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Abstract. A 1linear mixing model was applied to
coarse spatial resolution data from the NOAA Advanced Very
High Resolution Radiometer. The reflective component of the

3.55 = 3.93um channel was extracted and used with the
two reflective channels 0.58 - 0.68um and 0.725 - 1.1 um- to
run a Constraine Least Squares model to generate
vegetation, soil, and shade fraction images for an area in
the Western region of Brazil. The Landsat Thematic

Mapper data covering the Emas National Park region was used
for estimating the spectral response of the mixture
components and for evaluating the mixing model results. The
fraction images were compared with an
unsupervised classification derived from Landsat TM data
acquired on the same day. The relationship between the
fraction images and normalized difference vegetation index
images show the potential of the unmixing techniques

when using coarse resolution data for global studies.

Introduction

Satellite level radiances
depend upon the sensor’s
characteristics and th
e integrated sum of the
radiances of all surface

materials and atmosphere within
the instantaneous field-of-view

(IFOV) of the sensor. Assuming
the atmospheric effect is
constant, the radiation

~detected will be influenced by
a mixture of many different
surface materials (mixed
pixels) wunless the target is

Anais do VII SBSR, 1993

omposed of a single material
(pure pixel). * The
radiometric characteristics of
the Local Area Coverage (LAC,
1.1 Km pixels at nadir) of the
National Oceanic and
Atmospheric Administration’s
(NOAA) Advanced Very High
Resolution. Ratiometer (AVHRR)
are more affected by the mixed

pixel problem than finer
spatial resolution satellite
imagery.

Because emphasis is being

placed on the LAC AVHRR data
for providing gobalscale

102



monitoring (Townshend  1992),
efforts to address the problem
of mixed pixels is of
increasing importance. Most
investigations have compared
the. informatin content of AVHRR
data to fine spatial
resolution data as from Landsat

Thematic Mapper (TM) for
example. . Typically
a classification procedure is
used such as = presented by
Iverson et al. (1989) in the

Midwest United States and Cross
(1990) in the Southern Amazonia
to estimate forest cover.
Mixture modeling offers an
alternative. Quarmby et al.
(1992) presented = a linear
mixture model for crop area
estimation using multitemporal
AVHRR channel 1 and 2 data.
They assumed that each
field within a ground pixel
contributes to the signal
received at the
satellite sensor by an amount
that is characteristic of the
cover type in that field and
proportional to the area of the
field. Also, when using
multitemporal data, they
assumed that the proportions
diad not change between
images. Cross et al. (1991)
used a linear mixing model and

the first  four channels. of
AVHRR to monitor tropical
deforestation in Rondonia,
Brazil and Ghana. Two thermal
infrared channels (3 and 4)
were included Dbecause they
were considered to contain
information for forest/

nonforest discrimination. This
implies that each cover type is
thermally - distinct and ° the
sensor response to the surface
properties in question behaves
linearly with thermal émission.

Thermal emission is governed

by Planck’s equation, therefore
a linear model may- not .
accurately represent the

satellite radiometric response
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to a surface ‘target. This
problem may be minimized by
using all reflective bands as

is done with Thematic Mapper
data or, as in the case of the
AVHRR 3.75 um band which is a
mixture of reflected and
emitted energy, wuse only the
reflective ~ component (Kaufman
and Nakajima 1992). Extraction

of this band is detailed in the
next section.

There are several techniques
to solve the mixture problen,
such as Constrained Least
Squares (CLS), Weighted Least
Squares (WLS), ' Quadratic
Programming (QP) presented by
Shimabukuro (1987) and the
unmixing methods developed at
University of Washington . (Smith
et al. 1985, Adams et al. 1986,
Adams et al. 1989). These
techniques have been applied to
high resolution data sets such
as Viking images of Mars (Adams
et al. 1986);MSS (Multispectral
Scanner System) and TM data
(Adams and Adams 1984, Adams
et al. 1990, Shimabukuro 1987);
and AVIRIS (Airborne
Visible/Infrared Imaging
Spectrometer) data (Gillespie
et al. 1990). All of the above
techniques produce similar
results (Shimabukuro 1987) and
their use 1is usually dictated
by an investigators personal
preference.

We present a technique to
apply mixture models to coarse
resolution’ AVHRR data to
generate vegetation, so0il, and
shade fraction images from
the proportion of each
component within the pixels.
Because of our familiarity with
the method, we chose to apply
the Constrained Least Squares-
(CLS) method (Shimabukuro and
Smith 1991) to an AVHRR image
covering the centralwestern
region of Brazil. The
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validation of the model for
this kind of data will Dbe
performed by comparing the
resulting fraction images

with the classification derived
from coincident Landsat/TM and
AVHRR NDVI images.

Study Site
The study site is located
between 17° 50’ to 18° 20~

south latitude and 52° 40’ to
53° 20’ west longitude on the
border of Goias, Mato Grosso
and Mato Grosso do Sul States.
The site 1includes the Emas
National Park comprising about
131,000 hectares in which the

"cerrado" vegetation is
well represented (Redford 1985,
IBDF/FBCN 1978, Pinto 1986) .
Located on the watershed

between the La Plata and Amazon
River basins, Emas Park is on
the western edge of the Central
Brazilian Plateau, adjacent to
the Pantanal (Redford 1985). It
offers a good sample of the
Planalto habitats, including a
number of small watercourses,
the sources of two important
rivers, riverine gallery forest
and marshes, large areas of
grassland (the "campos"), and
some open woodland (the
"cerrados") consisting of
small thinly distributed trees
seldom more than three meters

high (Erize . 1977). The
surrounding land of the Park is
used = for agriculture and
cattle grazing. The park is
commonly affected by
uncontrolled fires during
the annual dry season

(Shimabukuro 1991). The rest of
the study site is covered by
"cerrado" vegetation types.

Method

AVHRR 3.75um Reflective
Component '
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The AVHRR 3.75um band signal is
a mixture of thermal and
reflected energy. Typically the
latter represents less than 10%
of the signal for bare soil and
urban features and less than 3

percent for green
vegetation (Kerber and Schutt
1986, Schutt and Holben 1991,

Kaufman and Remer 1993). The
reflective component may be
approximated by assuming the
emitted energy (brightness
temperature) in the adjacent
thermal band (10.5 to 11.5um)
is related to the emitted

energy in the 3.75um band at
ambient temperature through the
Planck Function as follows
(Kaufman and Nakajima 1992):

Ly = L3P + L36 (1)

where:

L = Total radiant energy
measured by the satellite at
3.75 um

Lyp = The reflective energy at
3.75 um

Lyg¢ = The emissive energy at
3.75 um

The reflective and emitted
components may be expanded

according to:

Ly = p3Fouokt R3(Tg)*(1-p) (2)

where:

*
p 3 = Reflectance in the 3.75um
band
Fo = 3.75 band solar
irradiance at the bottom of

the atmosphere
Ko = cosine of the solar zenith
angle

Ry (T4y) = Emitted radiance at
3.75um using the 11.0um
brightness computed with the

Planck Function
Solving for 4:

R3(T,4)) (3)
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This formulation ignores the
differential atmospheric
transmission in both bands and
assumes the target surface is
flat and the satellite
view direction is nadir.

The digital numbers from the
satellite data are converted to

brightness temperatures using
the calibration <coefficients
-and Planck
Function coefficients given in
the NOAA-9 users Handbook
(Kidwell 1988). The parameters
and variables used for the
computation of the R4y * and

L; radiances are given in Table
1. ‘

- Table 1: The Planck Function parameters and constants for the Ry

and L, radiance computations

ri =2aij*xy * ey (4)
where:
satellite

ry = measured
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Rad Temp A C1 c2 F ol o /A
L3 T3 3.75um 37413 14388 0.0008:
R3 "I‘4 3.75um 374113 14388 0.0008
: response for a pixel in
spectral band i
Linear Mixture Model ajy = spectral response of
mixture component j, for
A linear relation was used to spectral band i
represent the spectral mixture = proportion of mixture
of aterials within a resolution cgmponent, j, for a pixel
element. The response of each e; = the error term for
pixel in any spectral band i.
spectral wavelength was taken
as a 'linear combination of the Subject to:
responses of each component
assumed to be in the mixed Exj = 1 and XJE:O for all.
target. Thus each image pixel,
which can  assume any value The Constrained Least
within the image gray scale, Squares (CLS) method estimates
contains information about the the proportion of eac component
proportion and the spectral inside the pixel by minimizing
response of each. component the sum of squares of the
within the ground resolution errors. A linear constraint is
unit. Hence, if the proportions added, since the sum of the
of the components are known for proportions for any resolution
‘any multispectral image, then element must be one and the
the spectral responses of proportion - values must
these conmpornients can be be nonnegative. This method was
obtained. Similarly, 'if the developed for three and four
spectral response of components assumed to be inside
the components are known, then the pixel (Shimabukuro 1987).
the proportion of each' In this study, the CLS method
component in the mixture can be 1is discussed assumlng three
estimated. The basi¢c mixture components within the pixel
model may be formulated as: In addition, the error image

for each spectral band and the
mean error image

were ' generated. They are
- computed for ‘each pixel as
follows:
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ERROR =
ey, and
MEAN ERROR = (Ze;)/m

SQRT (r; - Zaj

where

m = number of spectral bands.

Approach

The CLS method described above.
was applied using TM and AVHRR

data

acquired on July 29, 1988. The
imagery, centered on Emas
National ; Park, covers
approximately 100 by 100 km and
780 by 780 km for TM and
AVHRR respectively. For this
study, only TM channels 3
(0.63-0.69um), 4 (0.76-0.90um),
and 5 (1.55-1.75um) were
available. The AVHRR,
channels used were 1 (0.58-
0.68um), 2 (0.725-1.1lum), and

the reflective component of
channel 3 (3.55-3.93um).

The CLS technique requires the

pure spectral responses for
each mixture component. The
selection of the '"pure pixel"
for each mixture component

in the TM scene was evaluated

by analyzing the mean error
images described in the
previous section and by
analyzing the pixels that
violate the constraint, i.e.,

pixels with values greater than
one or less than zero. The
spectral responses for
vegetation, soil, and shade for
AVHRR wer estimated by
regressing each AVHRR channel
against the corresponding
pixels in the ™™ fraction
images (Richardson et al.
1975) . The spectral responses
were derived from the
regression coefficients and
used as inputs for the CLS
model. The derived fraction
images were compared to the TM
results, and related to
normalized difference
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index NDVI
for model validation. The
model performance was also
evaluated by ahalyzing
the error images.

vegetation images

Results and Discussion

The unsupervised classification

of the TM scene showed the
complexity of cover types
within the region of Emas
National Park. The
unsupervised classifier, based
on K-means, identified 13
clusters and were

rearranged into the following 7

classes according to ground
truth reported by Shimabukuro
et al. (1991): Water and burned
areas, "cerrado",

"campo cerrado", '"campo limpo",

bare soil 1, bare soil 2, and
cut areas (Fig. 1) . These
classes were used to identify
areas with most pure. pixels
of vegetation, bare soil and
shade. The spectral response

for shade was searched in water
and burned areas classes based
on similar low spectral
responses (Richardson et al.
1975, Adans et al. 1986,
Shimabukuro 1987, Gillespie et
al. 1990) . The spectral
responses for vegetation and
soill were searched inside the
"cerrado" and cut areas
classes, respectively.

The coefficient of
determination, r2, and the
spectral responses of
the components. for AVHRR
channels are presented in Table

2. The vegetation, soil, and
shade fraction images were
generated using these
spectral responses in the

mixture model for AVHRR data.
The advantage of the fraction

images is that they contain

physical information, i.e.,

amount of each component within

the pixel. For example, in

figure 2B and 2C,  the light
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gray means that a pixel has
high amount of vegetation and

bare soil, respectively.

Table 2: Spectral responses for vegetation, soil, and shade for
"AVHRR channels estimated regressing with the TM fraction images.

Channel r2

Vegetation

1 78.7
2 93.3
3Refl 78.2

21.8
46.5
5.9

n = 50

There was a
similarity of - vegetation
fraction and NDVI images
(Fig. 2A and B). The NDVI
values were well correlated
by the fraction images (r“ =
95.2 and 90.0 for T™ (n=75) and
AVHRR (n=90) , respectively).
Also there is good agreement
between the higher soil pixel

visual

values and the corresponding
bare soil clusters  from the
unsupervised ' classification.

Note that cloud screening was
not performed on these data
sets yet they are easily
detected in the vegetation,
soil and mean error images (Fig
2B, C, and D) as a vertical
line of 1light <colored <cell
aggregates.
Figures 3, 4 and 5 show the
NDVI, vegetation and soil
fraction = images, respectively,
derived from AVHRR data over a
large area (704 by 704
pixels) around the study site.

Again the similarity between
NDVI and vegetation fraction
shows the potential of
extending the 1linear mixture
technique well beyond the
boundaries of the defining
components using coarse
spatial resolution data. As
stated previously, the
disagreement between
these images for the cloudy
pixels indicates a cloud
screening algorithm must
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DN

Soil Shade
27.8 11.3
42.2 10.3
8.4 0.0

be employed for most large area
investigations. In addition,
the so0il fraction image seems
to be useful for deforestation
studies since it contains
information about bare soil
proportion within the pixels.

Conclusion

In the example cited, the
reflective part of channel 3
shows ample sensitivity to
various covertypes to provide a
suitable band for
mixture modeling. Further

assessment of the influence of
the atmospheric transmission in
this band is required to fully

benefit from its
reflective properties. This may
require incorporation of
ancillary data.

The vegetation fraction
image was in very good

agreement with the NDVI image,
which shows the amount of green

vegetation. Also, the soil
fraction image containing
information about non

vegetation areas, seems to have
a great potential for tropical

deforestation  studies using
coarse resolution satellite
data. In addition, the shade

image contains information that
can explain the vegetation
index response, especially for
the tropical forest which from
the multilayer structure has a
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high amount of shade.

As the information contained
in the AVHRR remote sernsing
resolution eleméents are mostly
a mixture of several materials,
the linear mixing models appear
to be a useful tool for image
analysis. Further
guantitative assessment of the
pixel proportions is required
to fully interpret the results
from mixture models. -Rigorous
evaluation of the technique
beyond the region of component

definition is required to apply

the approach to coarse
resolution data such as AVHRR.
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Figure Captions
Figurel: Land cover
classification derived from
Landsat ™ data using

unsupervised classification (K-
means) .

Fig. 2:
vegetation,

(A)
(C)

NDVI,
soil and

(B)
(D)
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mean error images derived from
AVHRR data:over the study site.

Fig. 3: NDVI image derived from
AVHRR data - covering a large
area around the study site.

fraction

Fig. 4: Vegetation
image derived from AVHRR data
covering a large area around
the study site. :
Fig. 5: Soil fraction image
derived from AVHRR data

covering a large
the study site.

area around
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