermi distribution function, and

*1 The magnitude of Vg{HL}is reduced, |F(HL) < (V5(AMO)| < [VMT). The electron correlation substantially reduces the
bandwidth via the cut-off of the longtange hopping. ¥j; does not deviate much from e[ = —0.5 and Vj; — ¢] as Rjj — =. There-

fore it is not unreasonable to assume Vj; constant if the doped semiconductors are uncompensated. For further discussion see
ref. [20].
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S 3_21»,75 J [v_(% E)&%?]Z [2 fm (nggisgjv(k)“l ):’2 a

(10)
- 2
1 2 2[ 1 : (s“) NE* ) ]
—~— J R*VRL}Y | — fexp(ik-R)Im|>5- ———= dk| dR.
47r2f ®y) 472 JexptikR) Zy NE* - Zoo(k) 1
The Fermi energy is determined by numerical integratjon from
Ep
2 [ DE)IE=N, (11)

where D(£7} is the density of states obtained from (4) (7).
The hamiltonian, which describes the single impurity band, has the same structure as the MT hamiltonian if

Vi;‘}? defined as the effective hopping integral and €)( ¥i;) as the effective value of the diagonal matrix elements
of .

We will calculate the V;; using a Heitler—London two-particle wave function. Therefore, let us consider a pair
of neutral impurities located at R; and R; forming an Hy-like “impurity molecule”. Labelling ry and ¥4 as the co-
ordinates of the two electrons, the wave function of the impurity molecule is written as

Wiryr) = R0+ 72190, ~ RS0, - RY* 661~ RYOC; — R, .

where § = {p(r — R)lo(r — R;)) is the overlap integral. The energy £(a, R,},-) =YW@ rr N H I (i r 7y ), where
H is the hamiltonian of the impurity molecule, can be catculated analytically in terms of the Slater [17] integrals
S, K, J,J and K"
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Fig. 1. Theoretical and experimental resistivities as a function of the impurity concentration P for Ge:Sb. Full circles, experiment
at 2.5 K; dashed line, AMO—MT calculation; full line, present calculation, both carried out at 0 K. N indicates the experimental
critical impurity concentration for the MNM transition.
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E(o Ry = 1200+ D7 2621 — KS - 8D + ol + K +4KS + 27 — 4)+R7Y, (13)

where K’ represents the exchange effects and J' represents the electron correlation effect. The optimum values
obtained for « when we minimise the ground-state energy (13) are introduced in V; as well as in V. Since we as-
sume V; to be constant, in order to keep the MT scheme unaltered, our interest here shall only be in the V.

To incorporate the HL into the one-electron hamiltonian (1), we have to single out the hopping of only the
first electron in the combined {ield of impurity icns and the second electron. Consequently, we will introduce an
effective one-electron hamiltonian & (r)as

[6(ry — R) + 6ty — ROVHGD[0Gy — R+ 6(ry — RYL = [ WGiisryra)H - RS Girry)dr, . (14)

The effective one-electron matrix elements can be written as

A

Fig. 2. Same as fig. |1 for Ge: As. Experiment at 4.2 K.
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Fig. 3. Same as fig. 1 for CdS:CL Experiment at 4.2 K.
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Fig- 4. Same as fig. 1 for CdS:In. Experiment at 1.7 K.
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Vy= [ o0 — RYHPISC —R) & (15)
we pet for i # J the off-diagonal matrix elements .
v, =20 + 53] Yo (KS + 5% + a(2KS + LK)} (16)

The calculated resistivities for Ge:Sh, Ge:As, CdS:Cl and CdS:In are plotted in figs. 1 to 4, as functions of the
normalized impurity concentration P = 32n NaI*I3, where af; is the Bohr radius obtained from the experimental
ionisation energy [18]. The full lines correspond to the present calculation. The dashed lines correspond to the
AMO—MT calculation and the dotted lines with solid circlesare the experimental data. The experimental critical
impurity concentration ¥, (or P,) for the metal—nonmetal (MNM) transition is indicated with an arrow, For
Ge:Sb, V. = 0.95 X 1017 cm=3 or P_ = 0.8, 2y = 43.7A [19), the experimental data are from ref. [1] and the
AMO—MT theory from ref. [11]; for Ge:As, ¥, =3.5X 1017 em—3 or P, = 1.12, af; = 31.7 A, experimental data
from ref. [4] and theory from ref. [12]; for CdS:Cl, ¥, =9.0X 10!7em=3 or P, = 1.9 [18),N; = 2.0 X 1018
em=3 or P, =3.8 [3], afy = 26.7 A, experimental data from ref. [3] and theory from ref. [11];for CdS:In, ¥, =10
X 1018 cm=3 or P, = 1.77,af; = 26 A, experimental data from ref. [5] and theory from ref. [13]. It is worthwhile
to point out that the present calculation has shown how sensitive the resistivity is, in n-type doped semiconduc-
tors, to changes in the electron correlation, presenting a satisfactory agreement between our calculation and ex-
periment over & wide range of impurity concentrations. Due to the configurational averages of products of two
Green’s functions treated over the de conductivity in the original MT scheme, our scheme is only valid for P> 1
[8,12]. Uncompensated n-type semiconductors are assumed. We also have to mention that there is no criterion
here to determine when the Anderson transition takes place. However, to incorporate the Anderson localization
into the present model is really a difficult task.
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