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ABSTRACT

Feed-forward neural networks are implemented for predicting the level of Paraguai
River, Ladario. By using the trained network , the reconstruction of the monthly data fit
well with the observations. And the initial results show success predictions within two

to three months.
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I. INTRODUCTION

Predicting the level of Paraguai River with useful antecedence (and so estimating the area to be
flooded) is a relevant scientific goal. Paraguai River levels are influenced by several different
factors from micro to macro scales. Simple correlation between its levels and indexes of El Nifio or
SST in the Atlantic Ocean don’t seem significant, probably because interactions among vegetation,
soil and topographic characteristics resuit in important factors, too important to be neglected in this
area and those teleconnections are masked. From the standpoint of global change the Pantanal
deserves study because, due to its dimensions. it could, probably, both drive and respond to changes
in climate. Neural networks can treat all these factors simultaneously. which was an incentive to
apply this method to these complex time series of river levels. In this paper. about 1145 monthly

data are used to train the neural network. which then give the monthly predictions.

II. FEED-FORWARD NEURAL NETWORKS

Prediction of time series is an exciting rezent application of neural networks. There are a number of
prediction methods available for this kind of problem (Casdagli. 1989). Neural networks were found
to be useful and competitive with the best recent approximation methods (Lapdes and Farber. 1987,
Gallent and White. 1992 Li . et al. 1995). To predict the time series of the level of Paraguai River.
one type of network. feed-forward single hidden layer networks (Rumelhart et al.. 1986), with
Backpropagation learning laws will be used. The input values of time series x(t-1). x(t-2)....x(t-d)
are received through d input units. which simply pass the input forwards to the hidden units uj, j=
1.2.....q. Each connection performs a linear transformation determined by the connection strength
wi, so the total input for hidden unit u; is Zdizl wi X(t-1). Each unit performs a nonlinear

transformation on its total input. producing output:
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0;= O wo; + T, wy x(t-i).) (1)

The activation function ® is the same for all units. Here, @ is a sigmoid function with limiting value
0 and I as 0; —-w and 0j =+ respectively:

(o)) = 1/(1+exp(-0))) (2)
The hidden layer outputs 0j are passed along to the singte output unit with connection strength f3;,

which performs an affine transformation on its total input. Then, the network’s output x(t) can be
represented as:

X(1) = Bo + Tt B O woy + Ty wyyx(t-0) ) 3)
for d inputs and q units in the hidden layer.

One way to make predictions at various next step t, t-1, t-2,...t-kAt is to place previously predicted
values on the input lines to bootstrap to higher i values (Lapedes and Farber, 1987). After training a
network to predict at t, the predicted values can be fed back to the inputs to predict at t+1, t+2,... etc.

III. THE RESULTS
Using the 1142 monthly observations, the trained network give prediction results. As Table 3.1

shows, the relative errors of the predictions of the next four months are less than 17%. Figure 3.1
shows the reconstructions and predictions of the monthly observations of the levels of Paraguai
River.
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Figure 3.1 Reconstructions (01/77-02/95) & Predictions (03-06/95)

of the monthly level of Paraguai River
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Table 3.1 Predictions of the monthly level of Paraguai River: 03-06/95

Mar Apr May Jun
Observations 542.90 649.87 622.16 588.00+*
Predictions 480.70 544.04 551.05 528.28
Relative Errors 11.45% 16.23% 11.43% 10.00%
RMSE* 0.019 0.019 0.019 0.019

*: RMSE: Root mean squared error of the trained neural network.
**: Mean of the first 8 daily observations of June.

V. CONCLUSIONS

Feed-forward neural networks were robust for predicting the level of the Paraguai River. The
predictors give acceptable resuits which show that the neural network method seems efficient to
process time series influenced by complex processes, not still understood, as it appear very often 1n
the geophysical sciences. Although these are preliminary resuits, they are promising. In the future,
To improve more the.prediction with the help of predictors criteriously chosen and to understand
the theoretical aspects of the predictability of this physical phenomena will be the further research.
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