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ABSTRACT 
      
This paper describes a methodology for using 
neural networks in an inverse heat conduction 
problem. Three neural network (NN) models are 
used to determine the initial temperature profile 
on a slab with adiabatic boundary condition, 
given a transient temperature distribution at a 
given time. This is an ill-posed 1D parabolic 
inverse problem, where the initial condition has to 
be estimated. Three neural network models 
addressed the problem: a feedforward network 
with backpropagation, radial basis functions 
(RBF), and cascade correlation. The input for the 
NN is the temperature profile obtained from a set 
of probes equally spaced in the one-dimensional 
domain. The NNs were trainned considering a 5% 
of noise in the experimental data. The training 
was performed considering 500 similar test-
functions and 500 different test-functions. Good 
reconstructions have been obtained with the 
proposed methodology. 
 
NOMENCLATURE 
ASE Average square error 
bk Bias employed in the NNs 
CasCor Cascate correlation NN 
f(x) Unknown nitial condition 
g(x) Activation function 
wji Conection weight of a NN 
N(βm) Norm of the eigenfunction 
NN Neural network 
RBF Radial base function NN 
T(x,t) Temperature calculate 

),(~ τxT  Experimental temperature 

X(βmx) eigenfunction 
α Regularization parameter 
βm Eigenvalue in Eq. (2) 
η Learning rate 
µ Random variable 
σ Standard deviation 

Ω  Space domain 
+ℜ  Positive real number set 

 
INTRODUCTION 

Neural networks have emerged as a new 
technique to solve inverse problems. This approch 
was used to identify initial conditions in inverse 
heat conduction problem on a slab with adiabatic 
boundary conditions, from transient temperature 
dis tribution, obtained at a given time. Three 
neural networks architectures have been proposed 
to address the problem: the multilayer perceptron 
with backpropagation, radial basis functions 
(RBF), both trained with the whole temperature 
history mapping, and cascade correlation.  

The results are compared with those obtained 
with non-linear least square approach and 
standard regularization schemes [1, 2]. 

Preliminary results using backporpagation and 
radial basis function neural networks were 
obtained using whole time history, but with only 
three different test functions for the learning 
process [3, 4]. The reconstructions obtained were 
worse than those identified with regularization 
techniques. In that strategy two NNs were 
coupled: the first NN was used for determining 
the time-period to get the observational data, and 
another one to find the initial condition itself. 
That strategy constituted in a novelty in the field, 
but propably the poor set of test functions for 
learning step did not permit a good 
reconstruction. In order to overcome this 
constrain, 500 functions were used for the 
learning process in this work. In addition, two 
groups of test functions were used. In the first 
group 500 completely different test functions 
were used, while for the second group 500 similar 
test-functions were used. 

Numerical experiments were carried out with 
synthetic data with 5% of noise used to simulate 
experimental data. 
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DIRECT HEAT TRANSFER PROBLEM 

The direct problem under consideration 
consists of a transient heat conduction problem in 
a slab with adiabatic boundary condition, with an 
initial temperature profile denoted by f(x). 
Mathematically, the problem can be modeled by 
the following heat equation 
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where x represents space (the distance between a 
point in the slab and one of its endpoints), t is the 
time, f(x) is the initial condition, T(x,t) represents 
the temporal evolution of the temperature at each 
point of the slab, and ∂Ω  represents the 
boundaries of domain Ω . All of these terms are 
dimensionless quantities and Ω  = (0,1) is the 1D 
space domain. 

The direct problem solution, for a given initial 
condition f(x) is explicitly obtained using 
separation of variables, for (x,t) ∈ Ω  × R+:  
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where X(βm,x) = cos(βmx) are the eigenfunctions 
associated to the problem, βm = mπ  are the 
eigenvalues and N(βm)= ∫Ω

′′′ xdxfxX m )(),(β  

represents the integral normalization (or the 
norm) [5]. 

 The inverse problem consists in 
estimating the initial temperature profile f(x) for a 
given transient temperature distribution T(x,t) at a 
time t [1]. 

 
NEURAL NETWORK ARCHITECTURES 

Artificial neural networks (ANN) are made 
of arrangements of processing elements 
(neurons). The artificial neuron model basically 
consists of a linear combiner followed by an 
activation function. Arrangements of such units 
form the ANNs that are characterized by: 
1. Very simple neuron-like processing elements; 
2. Weighted connections between the processing 

elements (where knowledge is stored);  

3. Highly parallel processing and distributed 
control; 

4. Automatic learning of internal representations. 
ANNs aim to explore the massively parallel 

network of simple elements in order to yield a 
result in a very short time slice and, at the same 
time, with insensitivity to loss and failure of some 
of the elements of the network. These properties 
make artificial neural networks appropriate for 
application in pattern recognition, signal 
processing, image processing, financing, 
computer vision, engineering, etc. [6-9]. 

The simplest ANN model is the single-layer 
Perceptron with a hard limiter activation function, 
which is appropriate for solving linear problems. 
This fact prevented neural networks of being 
massively used in the 1970s [6]. In the 1980s they 
reemerged due to Hopfield´s paper on recurrent 
networks and the publication of the two volumes 
on parallel distributed processing (PDP) by 
Rumelhart and McClelland [6]. 

There exist different ANN architectures that 
are dependent upon the learning strategy adopted. 
This paper briefly describes the three ANNs used 
in our simulations: the multilayer Perceptron with 
backpropagation learning, radial basis functions 
(RBF), and cacade correlation. Detailed 
introduction on ANNs can be found in [6] and [9]. 

Multilayer perceptrons with backpropagation 
learning algorithm, commonly referred to as 
backpropagation neural networks are feedforward 
networks composed of an input layer, an output 
layer, and a number of hidden layers, whose aim 
is to extract high order statistics from the input 
data [4]. Figure 2 depicts a backpropagation 
neural network with a hidden layer. Functions g 
and f provide the activation for the hidden layer 
and the output layer neurons, respectively. Neural 
networks will solve nonlinear problems, if 
nonlinear activation functions are used for the 
hidden and/or the output layers.  Figure 1 shows 
examples of such functions. 

A feedforward network can input vectors of 
real values onto output vector of real values. The 
connections among the several neurons (Figure 2) 
have associated weights that are adjusted during 
the learning process, thus changing the 
performance of the network. Two distinct phases 
can be devised while using an ANN: the training 
phase (learning process) and the run phase 
(activation of the network). The training phase 
consists of adjusting the weights for the best 
performance of the network in establishing the 
mapping of many input/output vector pairs. Once 
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trained, the weights are fixed and the network 
can be presented to new inputs for which it 
calculates the corresponding outputs, based on 
what it has learned. 
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Figure 1: Two activation functions: (a) sigmoid 
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The backpropagation training is a supervised 
learning algorithm that requires both input and 
output (desired) data. Such pairs permit the 
calculation of the error of the network as the 
difference between the calculated output and the 
desired vector. The weight adjustments are 
conducted by backpropagating such error to the 
network, governed by a change rule. The weights 
are changed by an amount proportional to the 
error at that unit, times the output of the unit 
feeding into the weight. Equation 3 shows the 
general weight correction according to the so-
called the delta rule 

 

ijji yw ηδ=∆        (3) 

 
where, δj is the local gradient, yi is the input signal 
of neuron j, and η is the learning rate parameter 
that controls the strength of change. 
 

 
Figure2: The backpropagation neural network 
with one hidden layer. 
 

Radial basis function networks are 
feedforward networks with only one hidden layer. 
They have been developed for data interpolation 
in multidimensional space. RBF nets can also 
learn arbitrary mappings. The primary difference 
between a backpropagation with one hidden layer 
and an RBF network is in the hidden layer units. 
RBF hidden layer units have a receptive field, 
which has a center, that is, a particular input value 
at which they have a maximal output. Their 
output tails off as the input moves away from this 
point. The most used function in an RBF network 
is a Gaussian (Figure 3). 
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Figure 3: Gaussian for three differents variances. 

 
RBF networks require the determination of the 

number of hidden units, the centers, and the 
sharpness (standard deviation) of their Gaussians. 
Generally, the centers and standard deviations are 
decided on first by examining the vectors in the 
training data. The output layer weights are then 
trained using the Delta rule.  

The training of RBF networks can be 
conducted: (1) on classification data (each output 
representing one class), and then used directly as 
classifiers of new data; and (2) on pair of points 
(x, f(x)) of an unknown function f, and then used 
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to interpolate. The main advantage of RBF 
networks relies on the fact that one can add extra 
units with centers near elements of the set of input 
data, which are difficult to classify.  

Like Backpropagation networks, RBF 
networks can be used for processing time-varying 
data and many other applications. 

The third ANN used in the present paper is the 
cascade correlation. This NN permits to 
dynamically find out the appropriate number of 
neurons, begining with just the input and output 
layers, with all the neurons fully interconnected 
(there is no hidden layer). The weights on these 
connections are determined using a conventional 
learning. Next, new neurons are considered 
sequentially, and weights between the candidate 
units and the inputs are selected to maximize the 
correlation between the activation of the 
neuron(s) and the residual error of the net. Once a 
neuron is selected, its weights on the inputs are 
frozen, and are not subsequently changed when 
considering new neurons. Additional neurons are 
applied until a specified small error is reached.  

 

 
Figure 4: Casccade correlation network with 2 
hidden layers. The symbol        denotes a neuron. 

 
Figure 4 shows a cascate correlation (CasCor) 

network into which two candidate neurons have 
been implemented. These neurons use a 
conventional activation function, as shown in 
Figure 2. Each open box in the figure represents a 
weight that is trained only once (when the neuron 
is a candidate) and then is frozen. But the cross 
marks represent weights that are repeatedly 
changed as the network evolves. Note that the 
structure of the network is such that the inputs 
remain directly connected to the outputs, but also 
some information is filtered through the neurons. 
The direct input to output connection can handle 
the linear portion of the mapping, while the non-
linearities are addressed by the neurons. 
 

NEURAL NETWORK FOR DETERMINING 
THE INITIAL CONDITION  

Artificial neural networks have two stages in 
their application, firstly the learning and 
activation steps. During the learning step, the 
corresponding weights and bias of each neuron 
are adjusted to some reference examples. For 
activation, the output is obtained based on the 
weights and bias computed in the learning phase. 
A supervised learning strategy was used for all 
NN architectures. 

The numerical experiment for the inverse 
problem is based on two test functions, the 
triangular function 
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and semi-triangular function 
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The experimental data (measured 

temperatures at a time τ>0), which intrinsically 
contains errors in the real world, is obtained by 
adding a random perturbation to the exact 
solution of the direct problem, such that 

 
σµ+= exact

~ TT        (8) 
 

where σ  is the standard deviation of the errors 
and µ  is a random variable taken from a Ga ussian 
distribution, with zero mean and unitary variance. 
Twin numerical experiments were performed. In 
the first one, noiseless observational data were 
employed (σ=0). The second numerical  
experiment was carried out using 5% of noise 
(σ=0.05). 

For the NNs, the training sets are constituted 
by synthetic data obtained from the forward 
model, i.e., profile of a measure points from 
probes spread in the space domain. Two different 
data sets were used. The first data set is the 
profiles obtained from 500 similar functions (see 
examples in Figure 5a). The second one is that 
obtained with 500 non-similar functions (Figure 
5b). Similar functions are those belonging to the 
same class (linear function class, trigonometric 
function class, such as sine functions with 

+
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different amplitude and/or phase, and so on). 
Non-similar functions are decorrelated, that is, 
each one belongs to a distinct class.  

Figure 5 shows a set of functions used in the 
learning stage, applying non-similar (Fig. 5a) and 
similar functions (Fig. 5b). 
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Figure 5: Sample of test functions for training: (a) 
non-similar functions; (b) similar functions. 
 

The activaction is a regular test used for 
checking out the NN performance, where a 
function belonging to the test function set is 
applied to activate (to run) the NN. Good 
activations were obtained for all three NNs for 
observational data with noise and noiseless data, 
for similar and non-similar test function sets  (not 
shown). In the activation test the NN trained with 
similar data were systematicaly better than the 
training with non-similar functions (not shown 
either), with and without noise in the data. A 
summary of the training results for the three NNs 
is presented in Table 1. 

 
Table 1: Training results for the neural networks 
used for initial condition reconstruction. 
  

Multi -layer perceptron 

Data Noise Hidden 
Neurons  

Training 
Epochs ASE 

Non-similar 0% 25 150000 0,0487 
Similar 0% 20 50000 0,0127 
Non-similar 5% 20 300000 0,0694 
Similar 5% 20 50000 0,0144 

Radial base function 

Data Noise Hidden 
Neurons  

Training 
Epochs 

ASE 

Non-similar 0% 20 50000 0,0576 
Similar 0% 20 50000 0,0095 
Non-similar 5% 20 300000 0,0873 
Similar 5% 20 50000 0,0123 

Cascate correlation 

Data Noise Hidden 
Neurons  

Training 
Epochs ASE 

Non-similar 0% 10 300000 0,0746 
Similar 0% 05 63000 0,0230 
Non-similar 5% 02 2000 0,1389 
Similar 5% 05 63000 0,0318 

Nevertheless, the activation test is an 
important procedure, indicating the permormance 
of a NN. The effective test is defined using a 
function (initial condition) that did not belong to 
the training function set. This action is called the 
generalization of the NN. Functions as expressed 
by Eqs. (6) and (7) did not belong to the function 
set in the traning step. 

Figures 6, 7, and 8 show the initial condition 
reconstruction for noiseless experimental data, 
and Table 2 presents the Average Square Error 
(ASE) for three NNs used in this paper. 
Differently from the results for the activation test, 
reconstruction using non-similar functions were 
better than estimation with similar functions. 

 
 

Table 2: Activation results for the noiseless 
experimental data. 
  

Multi-layer perceptron 
f(x) Data ASE 

Triangular Non-similar 0.0136 
Triangular Similar 0.0139 
Semi-triangular Non-similar 0.0246 
Semi-triangular Similar 0.1599 

Radial base function 
f(x) Data ASE 

Triangular Non-similar 0.0065 
Triangular Similar 0.0079 
Semi-triangular Non-similar 0.0275 
Semi-triangular Similar 0.0498 

Cascate correlation 
f(x) Data ASE 

Triangular Non-similar 0.0253 
Triangular Similar 0.0845 
Semi-triangular Non-similar 0.0471 
Semi-triangular Similar 0.1462 
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Figure 6: Reconstruction using multi-layer 
perceptron NN with noiseless data.  
 

The worse reconstructions for noiseless data 
were obtained using CasCor-NN (see Table 2 and 
Figures 6, 7, and 8), and the best identifications 
were  obtained using RBF-NN. However, good 
initial condition identifications were gotten with 
the three NN architectures. 
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Figure 7: Reconstruction using radial base 
function NN with noiseless data. 
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Figure 8: Reconstruction using cascate 

correlation NN with noiseless data. 
 

Table 3: Activation results for the experimental 
data with 5% of noise. 
  

Multi-layer perceptron 
f(x) Data ASE 

Triangular Non-similar 0.0227 
Triangular Similar 0.0210 
Semi-triangular Non-similar 0.0621 
Semi-triangular Similar 0.0786 

Radial base function 
f(x) Data ASE 

Triangular Non-similar 0.0308 
Triangular Similar 0.0331 
Semi-triangular Non-similar 0.0563 
Semi-triangular Similar 0.0396 

Cascate correlation 
f(x) Data ASE 

Triangular Non-similar 0.0384 
Triangular Similar 0.0947 
Semi-triangular Non-similar 0.0486 
Semi-triangular Similar 0.1294 
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Real tests for inverse problems must be 
performed using some level of noise in the 
synthetic experimental data. As mentioned 
previously, the real experimental data were 
simulated corrupting the output data from direct 
problem with Gaussian white noise,  see Eq. (8). 

As with our numerical experiment with 
noiseless data, the identification of the initial 
condition was effective for all NNs used here.  
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Figure 9: Reconstruction using multi-layer 
perceptron NN with 5% of noise. 
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Figure 10: Reconstruction using radial base 
function NN with 5% of noise. 
 

Figures 9, 10 and 11 show the reconstructions 
for multi-layer perceptron, RBF and CaCor NNs. 
Table 3 presents the ASE for two test function in 
the generalization. As expected, reconstructions 
with data contamined with noise was worse than 
those with noiseless data. But, the NNs were 
robust in the identification with noise in the 
experimental data. 
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Figure 11: Reconstruction using cascate 
correlation NN with 5% of noise. 
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FINAL REMARKS 
Three architectures of neural networks were 

studied in the reconstruction of the initial 
condition of a heat conduction problem. All of 
NNs were effective for solving this inverse 
problem. Different from previous results [2, 3, 
10], reconstructions are comparable with those 
obtained with regularization methods, even for 
data containing noise. However, the NNs do not 
remove the inherent ill-posedness of the inverse 
problem. 

The initial condition estimation problem 
seems  to be a harder inverse problem than the 
identification of boundary condition in heat 
transfer [11-13].  

An interesting remark is the result for the 
activation test, where the training with similar 
functions produced better identification than non-
similar function. However, reconstructions using 
non-similar functions were systematically better 
for the generalization, except in only one case: the 
estimation of semi-triangular function by RBF-
NN with 5% of noise (Table 3). 

The worse estimation was obtained with 
CasCor-NN. A future work could be done using 
the strategy adopted by Hidalgo and Gómez-
Treviño [14]. To accommodate large amounts of 
noise, they added a regularization term to the least 
squares objective function of the neural network. 
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