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ABSTRACT 
 
The spatial distribution of very large trees in primary Amazon forest is extracted from a digital model of interferometric 
forest height by an approach of local maximum filtering. The spatial point patterns of very large trees are modeled by a 
series of Markov point process models. Spatial distribution is regular, and interaction decreases with distance; very 
large trees are shown to exert repulsive interaction with their neighboring very large trees. 
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RESUMO 
 
A distribuição espacial de árvores muitas altas em florestas primárias na Amazônia é extraída de um modelo digital 
interferométrico da altura do dossel florestal, através de uma filtragem de máximas locais. Os padrões pontuais 
espaciais de árvores muito altas são modelados por uma série de modelos de processos pontuais de Markov. As 
distribuições espaciais são regulares, e as interações decrescem com a distância; é mostrado que árvores muito altas 
exercem interações repulsivas com árvores vizinhas muito altas. 
 
Palavras chave: InSAR, função K, filtragem de máximas locais, processo de Markov,  floresta primária, padrão 
espacial pontual. 
 

 
1. INTRODUCTION 
 

In ecological forest studies, some researchers 
have paid special attention to a sub-collective of only 
the largest trees. A particular ecological significance for 
the carbon regime, patterns of succession, and species 
diversity is attributed to very large trees. CHAMBERS 
et al. (2001) depict that in tropical forests half of the 
above-ground biomass is contained in very few tree 

individuals. MILTON et al. (1994) characterize very 
large trees in tropical forests as reproductively 
dominant, and therefore strongly influential on forest 
structure and composition. In this paper, trees with 
dominant crown position are very large trees (VLTs), 
that therefore appear in data from radar interferometry 
(see NEEFF et al., 2005a). 

Three-dimensional stand structure has been 
called “the most important of all stand characteristics” 
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for determining its biodiversity and ecological stability 
(PRETZSCH, 1997). Stochastic point process have been 
identified as the appropriate tool for examining spatial 
structure of trees in temperate and tropical forests (e.g. 
PRETZSCH, 1997; STOYAN AND PENTTINEN, 
2000). 

 
2. MATERIAL AND METHODS 
 
2.1 Study area 
 

The study area is situated in the surroundings 
of the Tapajós National Park south of Santarém in 
Brazilian Amazonia at W 54.93 DD, and S 3.19 DD. 
The climate according to Köppen is Amw (variation of 
tropical monsoon) with an average annual rainfall of ca. 
1,850 mm, and a yearly temperature average of 26 °C. 
Hence, the life zone is classified as tropical moist forest 
according to the Holdrige system. 

 
2.2 Remote sensing data 
 

An area of approximately 1,300 km2 was 
mapped at the end of 2000. The data were collected by 
the airborne AeS-1 sensor (Aerosensing Radarsysteme 
GmbH, Germany), which makes use of interferometric 
synthetic aperture radar (InSAR) technology. It operates 
on X-band (9.55 GHz) with one polarization (HH) and 
fully polarimetric on P-band (technical properties: 
wavelength 72 cm; middle frequency 415 MHz; 
depression angle 45° (37-51°); mean flight height 
3,216 m; range resolution 1.5 m; azimuth resolution 
0.7 m for 1 look slant range image). 

The longer wavelengths pass through the 
vegetation cover and are used to generate a DEM 
(Digital Elevation Model). The short wavelengths are 
reflected from the top of forest canopies and are used to 
generate a DSM (Digital Surface Model). Both models 
are thoroughly calibrated and have a spatial resolution 
(pixel size) of 2.5 m. The difference between the DSM 
and DEM is taken to represent height of vegetation 
(MURA et al., 2001; NEEFF et al., 2005b). 

NEEFF et al. (2005b) depict interferometric 
height in primary forests as being dependent on only a 
sub-collective of the largest trees of the forest. 
Therefore, the canopy and the crown structure that can 
be recognized in the digital height model is a function of 
only the largest trees. 

Sample blocks of undisturbed primary forest 
were extracted from the digital height model. Namely, 
three contiguous areas of 1,000 x 1,000 m = 100 ha each 
were selected, that are reasonably far away from roads 
etc. 

 
2.3 Local maximum filtering 

 
Local maximum filtering (LM filtering) 

extracts tree locations from remote sensing imagery. 
Even though many other approaches have been 
proposed, LM filtering has yielded good results, is fairly 

simple to implement, and has therefore been used 
extensively (WULDER et al., 2000). In LM filtering, a 
pixel window is passed over an image, to determine for 
each pixel, whether its digital number is higher than all 
other pixels in the window. These local maxima are 
identified as tree locations. The application of LM 
filtering to a digital height model directly makes use of 
the three dimensional canopy structure of forests, where 
the areas of maximum vegetation height obviously 
coincide with the tops of crowns. 
 
2.4 Spatial point patterns 
 

The statistical methodology regarding the 
analysis of spatial point patterns, that is applied in this 
paper comes primarily from the book by CRESSIE 
(1993), from which most of the terminology is taken: A 
spatial point process is a stochastic model, that governs 
the location of events si in some subset of Rd. In this 
paper we are interested in the realization of the process 
as a spatial point pattern of trees in the forest: 
s

i
∈A⊂R2. 

Point processes are commonly characterized 
and analysed by their moment measures. The first-order 
intensity λ corresponds to the number of events per unit 
area. The second-order intensity is usually addressed by 
the K-function, which effectively summarizes spatial 
dependence over a wide range of scales. Here an 

estimator K̂  is used, that corrects for edge effects by a 
guard area: 
� � K(h) = E(# extra events within distance h  of a 
randomly chosen event),  h > 0, (1) 
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where ||si – sj|| is the distance between events 
si and sj; I is an indicator function I = {1 if ||si – sj|| � h, 
0 otherwise}; N is the number of points in a bounded 
study region A, and N+ is the number of events in A and 
a surrounding guard area. 

Parametric models for spatial point processes 
can be fitted to observed point patterns. Here, the so-
called Markov processes are used to describe the 
observed spatial pattern of very large trees in primary 
forests. Markov processes are appropriate for describing 
the point pattern of old growth forests because VLT 
spacing tends to be more uniform than clustered. This 
happens because the very large trees effectively 
outcompete other vegetation in a circular zone 
surrounding each VLT. An observed spatial point 
process in A is Markov of range ρ if the conditional 
intensity at si, depends only on the events in the circle of 
radius ρ centered at si (excluding si itself). These models 
are most commonly used to model repulsive interaction 
that leads to a regular point pattern. Two events interact 
and are called neighbors if their distance hij = ||si – sj|| is 
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less than ρ. It is convenient to describe the interaction 
structure of the process in terms of pair-potential 
functions, that usually are functions of the distance h 
only (for simplicity used here instead of hij for the 
distance between two points i and j) �(si, sj) = �(hij). 
Pair-potentials range from �(h) < 0 (attraction) over � 
(h) = 0 (independence) to � (h) > 0 (inhibition), where 
�(h) = � corresponds to complete inhibition. The 
distribution of a point process is often described in 
terms of its likelihood l(�), given its parameters �: 

 
l(� | {s1, ..., sn}) 
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�
�
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where n is the number of points, and � reflects the first 
order intensity of the process. So, the probability of 
observing two points si, sj at distance hij apart is 

)( ijhe Ψ−
. 
Some special cases of the Markov process 

include the Poisson process, which is the model of 
complete spatial randomness (CSR), the model of 
simple sequential inhibition (SSI), the Strauss process 
(Strauss), a Strauss hard-core model (StrHC), and a soft-
core process (SC), which are given by (for simplicity, 
again h is used instead of hij for the distance between 
two points i and j, the ρ, γ, σ, � are the parameters of the 
respective functions):  
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3. RESULTS 
 

3.1 Extraction of tree locations from digital height 
model 
 

LM filtering was used to extract the positions 
of very large trees from the DHM. LM filtering by an 

approximation of a circular window with radius of three 
pixels (= 7.5 m) yielded particularly good results. Tree 
locations are marked at those points in the images were 
characteristic maxima are observable, that most 
probably coincide with crowns of trees. Because of the 
cost of conducting a field based survey of tree locations, 
we were unable to fully assess the accuracy of the 
derived tree positions using the image methods 
described previously. Based on our experience in this 
forest type, and also based on visual examination we 
judged this method to provide sufficient accuracy for 
the purpose of conducting exploratory point pattern 
analysis. Visual examination of the results justifies the 
approach adopted for selection of filter size. The 
resulting spatial point patterns are displayed in Figure 1. 
Intuitively, the pattern does not seem to contain clusters, 
but rather to be fairly regular. 

 
Fig. 1 –  Spatial pattern of very large trees in sample 
block #1. Plot area covers 1000 x 1000 m = 100 ha. 

 
3.2 Distance between very large trees 
 

The spatial point patterns from LM filtering of 
the sample blocks are analyzed by simple summary 
statistics. The intensities of the VLT point patterns are 
estimated as λ1 = 6.91 ha-1, λ2 = 6.51 ha-1, and λ3 = 
6.78 ha-1. For each tree, the distance to its nearest 
neighbor is computed. The mean distances for the three 
blocks turn out to be very similar: W,¯ 1 = 24.2 m, W,¯ 2 

= 25.1 m, W,¯ 3 = 24.2 m. Since λ1 and W,¯ i from the 

different blocks are very similar, the spatial pattern, at 
least at small scales, can be considered homogeneous. 
 
3.3 Modeling of point patterns 
 

Markov point processes are fitted to the point 
patterns as resulting from the LM filtering of the DHM. 
No maximum likelihood estimators are available for the 
Strauss process (Strauss), the Strauss hard-core model 
(StrHC), or the soft-core process (SC). The fitting 
procedure maximizes the pseudolikelihood (MPL) and 
utilizes the tools given in the spatstat 1.2 library of R. 
The parameters of the homogeneous Poisson process 
(CSR) and the model of simple sequential inhibition 
(SSI) are fitted by their maximum likelihood estimators. 
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TABLE 1 – COEFFICIENTS OF FITTED MODELS FOR SPATIAL POINT PATTERNS IN THREE SAMPLE 
BLOCKS. CONSIDERED MODELS ARE: CSR – HOMEOGENEOUS POISSON PROCESS, SSI – SIMPLE 

SEQUENTIAL INHIBITION, STRAUSS – HOMOGENEOUS STRAUSS PROCESS, StrHc – STRAUSS HARD-
CORE, SC – SOFT-CORE. 

 
Model Parameter block #1 block #2 block #3 

CSR λ 0.000691 0.000651 0.000651 
 γ 1 1 1 

SSI β 0.0007575 0.00071 0.0007445 
 ρ 9 9 9 
 γ 0 0 0 

Strauss β 0.0007575 0.00071 0.0007445 
 ρ 10 10 10 
 γ 0.1322 0.1227 0.1327 

StrHC β 0.001029 0.001007 0.0009785 
 ρ0 9 9 9 
 ρ� 30 30 29 
 γ0 0 0 0 
 γ� 0.7963 0.7456 0.7907 

SC β 0.0008028 0.0007245 0.0007629 
 σ 10.82 15.27 13.68 
 κ 0.359 0.2564 0.2821 

 
Model Selection between different 

parametrizations (different values of �i and κ) for the 
Strauss, the StrHC, and the SC models, is done by 
fitting a series of models. The estimates for MPL of 
different parameter combinations were compared and 
those with the highest pseudolikelihood values were 
selected. An example curve of the MPL of the SC 
model in the three blocks is displayed in Figure 2. The 
parameters for all final models are displayed in Table 1 
for the three point patterns. The parameter estimates are 
similar between the sample blocks. 

 
Fig. 2 –  Fitting of a soft-core model to the observed 

point patterns in sample blocks #1-3. Displayed are the 
negative log-pseudolikelihood (mpl) curves for different 

parametrizations of the soft-core models by their 

interaction parameter �. Minima (final model) are 
marked by circles. All values are scaled by 1 / max{-log 

mpli} for visual comparison. 
 
Assessment of the fitted models draws on the 

empirical and the theoretical K-functions of the 
processes, and on Monte-Carlo simulations. In most 
cases expressions for the theoretical K-function are 
available as well, and then empirical and theoretical K-
functions can be compared to see the general fit of the 
model to the data. In the Monte-Carlo approach, 
repeated simulation of a point pattern with the 
parameters from model fit yields a series of patterns 
with associated simulated empirical K-functions. These 
series provide confidence intervals for the true K-
function, given a particular point processes model fits 
the data (see Figure 3). The K-functions for models of 
CSR, SSI, Strauss and StrHC are displayed in Figure 3. 
All four models fit the data well for larger scales at h= 
50-75 m, all of them display asymptotes of CSR that the 
functions approach from below. However, at lower 
scales the K-functions exceed the confidence intervals. 
Thus, these models do not provide a satisfactory fit to 
the data; fit is particularly important at lower scales. 
Among these 4 models, the Strauss hard-core fit the data 
the best. There were significant deviations from the 
Strauss hard-core confidence intervals for distances 
under 30 m, but the deviations were of a much smaller 
magnitude than with the other three models.  However, 
there was still a significant amount of regularity that 
was not explained by this model at distances less than 
30 m. 
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Fig. 3 –  K-functions of sample block #1 for various 
point process models. Legend: CSR - homogeneous 
Poisson process, SSI - simple sequential inhibition, 

Strauss - homogeneous Strauss process, and StrHC - 
Strauss hard-core. All functions are transformed by the 
theoretical K-functions of their respective processes to 

L = K-1 - h, e.g. LCSR = �KCSR /� - h. The bold solid lines 
are the empirical K-functions, the solid (non-bold), 
horizontal line is the theoretical K-function, and the 

dotted lines correspond to the confidence intervals from 
Monte-Carlo simulation (	 = 0.1, n = 20), given the 

fitted models. 
 
The SC model (Figure 4) is the model that fits 

the data best. The K-functions in Figure 3 all provided 
evidence of strong regularity at scales less than 50 m, 
that was not accounted for by the models tested. The 
degree of regularity decreased with increasing distance. 
Therefore, we expect that the soft-core inhibition model 
will be superior because it lets the interaction 
continuously decrease with distance. The K-functions 
for all three plots are displayed in Figure 4. In all three 
cases, the empirical K-function remains within the 

confidence intervals from Monte-Carlo simulation over 
the whole range of distances. Apparently, the soft-core 
pair potential function was a feasable representation of 
the point pattern for all three image blocks. This model 
may prove useful in characterizing the point pattern of 
VLTs for other forest types and locations in Amazonia. 

 
4. DISCUSSION 

 
Very large trees in the Amazon forest are of 

utmost importance for forest structure. Because of their 
large size and dominant position in the forest, the VLTs 
can be detected by radar remote sensing, and a relatively 
simple approach of LM filtering allows us to extract 
their locations from a digital model of forest height. 
These locations form a spatial point pattern, that is 
analysed using spatial statistics. 

Exploratory statistics describe a sub-collective 
of only seven trees per hectare, that contain a huge 
fraction of the forest’s above-ground biomass. They 
form a fairly regular pattern, and have an average 
spacing of ca. 24 m (see Figure 1). Modeling of the 
spatial point patterns by Markov processes reveals a 
certain repulsion between neighboring VLTs. So, given 
one VLT, it is very improbable to find another very 
large tree close by, because individuals would inhibit 
each other. The preference of a soft-core model (SC) 
over the alternatives suggests that this repulsion is a 
function of distance; locations of very large trees are 
almost independent only at distances above ca. 29 m. 
Moreover, the repulsive dependence is shown to 
decrease smoothly with distance. Therefore, it is 
possible to find VLTs in close proximity: it is just 
extremely unlikely. 

Very large trees have been described in the 
literature as drivers of forest sucession by the 
mechanism of gap formation and regeneration in gaps 
when one of the huge individuals eventually falls 
(Brokaw, 1982). These processes, i.e. natural 
degradation and regeneration, can be deduced to happen 
at a scale of about 24 m, that corresponds to the spacing 
of the VLTs. 

 

 

 
Fig. 4 – K-functions of final model in all three sample blocks. Solid lines correspond to empirical K-functions, dotted 
lines are confidence intervals from Monte-Carlo simulation 	 = 0.1, n = 20), given the fitted soft-core model (SC). All 

functions are transformed for display purposes by the theoretical K-function under CSR to L = �KCSR /� - h.
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