LINEAR MIXING MODEL APPLIED TO AVHRR LAC DATA

BRENT N. HOLBEN¹ YOSIO E. SHIMABUKURO²

¹Code 923 NASA/GSFC, Greenbelt, MD, 20771

²INPE-Instituto Nacional de Pesquisas Espaciais Caixa Posta 515 12201-970 - São Jose dos Campos, SP, Brazil

Abstract. A linear mixing model was applied coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - $3.93\mu\text{m}$ channel was extracted and used with the two reflective channels 0.58 - 0.68 μm and 0.725 - 1.1 μm to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National Park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

Introduction

Satellite level radiances depend upon the sensor's National Oceanic characteristics and th Atmospheric Adminis radiances of the atmospheric effect constant, the radiation detected will be influenced by mixture of many different Because emphasis is being pixels) unless the target is for

omposed of a single material (pure pixel). • The radiometric characteristics of the Local Area Coverage (LAC, 1.1 Km pixels at nadir) of the characteristics and th Atmospheric Administration's e integrated sum of the (NOAA) Advanced Very High all surface Resolution Ratiometer (AVHRR) materials and atmosphere within are more affected by the mixed the instantaneous field-of-view pixel problem than finer (IFOV) of the sensor. Assuming spatial resolution satellite imagery.

surface materials (mixed placed on the LAC AVHRR data providing gobalscale

monitoring (Townshend 1992), to a surface target. of mixed increasing importance. Most to fine spatial resolution data as from Landsat Thematic Mapper (TM) for Typically used such as presented by Iverson et al. (1989) in the Midwest United States and Cross (1990) in the Southern Amazonia to estimate forest cover. Mixture modeling offers an alternative. Quarmby et al. (1992) presented a linear mixture model for crop area estimation using multitemporal AVHRR channel 1 and 2 data. They assumed that each field within a ground pixel each contributes to the signal received at the the satellite sensor by an amount that is characteristic of the cover type in that field and et al. 1986); MSS (Multispectral proportional to the area of the Scanner System) and TM data field. Also, when using multitemporal data, they assumed that the proportions did not change between images. Cross et al. (1991) Spectrometer) data (Gillespie used a linear mixing model and et al. 1990). All of the above first four channels of AVHRR to monitor tropical deforestation in Rondonia, Brazil and Ghana. Two thermal infrared channels (3 and 4) were included because they were considered to contain information for forest/ nonforest discrimination. This implies that each cover type is thermally distinct and the sensor response to the surface properties in question behaves linearly with thermal emission.

Thermal emission is governed

efforts to address the problem problem may be minimized by pixels is of using all reflective bands as is done with Thematic Mapper investigations have compared data or, as in the case of the the informatin content of AVHRR AVHRR 3.75 μm band which is a mixture of reflected and emitted energy, use only the reflective component (Kaufman and Nakajima 1992). Extraction a classification procedure is of this band is detailed in the next section.

> There are several techniques to solve the mixture problem, such as Constrained Least Squares (CLS), Weighted Least Squares (WLS), Quadratic Programming (QP) presented by Shimabukuro (1987) and the unmixing methods developed at University of Washington (Smith et al. 1985, Adams et al. 1986, Adams et al. 1989). These techniques have been applied to high resolution data sets such as Viking images of Mars (Adams (Adams and Adams 1984, Adams et al. 1990, Shimabukuro 1987); and AVIRIS (Airborne Visible/Infrared Imaging techniques produce similar results (Shimabukuro 1987) and their use is usually dictated by an investigators personal preference.

We present a technique to apply mixture models to coarse resolution AVHRR data to generate vegetation, soil, and shade fraction images from the proportion of component within the pixels. Because of our familiarity with the method, we chose to apply the Constrained Least Squares by Planck's equation, therefore (CLS) method (Shimabukuro and linear model may not Smith 1991) to an AVHRR image ately represent the covering the centralwestern accurately represent the covering the centralwestern satellite radiometric response region of Brazil. The

validation of the model for this kind of data will be performed by comparing the resulting fraction images with the classification derived from coincident Landsat/TM and AVHRR NDVI images.

Study Site

The study site is located between 17° 50′ to 18° 20′ south latitude and 520 40' to 53° 20' west longitude on the border of Goias, Mato Grosso and Mato Grosso do Sul States. site includes the Emas National Park comprising about 131,000 hectares in which the "cerrado" vegetation well represented (Redford 1985, IBDF/FBCN 1978, Pinto 1986). Located on the watershed Located on between the La Plata and Amazon River basins, Emas Park is on the western edge of the Central Brazilian Plateau, adjacent to the Pantanal (Redford 1985). It offers a good sample of the Planalto habitats, including a number of small watercourses, the sources of two important rivers, riverine gallery forest and marshes, large areas of grassland (the "campos"), and some open woodland (the
"cerrados") consisting of small thinly distributed trees seldom more than three meters (Erize 1977). The surrounding land of the Park is used for agriculture and cattle grazing. The park is commonly affected by uncontrolled fires during the annual dry season (Shimabukuro 1991). The rest of the study site is covered by "cerrado" vegetation types.

Method

AVHRR 3.75 μm Reflective Component

The AVHRR 3.75 μ m band signal is a mixture of thermal and reflected energy. Typically the latter represents less than 10% of the signal for bare soil and urban features and less than 3 percent for vegetation (Kerber and Schutt 1986, Schutt and Holben 1991, Kaufman and Remer 1993). The reflective component may be approximated by assuming the emitted energy (brightness temperature) in the adjacent thermal band (10.5 to 11.5 μ m) is related to the emitted energy in the $3.75\mu m$ band at ambient temperature through the Planck Function as (Kaufman and Nakajima 1992):

$$L_3 = L_{3\rho} + L_{3\varepsilon} \tag{1}$$

where:

 L_3 = Total radiant energy measured by the satellite at 3.75 μm $L_3\,\rho$ = The reflective energy at 3.75 μm $L_3\,\epsilon$ = The emissive energy at 3.75 μm

The reflective and emitted components may be expanded according to:

$$L_3 = \rho_3 F_{0\mu0}/\pi + R_3 (T_4) * (I-\rho)$$
 (2)

where:

 ho_3 = Reflectance in the 3.75 μ m band Fo = 3.75 band solar irradiance at the bottom of the atmosphere μ_0 = cosine of the solar zenith angle $ho_3(T_4)$ = Emitted radiance at 3.75 μ m using the 11.0 μ m brightness computed with the Planck Function

Solving for $_3$:

$$\rho_3 = (L_3 - R_3(T_4)) / (F_0 u_0 / \pi_- R_3(T_4))$$

This formulation ignores the differential atmospheric transmission in both bands and assumes the target surface is flat and the satellite view direction is nadir.

The digital numbers from the satellite data are converted to

brightness temperatures using the calibration coefficients and Planck Function coefficients given in the NOAA-9 users Handbook (Kidwell 1988). The parameters and variables used for the computation of the R₃ and L₃ radiances are given in Table 1.

Table 1: The Planck Function parameters and constants for the $\ensuremath{\text{R}}_3$ and $\ensuremath{\text{L}}_3$ radiance computations

Rad	Temp	λ.	C1	C2	FOHOM
L_3	T_3	$3.75 \mu \mathrm{m}$	37413	14388 14388	F ₀ μ ₀ /π 0.0008
R_3	T_{A}	$3.75 \mu m$	37413	14388	0.0008

Linear Mixture Model

A linear relation was used to represent the spectral mixture of aterials within a resolution. element. The response of each pixel in spectral wavelength was taken as a linear combination of the responses of each component assumed to be in the mixed target. Thus each image pixel, which can assume any value within the image gray scale, contains information about the proportion and the spectral response of each component within the ground resolution unit. Hence, if the proportions of the components are known for any multispectral image, then spectral responses of e components can be the these components obtained. Similarly, if the spectral response of the components are known, then proportion of each component in the mixture can be estimated. The basic mixture model may be formulated as:

$$r_i = \sum_{aij} x_j + e_i$$
 (4)
where:

r_i = measured

satellite

response for a pixel in spectral band i

a; j = spectral response of mixture component, j, for spectral band i

x; = proportion of mixture component, j, for a pixel
e; = the error term for spectral band i.

Subject to:

 $\Sigma_{xi} = 1$ and $x_i \ge 0$ for all.

The Constrained Least Squares (CLS) method estimates the proportion of eac component inside the pixel by minimizing the sum of squares of the errors. A linear constraint is added, since the sum of the proportions for any resolution element must be one and the proportion values must be nonnegative. This method was developed for three and four components assumed to be inside the pixel (Shimabukuro 1987). In this study, the CLS method is discussed assuming three components within the pixel. In addition, the error image for each spectral band and the mean error image were generated. They computed for each pixel as follows:

ERROR = SQRT $(r_i - \sum_{a_{ij}} x_j)^2 = e_i$, and MEAN ERROR = $(\sum_{a_i})/m$

where

m = number of spectral bands.

Approach

The CLS method described above was applied using TM and AVHRR acquired on July 29, 1988. The imagery, centered on Emas Park, covers National approximately 100 by 100 km and by 780 km for TM and AVHRR respectively. For this study, only TM channels 3 $(0.63-0.69\mu\text{m})$, 4 $(0.76-0.90\mu\text{m})$, 5 $(1.55-1.75\mu m)$ were available. The AVHRR, channels used were 1 (0.58- $0.68\mu m$), 2 $(0.725-1.1\mu m)$, and the reflective component of channel 3 (3.55-3.93 μ m).

The CLS technique requires the pure spectral responses for mixture component. The selection of the "pure pixel" each mixture component in the TM scene was evaluated analyzing the mean error mayes described previous section in the previous section and analyzing the pixels by violate the constraint, i.e., pixels with values greater than one or less than zero. The spectral responses for vegetation, soil, and shade for wer estimated regressing each AVHRR channel against the corresponding pixels in the TM fraction images (Richardson et al. 1975). The spectral responses regression coefficients and used as inputs used as inputs for the CLS model. The derived fraction images were compared to the TM results, and related to normalized difference

vegetation index NDVI images for model validation. The model performance was also evaluated by analyzing the error images.

Results and Discussion

The unsupervised classification of the TM scene showed the complexity of cover types within the region of Emas National Park. unsupervised classifier, based on K-means, identified clusters and rearranged into the following 7 classes according to ground truth reported by Shimabukuro et al. (1991): Water and burned "cerrado", areas, "campo cerrado", "campo limpo", bare soil 1, bare soil 2, and cut areas (Fig. 1). These classes were used to identify areas with most pure pixels of vegetation, bare soil shade. The spectral response for shade was searched in water and burned areas classes based on similar low spectral responses (Richardson et al. 1975, Adams et al. 1986, Shimabukuro 1987, Gillespie et al. 1990). The spectral responses for vegetation and soil were searched inside the "cerrado" and cut classes, respectively.

The coefficient of determination, r2, and spectral responses the components for channels are presented in Table 2. The vegetation, soil, shade fraction images generated using these spectral responses in mixture model for AVHRR data. The advantage of the fraction images is that they contain physical information, i.e., amount of each component within the pixel. For example, in figure 2B and 2C, the light

gray means that a pixel has bare soil, respectively. high amount of vegetation and

Table 2: Spectral responses for vegetation, soil, and shade for AVHRR channels estimated regressing with the TM fraction images.

Channel	r ²	Vegetation	DN Soil	Shade
1 2	78.7 93.3	21.8	27.8 42.2	11.3
3Refl	78.2	5.9	8.4	Ų. U

n = 50

There was a visual similarity of vegetation fraction and NDVI images (Fig. 2A and B). The NDVI values were well correlațed by the fraction images $(r^2 =$ 95.2 and 90.0 for TM (n=75) and AVHRR (n=90), respectively). Also there is good agreement between the higher soil pixel values and the corresponding bare soil clusters from the unsupervised classification. Note that cloud screening was not performed on these data sets yet they are easily detected in the vegetation, soil and mean error images (Fig 2B, C, and D) as a vertical line of light colored cell aggregates.

Figures 3, 4 and 5 show the NDVI, vegetation and soil fraction images, respectively, derived from AVHRR data over a large area (704 by 704 pixels) around the study site. Again the similarity between NDVI and vegetation fraction shows the potential of extending the linear mixture technique well beyond the boundaries of the defining components using coarse spatial resolution data. As previously, the stated between disagreement the cloudy these images for pixels indicates a cloud screening algorithm must

be employed for most large area investigations. In addition, the soil fraction image seems to be useful for deforestation studies since it contains information about bare soil proportion within the pixels.

Conclusion

In the example cited, reflective part of channel 3 shows ample sensitivity various covertypes to provide a suitable band mixture modeling. Further assessment of the influence of the atmospheric transmission in this band is required to fully benefit from its reflective properties. This may require incorporation ancillary data.

The vegetation fraction in very image was agreement with the NDVI image, which shows the amount of green vegetation. Also, the fraction image containing information about vegetation areas, seems to have a great potential for tropical studies deforestation resolution satellite coarse data. In addition, the shade image contains information that can explain the vegetation index response, especially for the tropical forest which from must the multilayer structure has a high amount of shade.

As the information contained in the AVHRR remote sensing resolution elements are mostly a mixture of several materials, the linear mixing models appear to be a useful tool for image analysis. Further quantitative assessment of the pixel proportions is required to fully interpret the results from mixture models. Rigorous evaluation of the technique beyond the region of component definition is required to apply approach to coarse resolution data such as AVHRR.

Acknowledgement

WP wish to thank Kashka Donaldson and Wayne Newcomb for their assistance at the Global Inventory Mapping Monitoring (GIMMS) Laboratory. Our thanks to John Schutt and Yoram Kaufman for their useful conversations regarding the $3.75\mu\text{m}$ band. During preparation of this manuscript, the Coauthor was serving as a Visiting Scientist at NASA Flight Goddard Space Center under the auspices of the Universities Space Research Association (USRA).

References

- ADAMS, J.B., and ADAMS, J.D., 1984, Geologic mapping using Landsat MSS and TM images: removing vegetation by modeling spectral mixtures. Proceedings of the Third Thematic Conf. Remote Sensing for Expl. Geol., ERIM, pp 615-622.
- ADAMS, J.B., KAPOS, V., SMITH, M.O., ALMEIDA FILHO, R., GILLESPIE, A.R., and ROBERTS, D.A., 1990, A new Landsat view of land use in

- Amazonia. Proceedings of the International Symposium on Primary Data Acquisition, ISPRS, Manaus, Brazil, pp 177-185.
- ADAMS, J.B., SMITH, M.O., and GILLESPIE, A.R., 1989, Simple models for complex natural surfaces: a strategy for the hyperspectral era of remote sensing. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS'89) / 12th Canadian Symposium on Remote Sensing, 1, 6-21.
- ADAMS, J.B., SMITH, M.O., and JOHNSON, P.E., 1986, Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 91, 8098-8112.
- CROSS, A.M., 1990, AVHRR as a data source for a GIS: deforestation in Amazonia. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS'90), Washington D.C., 1, 223-226.
- CROS, A.M., SETTLE, J.J., DRAKE, N.A., and PAIVINEN, R.T.M., 1991, Subpixel measurement of tropical forest cover 'using AVHRR data. International Journal of Remote Sensing, 12, 1119-1129.
- ERIZE, F., 1977, Brazil's finest National Park. Oryx, 13, 457-462.
- GILLESPIE, A.R., SMITH, M.O., ADAMS, J.B., WILLIS, S.C., FISCHER, A.F.III, and SABOL, D.E., 1990, Interpretation of residuals images: spectral mixture analysis of AVIRIS images, Owens Valley, California. Proceedings of

- the Airborne Science Workshop: AVIRIS, JPL, Pasadena, CA.
- IBDF/FBCN (Instituto Brasileiro de Desenvolvimento Florestal/Fundação brasileira para Conservacao da Natureza), 1978, Plano de Manejo Parque Nacional de Emas. IBDF/FBCN, Brasilia, 158p.
- IVERSON, L.R., COOK, E.A., and GRAHAM, R.L., 1989, A technique for extrapolating and validating forest cover across large regions: Calibrating AVHRR data with TM data. International Journal of Remote Sensing, 10, 1805-1812.
- KAUFMAN, Y.J., and NAKAJIMA, T., 1992, Effect of Amazon smoke on cloud microphysics and albedo. Submitted to J. Appl. Meteor., Squires Special Issue.
- KAUFMAN, Y.J., and REMER, L., 1993, Remote sensing of vegetation in the mid-IR: the 3.75 channel, (in preparation).
- KERBER, J.A., and SCHUTT, J.B., 1986, Utility of AVHRR Channels 3 and 4 in Land-Cover Mapping. Photogrammetric Engineering and Remote Sensing, 52, 1877-1883.
- KIDWELL, K.B., 1988, NOAA polar orbiter data (TIROSN, NOAA-6, NOAA-7, NOAA-8, NOAA-9, NOAA-10 and NOAA-11) users guide. (National Oceanic and Atmospheric Administration: Washington, DC 20233).
- PINTO, J.H.D., 1986, Utilizacao comparativa de processos analogico e digital no tratamento de dados MSS-

- Science Landsat para estudos dos JPL, Parques Nacionais do Brasil. Tese de mestrado em Sensoriamento Remoto, Sao Jose dos Campos, INPE (INPE-clvimento 4011 TDL/240).
 - QUARMBY, N.A., TOWNSHEND, J.R.G., SETTLE, J.J., WHITE, K.H., MILNES, M., HINDLE, T.L., and SILLEOS, N., 1992, Linear mixture modelling applied to AVHRR data for crop estimation. International Journal of Remote Sensing, 13, 415-425.
 - REDFORD, K.H., 1985, Emas National Park and the plight of the Brazilian cerrados. Oryx, 29, 210-214.
 - RICHARDSON, A.J., WIEGAND, C.L., GAUSMAN, H.W., CUELLAR, J.A., and GERBERMANN, A.H., 1975, Plant, soil and shadow reflectance components of row crops. Photogrammetric Engineering and Remote Sensing, 41, 1401-1407.
 - SCHUTT, I.B., and HOLBEN, B.N.,
 1991, Estimation of
 Emittances and
 Surface Temperatures from
 AVHRR data. Proceedings of
 the International
 Geoscienc and Remote
 Sensing Symposium
 (IGARSS'91), Espoo, Finland,
 3, 1179-1181.
 - SHIMABUKURO, Y.E., 1987, Shade images derived from linear mixing models of multispectral measurements of forested areas. Ph.D. Dissertation, Colorado State University, Fort Collins, CO.
 - SHIMABUKURO, Y.E., and SMITH, J.A., 1991, The leastsquares mixing models to generate fraction images derived from remote sensing multispectral data. I.E.E.E. Transactions

on Geoscience and Remote mean error images derived from Sensing, GE-29, 16-20.

SHIMABUKURO, Y.E., LEE, D.C.L., and SANTOS, J.R., 1991, Multisensor remote sensing data and GIS techniques for monitoring preservation case study. areas: a Proceedings International Twentyfourth Symposium on Remote Sensing of Environment, Rio de Janeiro, Brazil.

SHIMABUKURO, Y.E., SANTOS, J.R., LEE, D.C.L., and PEREIRA, M.C., 1991, Remote sensing data for monitoring and evaluating burned areas: case of Emas National Park (GO). Pesquisa Agropecuaria Brasileira, 26, 1589-1598.

SMITH, M.O., JOHNSON, P.E., and ADAMS, J.B., 1985, Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis. Journal of Geophysical Research, 90, 792-804.

TOWNSHEND, J.R.G., 1992, Improved Global Data for Land Applications, Aproposal for a new High Resolution Data Set. Global IGPB, Change, Report No. 20, The International Geosphere-The Biosphere Programme: A Study of Global Change (IGBP) of the International Council of Scientific Unions (ICSU) Stockholm, 87p.

Figure Captions

Figurel: Land cover classification derived from Landsat TM data using unsupervised classification (Kmeans).

Fig. 2: (A) NDVI, (B) vegetation, (C) soil and (D)

AVHRR data over the study site.

Fig. 3: NDVI image derived from AVHRR data covering a large area around the study site.

Fig. 4: Vegetation fraction image derived from AVHRR data covering a large area around the study site.

Fig. 5: Soil fraction image from AVHRR derived data covering a large area around the study site.







