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Abstract. The approach to predicting Landsat Multispectral
Scanner System (MSS) endmember signatures from fraction
images derived from high resolution Landsat Thematic Mapper
(TM) data is presented. The purpose of this
study, conducted in the Mogi-Guacu study site located in
Sao Paulo State, Brazil, was to determine if information

derived from a mixture mo el applied to higher resolution
™

data could serve as ground truth for the
lower resolution MSS sensor. The Constrained Least Squares
(CLS) method was used to generate vegetation, soil, and
shade fraction images from the TM data. The resulting
images were then used to estimate the endmember
spectral response for MSS data by regressing each MSS
spectral channel against the corresponding proportion

values estimated for the same resolution cells from the TM
‘mixture model. The evaluation of the predicted signatures
was performed by comparing the corresponding fraction
images derived from both the MSS and TM data acquired on
September 14, 1986. The technique serves as a potential
tool - for integrating information in global studies where

remote sensors with different spectral and spatial
resolutions have been used.
Introduction (IFOV) of the sensor plus the
: atmospheric contribution. Thus,
The radiance recorded: by the the radiation detected will

satellite depends basically
upon the recording sensor’s
characteristics . and the
spectral and spatial

characteristics of the target
material that is seen by the
sensor. The radiance recorded
at the satellite is an
integrated sum of the radiances
of all materials within the
instantaneous field of view
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be influenced by a mixture of
many different materials
(mixed materials (mixed
pixels) wunless the target is

composed by a single material
(pure pixel).

According to some
investigators, the limited
usefulness of multispectral
data arises partly from the
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mixture problem.
“has - been discussed by Horwitz
et al. (1971); Detchmendy and
Pace  (1972);: Ranson (1975);
Heimes:.(1977); and others. The
‘mixture problem arises when a

sensor 1mages an. 1nstantaneousl
or
(IFOV) which .

-ground resolutlon
‘field of -view
contains - several
materials - (mixéd

element

dlfferent
target)

" when - the instantaneous field of,-
- boundary
‘more larger -
In. both

view overlaps the
‘betwéen = two. or
different materlals.
cases, the s1gnals recorded ‘at
the sensor .arev;“ . not
representatlve of any’ one  of
the - materlals present
The . spectral characterlstlcs of
the resolution " elements . or
pixels of
(approximately. 0.45 hectares)
and TM (approx1mately -0.10
hectares) at the earth’s
.surface can be affected by one
or both of the
phenomena described above.

Several - works . (Shimabukuro,
1987; Adams et al, 1990;
Shimabukuro - and Smith, 1991)
“have applied linear mixing
- models to extract information
about the shadow/shade amount
within the pixels for
vegetation studies. Also,
the linear mixing models have
been used to extract
information about the
other materials within the
pixels for image analysis
purpose. Richardson et
al (1975) used linear
regression model to infer the
amount of vegetation, soil, and
shadow for Landsat MSS data.

The existing linear mixing
models have been applied to
Viking images of Mars (Adams et
al, 1986), applied to MsSs
and/or TM data (Adams and
Adams, 1984; Shimabukuro, 1987;
Adams et al, 1990) applied to

AVIRIS data (Gillespie et al,
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This problem

‘sensor

“resulting

_ : “endmember
Landsat MSS

1990) . However, there is a few
works relating mixing models
results derived from different
‘data (Holben and

Shimabukuro, 1993).

The objective of this paper

is to determine if
information derived from
a mixture model applied to

higher resolution TM data could
serve as. ground truth for the
.resolution MSS

lower. _ sensor.
The .vegetation, soil, and shade
fraction fraction images are

derived from Landsat TM data by
applying the Constrained Least
Squares:  (CLS) method. The
images are then
~estimate the
spectral response
for MSS data by regressing
each MSS channel against the
corresponding proportion values
estimated = for the same
resolution cells from the TM
mixture model. The evaluation
of the predicted signatures is

used to

performed by comparing the
corresponding fraction images
derived from both MSS and

TM data acquired on September
14, 1986.

Study Area

The study area "Mogl-Guacu" is
located between 22%057 to
229207 South latitude and

47900’ to 47°15’ West longitude
in the Sao Paulo State and
is representative of pine and
eucalyptus plantations common
to that region. This site
includes the Campininha Pine
Experimental Station of the
Forestry Institute of the state
of Sao Paulo (IFSP) and the
Santa Terezinha Eucalyptus
Plantation of the Champion
Cellulose & Paper Conmpany
(CCP). The major Pinus species
in Campininha are Pinus
elliottii and Pinus
taeda. Other species, such as



Pinus caribaea, Pinus
bahamensis, Pinus oocarpa,
and Pinus palustris, are also
planted in small amounts. The
prominent Eucalyptus species in
Santa Terezinha are Eucalyptus
alba and Eucalyptus saligna.

The field data and forest
cover maps were provided by
IFSP and CCP and can be grouped

into four forest classes. These
classes refer to (1)
Pinus elliottii, (2) Pinus
species other than Pinus
elliottii, (3) Eucalyptus spp.

from eight months to two years,

and (4) Eucalyptus spp. over
two years (Shimabukuro et al,
1978, 1980).  For the images
analyzed, pine plantation are
represented by forest < stands
varying from more than 10 years
to 30 years and the eucalyptus
plantation are formed by forest
stands with age varying from
one year to 7 years,

Linear Mixing Model

A linear relation 1is used to
represent the spectral mixture

of materials within the
resolution element. Following
this approach, the response

of each pixel in any spectral
wavelength can be thought of as

a linear combination of the
responses of each component
assumed to be in the
mixed target. Thus, each image
pixel, which can assume
any value within the image
gray level, contains
information about the
proportion and the
spectral response of each
component within the ground
resolution unit.

Hence for any multispectral
image provided by any remote
sensor - system (e.g., Landsat
MSS and TM), if the proportions
of the components are
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known, then the spectral
responses of these components
can be obtained. Similarly, if
the spectral responses of the
components are Kknown, then the
proportion of each component in
the mixture can be estimated.
In this study, for TM data it

is assumed the known
spectral responses for  the
endmember. Oon the - other
hand, to predict the MSS
endmember . signatures the
proportion of the components
are assumed to be Kknown as

estimated from the TM data.

‘The mixture model is
represented as: S
r = AX + e
where:
r = measured satellite response
for a pixel in all spectral
bands :
A = spectral ‘response matrix of

mixture components
X = proportion
mixture components

for a pixel
vector of
for a pixel

e = the error term

The function to be minimized
is: ‘
f(x) = eeT.
.subject to - the following
constraints: ’
Xp =1
0 < xp <1
where the sum 1is carried out

over p components in a pixel,

here assumed equal to - 3,
corresponding to vegetation,
soil, and shade.

There are several techniques
available to solve this
problem: Quadratic Programming,
Constrained Least Squares,
Weighted Least Squares
presented by Shimabukuro
(1987), Principal Components
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(Smith et al, 1985, Adams et
al, 1986, Adams et al, 1989),
Regression Model (Richardson et

al,. 1975) . The Constrained
Least Squares (CLS) method was
used in this study to
estimates the proportion of

each componment inside a pixel
giventhe corresponding spectral
responses in each spectral band
for T and MSS data. This
method has been simplified by
not constraining the proportion
values inside the interval zero

and one (Shimabukuro and
Smith, 1993). It makes the
computer program faster and the
pixels that violate the
constraint can be
easy identified by using any
scaling procedure. The
Regression model (Richardson et
al, 1975) was used to
estimate the MSS endmember
signatures given the component
proportion derived from TM
" data.

Methodological Approach

For this study, the TM and
MSS Landsat data, path 220/row
75, corresponding to the

overpass of September 14, 1986
were used to generate fraction
images for reforested areas in
the study site. The
composite response (ri’s) data
.are the digital numbers on the
CCT - converted to
the apparent reflectance
(Markham and Barker, 1986) .
Three components are considered

within the pixel: vegetation,
soil, and shade. The
vegetation type is considered

including pine and eucalyptus
plantation.

The spectral response
(Aij’s) for ™ data were
extracted from the images by

finding the purest pixel for
each endmember in a iterative
process by analyzing the pixels
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that violate the
constraints. The purest pixel
for vegetation was searched in
the eucalyptus stand, for soil
in the baresoil areas, and for
shade in the clear water site.
Then the vegetation, soil, and
shade fraction images were
generated for the reforested
areas and compared with the
ground information available
for this study area
(Shimabukuro et al, 1978, 1980;
Shimabukuro et al, 1989).

The resulting fraction
images were then used to .
estimate the endmember spectral

responses for MSS data by
regressing each MSS spectral
channel against the

corresponding proportion values
estimated for the
same resolution cells from the

™ mixture model. The
evaluation of the
predicted signatures was
performed by comparing the
corresponding ‘ fraction

images derived from ' both MSS
and TM data acquired on th
same day. o :

The residual values for each
spectral channel can be used to

evaluate the results derived
from the model. These values
are the absolute
difference between the original
and  the estimated pixel
response.

Results And Discussion

The availability of Landsat TM
and MSS data acquired on the

same day allowed to perform
this experiment. These data
present different spatial and

spectral resolution.

The vegetation, soil, and
shade fraction images (Fig. 1A,
B, and C, respectively) were

derived from TM data using the



apparent reflectances . (Table 1)
which correspond to -the purest
pixel assumed for these
endmembers.

Table 1: Spectral responses for
vegetat :
ion, ‘'soil, and shade for TM
channels corresponding to the
purest pixel assumed for these
endmembers

App. refl. (%)

Channel

. Vegq. Soil  Shade
1 9.41 13.73  9.41
2 7.06 15.29  8.24
3 5.88 20.00 6,27
4 30.59  26.67 3.53
5 10.59-  42.35 0.00
7 3.14 35.69 0.00

In the fraction images, the
abundance of  each component is
represented from dark gray (low

amount) to 1light gray (high
amount}) . The vegetation
fraction image (Fig. 1A) shows
the difference between
eucalyptus  (light gray) and
_pine (medium gray) plantations.
Also, it shows the
variation within eucalyptus

site that is related to the age

difference, i.e.,
young eucalyptus presents
higher amount of vegetation
proportion. than the
old eucalyptus. The variation

within pine site is related to
the  species difference, 1i.e.,
pine elliottii presents higher
amount of vegetation proportion
than the other species.

soil
1B)

The
(Fig.
about

fraction image

contains information
amount. of baresoil
component. It is very clear the
areas that were clearcut in
the eucalyptus site (light
gray) .

The shade
(Fig. 1Q)
fraction

fraction
like as
image

image
vegetation
shows the
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difference between eucalyptus
and pine plantations and the
variation caused by age
difference for eucalyptus and
species difference for
pine (Shimabukuro, 1987,

Shimabukuro and Smith, 1991).

The resulting fraction
images were used to estimate
the MSS endmember signatures by

regressing them against each
MSS channel using
the corresponding resolution

element for both MSS and TM
data. - Table 2 presents the
estimated vegetation, soil, and
shade spectral responses for
MSS channels. B

Then the vegetation, soil,
and shade fraction images (Fig.
24, B, and C, respectively)
were dgenerated using these
apparent reflectances (Table 3)

in the mixture model: : for MSS
data. Comparing figure'' 2 with
figure 1, 'there are a good
agreement between ' the model
results derived from both
remote sensors
data. ‘

Table 3 presents the

histogram results for the same
area covered by TM and MSS
sensor. The average filter was
applied to the images to make
the results compatible for both
sensors. It was used 5 x 7
pixels size for MSS and 13 x 13
pixels size for TM.
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Table 2: Spectral responses for vegetation,'soil, and shade for
MSS channels estimated regressing with the TM fraction images

Apparent reflectance

Channel -r2 _ (%)
- : Vegetation  Soil Shade
4 90,2 - 11.25 18.47  11.96
5 - 96.5. 4.20 . 17.76 5.53
6 '97.3° . 54.98 57.65 19.84
7 97.4 ~  .38.75 30.35 2.35
=30
Table 3: Hiétogram results for MSS and TM data
o LANDSAT TM
~~ MEAN  MEDIAN  STANDARD DEVIATION
VEGETATION 35.71 36 14.57
SOIL . 27.23 27 15.75
SHADE 35.57 35 11,54
LANDSAT MSS
| . MEAN  MEDIAN  STANDARD DEVIATION
VEGETATION 35.58 36 15.21
SOIL 28,50 28 16.99
SHADE 34,40 34 11.65

There is a good agreement
between the statistics for
corresponding fraction  images

derived from MSS and TM data as
seen in Table 3.

These results ‘can be
extended for a 1large area 1in
the MSS imagery. Figure 3 shows
the so0il fraction image as an
example. These results show
the potential of 1linear mixing
model to relate information
provided by sensors with
different spectral and spatial

resolution. This approach is
very important for global
studies, that need
information from different
remote sensors with different
spectral and . spatial
resolutions.
Conclusion
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-data

The fraction images showed to
contain information to
discriminate the forest types.
The young eucalyptus presents

higher proportion of
vegetation component and lower
proportion of shade when
compared to old
eucalyptus. Pine forest
presents higher proportion of
shade when compared to

eucalyptus forest.

The high r values and the
similarity of fraction images
derived from both TM and MSS
data showed the feasibility to
predict endmember signatures
for lower resolution sensor
from higher resolution
sensor data and different
spectral wavelength.

The technique serves . as a
potential tool for integrating
information in global studies



where remote sensors with
different spectral and
spatial resolutions are
required.
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Figure captions:

Fig. 1l: Fractions image derived
from Landsat TM data: A)
vegetation, B) soil, and C)
shade.

Fig. 2: Fractions image derived
from Landsat MSS data: A)



vegetation, B) soil, and ()
shade.

Fig. 3 Soil fraction image
derived from Landsat MSS data
including the study site.
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LANDSAT MSS -SEPTEMBER 14, 1986 - SOIL FRACTION IMAGE

FiG. 3
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