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ABSTRACT

This paper is an introduction to some of the potential uses of
hyperspectral data for ecosystem analysis. The examples given
are derived from a digital dataset acquired over a sub-boreal
forest in central Maine in 1990 by the NASA-JPL AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer). The forest area, in
International Paper’s Northern Forest, is comprised of mixed
communities of hardwood and conifer tree species. The AVIRIS
instrument gathers data from 400 to 2500 nm in 224 channels at
bandwidths of approximately 10 nm. As a preview to the uses of
hyperspectral data we have extracted several products from this
dataset. They range from the traditional false color composite
made from simulated Thematic Mapper bands and the well known
normalized difference vegetation index to much more exotic
products such as fractions of vegetation, soil and shade based on
linear spectral mixing models and estimates of the leaf water
content at the landscape level derived using spectrum-matching
techniques. Our research and that of many others indicates that
the hyperspectral datasets carry much important information which
is only beginning to be understood. This analysis gives an
initial indication of the utility of hyperspectral data. Much
work still remains to be done in algorithm development and in
understanding the physics behind the complex information signal
carried in the hyperspectral datasets. This work must be carried
out to provide the fullest science support for high spectral
resolution data to be acquired by many of the instruments to be
launched as part of the Earth Observing System program in’ the
mid-1990’s.

INTRODUCTION

Current efforts in ecosystem analysis and remote sensing are
focussed on the understanding of ecological pattern and process
across a range of scales from local to those at the landscape and
even global level. These efforts are meant to help in the
evaluation and management of all aspects of global change, and as
such, rely heavily on remotely sensed data for change detection
and parameterization of ecological models (Levine et al., 1992).
Model parameterization is part and parcel of the scaling effort.
Since resources are limited, the research community has
insufficient time and manpower to make the synoptic ecological
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measurements required for global change assessment, but through
the clever use of ground measurement, remotely sensed data and
appropriate transforming algorithms, much ecologically useful
information can be extracted from satellite and airborne
instrument platforms. This paper presents an initial assessment
of the applicability of hyper-spectral optical image datasets for
ecological research, based on first generation products from the
aircraft-borne AVIRIS instrument.

AVIRIS DATASET

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS)
is an Earth-observing imaging spectrometer designed, built and
operated by the National Aeronautics and Space Administration’s
(NASA) Jet Propulsion Laboratory (JPL). This instrument uses
scanning optics and four spectrometers to image a 614 pixel swath
simultaneously in 224 contiguous spectral bands from 400 to 2450
nm. Specific AVIRIS instrument parameters are:

IFOV: 1 mrad

Ground resolution: 20 m at 65000 feet
Total scan angle: 30 degrees

Swath width: 10.6 km at 65000 feet
Spectral coverage: 400 to 2450 nm
Spectral interval: ca. 10 nm
Pixels/scan line: 614

Number spectral bands: 224

Digitization: 10 bits

Data rate: 17 Mbps

Depending on the request, a variety of AVIRIS data products can
be provided by JPL including uncalibrated and calibrated at-
sensor radiance data. These data are available for many types of
terrain for the U.S. and foreign research site where the
instrument has been flown.

STUDY SITE

The dataset presented in this investigation was acquired as part
of the Forest Ecosystem Dynamics Project [FED], which is an
excellent example of the types of integrative research now
underway that combine strong components of field research, remote
sensing and geographic information systems within a modeling
framework. The FED Project is a collaborative research effort of
NASA's Goddard Space Flight Center, Biospheric Sciences Branch
and several Universities and other agencies (see Williams et al.
1993) . FED has been the site of a NASA Multiple Aircraft
Campaign [MAC]; an integrated set of extensive measurement
activities which coordinate the acquisition of data from ground
measurements, atmospheric sounding and airborne remote sensing
platforms bearing instrumentation for measurements across the
electromagnetic spectrum. MAC’s are intensive efforts that focus
state-of-the-art instruments and methodologies at the landscape
scale for ecological research.
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The FED study site is located approximately 40 km north of
Bangor, Maine near the town of Howland, in the extreme northeast
of the continental U.S. It is located within International Paper
Company’s Northern Experimental Forest. The site consists of a
relatively fragmented mixture of hardwood and conifer-dominated
stands, small plantations of conifers, multi-generation clearings
as well as large natural forest stands that have not been
disturbed for many years. The natural stands in this northern
forest to boreal transition zone are predominantly hemlock-
spruce-fir, hemlock-hardwood and aspen-birch mixtures.
Topographically the region varies from flat to gently rolling,
with a maximum elevation change of less than 68 m (Ranson and
Sun, 1992). There are some bogs and wetlands in the central
portion of the forest. The soil varies from well drained to very
poorly drained. A 25 m walk-up tower housing meteorological
instruments is located near the center of the site (Chauhan et
al., 1991).

IMAGE PROCESSING

Image Data for this Analysis - The AVIRIS image utilized for this
study was acquired on September 8, 1990 over Howland Forest in
central Maine as part of the FED MAC. The day was
extraordinarily clear, resulting in the acquisition of an
excellent dataset. A radiometrically corrected 16 bit integer
at-sensor radiance data product was provided to us by JPL and
utilized for this analysis.

Atmospheric Correction/Reflectance - A limitation to the direct
utilization of at-sensor radiance data 1s the degradation of the
signal by atmospheric scattering and absorptance. These
atmospheric effects limit the analysis of surface characteristics
as they vary through time and space.

Solar radiation on the Sun-surface-sensor ray path is subject to
absorption and scattering by the atmosphere and the surface.
Approximately half of the 0.4-2.5 um region is affected by
atmospheric gas absorptions. In order to infer the surface
reflectances from AVIRIS data, accurate correction of atmospheric
absorption and scattering effects is necessary. The operational
method developed by Gao et al. (1993) is used to remove
atmospheric effects from the AVIRIS data. In this method, the
integrated water vapor amount on a pixel-by-pixel basis is
derived from the 0.94-um and 1.14-um water vapor absorption
features. The transmission spectrum of water vapor (H20), carbon
dioxide (C02), ozone (O3), nitrous oxide (N20), carbon monoxide
(CO), methane (CH4), and oxygen (O2) in the 0.4-2.5 um region is
simulated based on derived water vapor value, the solar and the
observational geometry, and through use of narrow band spectral
models. The scattering effect due to atmospheric molecules and
aerosols is modeled with the 5§ computer code (Tanre et al.,
1986). The AVIRIS radiances are divided by solar irradiances
above the atmosphere to obtain the apparent reflectances. The
surface reflectances (apart from multiplicative factors) are
derived from the apparent reflectances using the simulated
atmospheric gaseous transmittances and the simulated scattering
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data. The multiplicative factors depend on the slopes and aspects
of the pixels being viewed.

DATA EXTRACTION FOR HIGH SPECTRAL RESOLUTION DATA

Techniques for Retrieval of Equivalent Water Thickness of
Vegetation - The determination of water status and foliar
chemistry of vegetation canopies from spectral remote sensing
data is a major goal in terrestrial ecology (Goetz et al., 1992).
We have developed nonlinear and linear spectrum-matching
techniques for retrieving equivalent water thicknesses (EWTSs)
(Tucker, 1980) and information related to vegetation
biochemistry. The nonlinear least squares technique has been
described by Goetz et al. (1990). This technique requires
significant computer resources when applied to a standard AVIRIS
data set, which contains more than 300,000 spectra comprised of
224 points each. In order to speed up the retrieval process, a
linear least squares spectrum-matching technique has been
developed. In this technique, we assume that the vegetation
reflectance spectrum has the same shape as the transmittance
spectrum (Knipling 1970). With this assumption, the reflectance
spectrum, R(l), can be expressed as:

R(A=(a+bMA)exp [ -2 TIki(A) ui ]

where A is wavelength, n is the total number of end members (such
as liquid water, lignin, or cellulose) used in the modeling,
ki(A) is the absorption coefficient of the ith end member, ui is
the absorber amount of the ith end member. The background level
of the reflectance spectrum is assumed to be a linear function of
wavelength and represented by the term (a + b A). This assumption
is typically justified for small wavelength intervals (McMahon
and Simmons 1980). Linearization is achieved by taking logarithm
of both sides of equation (1). The absorber amounts are retrieved
by solving the linearized equation using a singular value
decomposition technique (Press et al., 1986). Similar linear
fitting techniques have previously used in atmospheric community
for retrieving abundances of trace atmospheric gases from solar
and lunar absorption spectra (e.g., McKenzie and Johnston 1982;
McMahon and Simmons 1980). .

Linear Mixture Modeling - No matter what the spatial resolution
of an optical remote sensing instrument, there is a certain level
of loss of apparent information in the resultant dataset by
aggregation of multiple surface types within a single pixel.
Within each datum of a Landsat Thematic Mapper dataset, the
energy quantized in the instrument electronics is that of an area
approximately 30 X 30 m. Other sensors have resolution on the
square kilometer scale, while others, like the AVIRIS have
thousands of pixels per kilometer at its 20 X 20 m resolution.
The standard methods of classifying spectral data cannot take
into account information lost in this aggregation. Fortunately
new analytical methods have been developed that can disaggregate
cover type information from single pixels.
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The radiance recorded by a remote sensor at individual pixel is
the integrated sum of the spectral radiance of all materials
within the instantaneous field of view (IFOV). When the IFOV
covers the boundary of different targets or a scene contains
targets smaller than the area covered by the IFOV, the radiance
detected by the sensor will be a mixture from all targets.
According to some investigators, the limited usefulness of
multispectral data arises partly from this mixed pixel problem.

This problem has been discussed by Horwitz et al. (1971),
Detchmendy and Pace (1972), Ranson (1975), Heimes (1977). The
first application of the linear mixture model paradigm, including
shadow effect, to satellite data was carried out by Adams et al
(1982). The technique has been developed most extensively by
Adams and co-workers (e.g., Smith et al., 1990). Recently, the
advent of imaging spectrometers (AVIRIS), which acquire high
spectral resolution data, has encouraged a shift from statistical
and empirical interpretation techniques to more deterministic and
quantitative ones (Wu and Schowengerdt, 1992). Several
applications of unmixing techniques using hyperspectral data have
been presented and published in the Proceedings of the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop (e.g.,
Gillespie et al., 1990).

In applying these techniques, a linear relation is used to
represent the spectral mixture of materials within the resolution
element. The response of each pixel in any spectral wavelength is
taken as a linear combination of the responses of each component
assumed to be in the mixed target. Hence, if the spectral
response of the individual components are known, then the
proportion of each component in the mixture can be estimated. The
basic mixture model may be formulated as:

r; = X a; *x;+ e;
where

r; = measured satellite response for a pixel in spectral band i
a;; = spectral response of mixture component, j, for spectral
band i, x; = proportion of mixture component, j, for a pixel
el = the error term for spectral band i.

Subject to:
X2 x; 21 and a;; = 0

The constraint equations are strictly true only if the end-member
signatures are an adequate representation of the mixture
components contained within the area to be analyzed.
Misrepresentation occurs if an inadequate number of mixture
components are assumed or if the end-member signatures are,
themselves, representative of sub-mixtures. Typically end
members include the major possible components 0of any terrestrial
surface: vegetation, soil and shade.
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There are several solution approaches to determining the
fractional proportlons The Constrained Least Squares (CLS)
method was used in this study. This method, well described in
Shimabukuro (1987) and Shimabukuro and Smith (1991), estimates
the proportion of each component inside the pixel by minimizing
the sum of squares of the errors. By constraining the proportion
values to be non-negative and their sum adding to one, like the
others available, this method is sensitive to the input data. The
adequacy of the input data can be verified by generating the
residual images or analy21nq the pixels that violate the
constraints. The residual image is basically the image formed
with absolute difference values between the original and the
estimated image generated by plugging the estimated proportion
values into the linear mixture equations for each spectral band.

METHODS

Image Data Processing - The 224 band radiometrically corrected
AVIRIS dataset was first subset to extract the study site area
prior to any analysis. A mosaic operation was also requlred as
the data was delivered on two separate tapes due to its size. The
subset resulted in a tractable dataset of 256 X 256 pixels X 224
bands, an area of approximately 25 km2. Several image processing
software packages have been used in this study; ERDAS [ERDAS,
Inc., Atlanta, GA], IDL [Research Systems, Inc., Boulder, COJ},
EASI—PACE [PCI, Inc., Toronto, Canada] and SIPS, an add on
package for IDL [Univ. Colorado, Boulder, CO]. Two AVIRIS
datasets were used in this study, the calibrated at-sensor
radiance data and a surface reflectance dataset.

Radiance Dataset for Unmixing Model - Based on a preliminary
visual analysis of the full 224 band spectra, 150 individual
bands were selected for use in this study. The bands discarded
were located in the atmospheric absorbing wavelength. Redundant
bands in the spectral overlap between the four AVIRIS
spectrometers were removed. The histogram of the range of
dlgltal values for each band helped us select bands with high
variance. We specifically wanted to include bands where there was
strong differentiation between cover types in this research. Once
the 150 spectral bands were selected, they were scaled from a 10-
bit digitization in a 16 bit integer datatype to 8 bit bytedata.
Little loss of dynamic range took place in this step, and its
savings in computer storage space was much more important.

Surface Reflectance Dataset - A 212 band surface reflectance
dataset was produced for comparing cover types using the
atmospheric correction routines described above. This was done
using the SIPS software (Center for Study of Earth from Space,
Univ. Colorado, Boulder, CO) that has been specifically designed
to analyze hyperspectral data as an add-on to IDL. Conversion to
surface reflectance allows direct comparisons between remotely-
sensed and laboratory spectra as illumination and atmospheric
effects are removed.

Thematic Mapper Simulation - Visible through near-infrared TM
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bands were approximated by aggregating the narrow-band AVIRIS
calibrated at-sensor radiance spectra across the appropriate
nominal TM bandwidths. TM bands simulated and AVIRIS bands used
follow: o

T™ band wavelength AVIRIS bands wavelength

3 0.63 - 0.69 um 25-30 635.9-685.0 nm
4 0.76 - 0.90 pm 42-56 767.0-901.4 nm
5 1.55 - 1.75 um 129 - 148 1559.4-1747.4 nm

This data was used to make several commonly used image products;
a false-color IR composite image of the Howland site [TM bands 4,
5 and 3 into red, green and blue] and a NDVI image [ (TM4-

T™™3)/ (TM4+TM3) ] .

CLS Unmixing Model - 150 band spectra from different cover types
were extracted from a 5 x 5 pixel samples selected using aerial
photography. Then we selected 100 spectral bands with high
variance to be used in the linear mixing model. The CLS method
was applied to generate vegetation, soil, and shade fraction
images. Training statistics for the model were extracted from
three single points in the image representing the ’purest’
vegetation, soil and shade pixels available. These points were
chosen based on low altitude air photography and a knowledge of
the field site based on personal reconnaissance. The vegetation
pixel came from a hardwood stand, the soil from a vegetation-free
gravel pit, and the shade from an open area of river water. The
images formed by the CLS unmixing model represent the fraction of
each component and vary from dark gray (0) to white (1.0) over
the 0-255 data range.

Spectral Signatures of Vegetation Types - A variety of typical
cover types from the FED site were located in the AVIRIS imagery
using air photography and field observations. Groups of pixels
representing areas of from 1-5 hectares from the AVIRIS surface
reflectance dataset were extracted from these single species
areas and are presented to show the clear differences that high
spectral resolution datasets can show between cover types. The
spectra are natural community types, not just pure foliage, but
also include elements of exposed soils, litter, undergrowth,
woody vegetation components, and shade, so are more complex and
more difficult to interpret than laboratory spectra. Even with

these complications the differences are clear between vegetation
types.

Results and Discussion

Simulated Thematic Mapper Datasets [color composite and NDVI] -
The high spectral resolution AVIRIS data can be used to make
highly satisfactory simulations of many other datasets. The wide
spectral range (400-2450 nm) and narrow bandwidth (< 10 nm)
exceeds all operational satellite systems and most airborne
instruments, so is highly adaptable. The TM color composite
(Figure 1) is a very useful product for examining cover types at
the FED site. Referring to pixel intersections in the x and v
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directions, clear differences are seen at the Howland research
area. The dominant vegetation is closed-canopy conifer mix
(spruce, hemlock, pine). These stands are dense, have dark
spectral signatures due to low foliar density, exposed branches,
and strong crown-to-crown shading (50,200; 125,200). After
cutting the conifers for pulpwood, prominent areas of exposed
soil are visible (15,75 and linear feature at 75,100). Within a
season bare soils begin to be less prominent and low shrubs,
regrowth and dry grass are significant cover fractions (75,135).
Once soil is no longer -exposed, the cut areas are dominated by at
first low statured (90,85) and then 2 - 5 m tall deciduous
hardwoods (75,75). Boggy areas are also visible (210,190;
210,50) .

The NDVI image (Figure 2) dramatically shows the wide range in
foliar brightness across the FED site. The darkest areas are the
cover types with little or no vegetation; roads, clearcuts and
areas of exposed water. The conifer stands are a grey tone, due
to their mix of occasional bright, dense foliar [often hardwood
intrusion], and darker wood or shade and/or mixed pixels. The
brightest pixels in this image are exclusively those of
continuous canopy stands of deciduous hardwoods.

Equivalent Water Thickness of Vegetation - The images of 0.86 um
channel, 1.0- and 1.6- um EWTs, and the depth of the 1.72-um
residuals obtained from this data set are shown in Figures 3 a-d.
Since the scale of these images is so much smaller than the other
AVIRIS images (Figures 1 & 2), it is difficult to match them up
exactly. However generalities can be made. The brightest areas
in the 0.86 um image (Figure 3a) are either deciduous trees or
other smooth, closed canopy sites like grass cover; the darker
areas being either bare soil or rough canopied conifer-dominated
areas. The 1.0 um EWT image (Figure 3b) shows much more spatial
structure than the 0.86 image, and rather than being associated
with canopy structure, seems to be more related to actual water
content. This shows up in the fact that both large expanses of
hardwoods and extremely moist bog vegetation are lighter than in
the previous figure. Much of this can be explained because
liquid water absorption coefficients near 1 pm are very small
and the solar radiation near 1 um can sense through a large .
number of leaf layers (up to 8) (Lillesaeter 1982). The 1.6- um
EWT image (Figure 3c) shows much less contrast for water across
the landscape. Bare soil is still very dark, but the conifer and
hardwood communities show much less difference between them.
This is because liquid water absorption coefficients near 1.6 um
are large, and the absorptions near 1.6 um by liquid water in
vegetation canopies saturate at small number of leaf layers (2 -
4) (Lillesaeter 1982). The 1.0 um EWTs over the scene are
generally 8 to 10 times greater than the 1.6 pm EWTs because of
the deeper light penetration near 1.0 um. The 1.72 pum residual
image shows some spatial patterns. At present, we do not know if
these patterns correlate with the concentrations of biochemical
components, such as lignin and cellulose. The different spatial
patterns in the four images (Figure 3 a-d) demonstrate that the
four images contain independent information on vegetation
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canopies.

Common Least Squares Mixing Models - The vegetation fraction
image (Figure 4) shows more detail and a wider range of values
than the corresponding NDVI image (Figure 2) derived from the
same database, although it is very similar to the TM color
composite (Figure 1). The advantage of these results is that
they represent quantitative data, fractions of cover components,
rather than the qualitative data of the strict color composite or
traditional land cover classifications as derived by supervised
or unsupervised classifiers. The fraction vegetation (Figure 5)
shows highest foliage in deciduous hardwood sites, intermediate
in the heavily shaded conifers, and negligible in the areas of
clear cuts. The soil fraction image (Figure 6) has results as
expected; high soil in clearcuts, intermediate in older cut areas
where regeneration has started, and very little (much caused by

radiometric banding) in the forested areas of either hardwoods or
conifers.

Spectral Characterization of Species Types - The reflectance
spectra for four cover types are similar to laboratory or ground-
acquired reflectance spectra but exhibit a much rougher
appearance. Instead of smooth spectral reflectance curves the
surfaces are punctuated by spikes and absorption characteristics
unseen in other data sets. Much of this is due to the daunting
requirements of atmospheric correction in such a complex, high
resolution instrument, but some is surely due to actual
biogeochemical absorption features of the surface that are unseen
in broader bandwidth sensors. From this initial study it is
clear that our capabilities to build instruments and acquire data
by far outstrip our capability to remove the influence of 20 km
or more of atmosphere between the surface and the sensor. This
is a major obstacle to full utilization of the complete range of
the dataset available in AVIRIS or like instruments.

In all four reflectance spectra the bulk of the blue portion of
the spectrum has been deleted (400-450 nm) since the correction
algorithm gives negative values in this region of heavy
scattering. The conifer curve (Figure 8) has lower overall
reflectance than the hardwood (Figure 9), but this is not,
surprising as the canopy has much exposed wood, areas of shade.
and clumping of needles. It is interesting to note that in the
visible portion of the spectrum both conifer and hardwood are
identical. In near- and mid-IR conifer has only about 65% of the
reflectance of hardwood, due in part to lower leaf area index and
more absorption by wood. The hardwood canopy (Figure 9) is
brighter than the conifer and also has a distinct absorption
feature; the steeply sloped shoulder in the 1650-1850 nm range
that is not present in conifer. This may be due to water or
nutrient content absorption.

The non-vegetated cover types hold no surprises, as they exhibit
characteristics typical of such surfaces. Water (Figure 10) is a
uniformly strong absorber throughout the spectrum. Much of the
observed signal may be due to residual error in the atmospheric
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correction algorithm, suspended sediment, submerged vegetation or
sun-glint. The gravel cover type (Figure 1ll1) is a classic non-
vegetated surface with high reflectance in green and red where
vegetation is a strong absorber. Also the near-IR reflectance is
reduced over that of highly reflective hardwood stands (Figure
9). The near- and mid-IR reflectance in theé non-vegetated cover
types is also much flatter in its response than that of vegetated
surfaces.

CONCLUSIONS

This initial investigation of a high spectral resolution dataset
has demonstrated its tremendous, if yet not fully utilized
potential to the remote sensing and environmental science
communities. Not only can the datasets be used to simulate
practically any other optical remote sensing system, but
information is available that cannot be derived from other
sensors such as atmospheric water, equivalent water thickness of
vegetation, fractional cover components from mixed pixels, and
highly descriptive spectral signatures for differentiation of
diverse cover types.

The utilization of these data is an area of active and much
needed research. Not only are the datasets complex, but they are
voluminous and very sensitive to analytical algorithms. A major
need is suitable atmospheric correction methodologies that
effectively meet the complexity of the correction task. The use
of linear mixing models is just beginning to be examined and the
extraction of biogeochemical information from the high spectral
resolution data is just in its infancy.
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Figure legends

Figure 1. False-color infrared color composite of the-site using
calibrate at-sensor radiance AVIRIS data to simulate Landsat
Thematic Mapper [TM band 4, red; T™M band 5, green; TM band 3,
bluel.

Figure 2. Normalized difference vegetation index [NDVI] of the
site using calibrated at-sensor radiance AVIRIS data to simulate
Landsat Thematic Mapper [(TM 4 - ™ 3)/(TM 4 + T™ 3)].

Figure 3. Images of 0.86 um channel (3a), 1.0 (3b) and 1.6 um
(3¢) equivalent water thicknesses, and the depth of the 1.72 um
(3d) residuals.

Figure 4. Color composite'of}the fraction image of vegetation
(red), soil (green) and shade (blue) from mixture model of AVIRIS
radiance dataset. SRS

Figure 5. Vegetation fractlon 1mage from AVIRIS radlance based
mixing model.

Figure 6. Soil fraction image from AVIRIS radiance-based mixing
model. : :

Figure 7. Shade fraction image from AVIRIS radiance-based mixing
model. Figure . Spectral signature of hardwood vegetation from
AVIRIS surface reflectance dataset.

Figure 8. Spectral signature of conifer vegetatlon from AVIRIS
surface reflectance dataset. L

Figure 9. Spectral s1gnature of hardwood vegetatlon from AVIRIS
surface reflectance dataset.

Figure 10. Spectral signature of water from AVIRIS surface
reflectance dataset.

Figure 11. Spectral signature of exposed soil/gravel from
AVIRIS surface reflectance dataset.
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