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Phase transitions in a frustratedXY model with zig-zag couplings
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We study a generalized version of the square-lattice frustratedXY model where unequal ferromagnetic and
antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplingsr can be used
to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustratedXYmodel.
The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic
field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion
and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behavior.
Depending on the value ofr, two separate transitions or a transition line in the universality class of the
XY-Ising model, with combinedZ2 and U~1! symmetries, takes place. In particular, the phase transitions of the
standard square-lattice and triangular-lattice frustratedXYmodels correspond to two different cuts through the
same transition line. Estimates of the chiral (Z2) critical exponents on this transition line deviate significantly
from the pure Ising values, consistent with that along the critical line of theXY-Ising model. This suggests that
a frustratedXY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical
realization of theXY-Ising model critical line.@S0163-1829~97!06813-6#
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I. INTRODUCTION

There has been an increasing interest in frustratedXY
models in relation to Josephson-junction arrays in a magn
field.1–3 At a particular value of the external field, corre
sponding to half flux quanta per plaquette of the array,
ideal system is isomorphic to a frustratedXY model, or Vil-
lain’s odd model,4 with ferromagnetic and antiferromagnet
bonds satisfying the odd rule, in which every plaquette
an odd number of antiferromagnetic bonds. Frustration
the effect of introducing a discreteZ2 symmetry in the
ground state with an associated chiral~Ising-like! order pa-
rameter, in addition to the continuous U~1! symmetry. The
interplay between these two order parameters may lea
critical behavior which is not present in the unfrustrat
model which is known to have a transition in the Kosterl
Thouless~KT! universality class.

Earlier Monte Carlo simulation results for the isotrop
square-lattice1,17 ~SFXY) and triangular-lattice5,6 ~TFXY)
frustratedXYmodel, and some recent ones,7,8 suggest a criti-
cal behavior associated with the chiral order paramete
agreement with pure Ising exponents while the continu
(XY) degrees of freedom display the main features of the
transition, possibly with a nonuniversal jump. Estimates
the corresponding critical temperatures are always too c
to be satisfactorily resolved within the error bars, specia
when possible systematic errors due to the assumed KT
ing forms are taken into account. These results can eithe
regarded as an indication of a single but decoupled tra
tion, where the Ising andXY variables have standard beha
ior and the same critical point, or else there are two sepa
by close transitions of Ising and KT type. There exist a
550163-1829/97/55~13!/8361~8!/$10.00
tic

e

s
s

to

in
s
T
f
se
y
al-
be
i-

te
o

some appealing arguments which exclude one of the
possibilities, Ising followed by a KT transition for increasin
temperature, in the case of a double transition scena2

Other numerical works, however, which attempt an i
proved estimate of the chiral critical exponents tend to c
clude that these exponents deviate significantly from the p
Ising values.9,10,12 In particular, based on the results for th
coupled XY-Ising model as an effective Hamiltonian fo
these systems,13,14 it has been argued that, in the case of t
single transition scenario, both the SFXY and TFXY model
display a transition with exponents deviating from the pu
Ising values. Moreover, the exponents are given by the c
responding values along the critical line of this model. Es
mates of chiral exponents from Monte Carlo data15 and
transfer-matrix calculations11,12 are consistent with the
XY-Ising model universality class.15,16

A generalized version of the SFXY model has been intro
duced by Bergeet al.17 where the strength of the antiferro
magnetic bonds can be varied. This introduces a partic
anisotropy into the system and leads to clearly separa
Ising and KT-like transitions for unequal strengths18–20 but
which appear to merge into a single one for equal streng
corresponding to the isotropic SFXY model. There is a criti-
cal value for the bond strength, 1/3, below which the twofo
degeneracy disappears. Other generalizations have bee
troduced for the TFXY model that also leads to a critica
strength below which the frustration effect is suppressed.22 A
common feature in the topology of the phase diagram
these generalized versions is that the isotropic model alw
corresponds to the region where chiral andXY ordering can-
not be clearly resolved. However, so far, the SFXY and
TFXY models have been treated as separated models.
8361 © 1997 The American Physical Society
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8362 55MOURAD BENAKLI AND ENZO GRANATO
In this work, we introduce a generalized version of t
SFXYmodel where unequal ferromagnetic and antiferrom
netic couplings are arranged in a zig-zag pattern. The r
between the couplingsr can be used to tune the system
continuously, from the isotropic SFXY to the TFXYmodel,
allowing the study of both models within the same fram
work. The model can be physically realized as a Joseph
junction array with two different couplings, in a magnet
field corresponding to half-flux quanta per plaquette. We
a mean-field approximation, Ginzburg-Landau expans
and finite-size scaling of Monte Carlo simulations to stu
the phase diagram and critical behavior. Depending on
value ofr, two separate transitions or a transition line w
combinedZ2 and U~1! symmetries, takes place. Based on
effective Hamiltonian, we show that this transition line is
the universality class of theXY-Ising model and the phas
transitions of the standard SFXY and TFXY models corre-
spond to two different cuts through the same transition li
Estimates of the chiral (Z2) critical exponents are consiste
with that along the critical line of the coupledXY-Ising
model, suggesting a possible physical realization of
XY-Ising model critical line in a frustratedXY model or
Josephson-junction array with a zig-zag coupling modu
tion.

The remainder of the paper is organized as follows.
Sec. II, we define the model. In Sec. III, the ground-st
properties obtained by two different methods are presen
In Sec. IV, a mean-field approximation is used to obtain
global features of the phase diagram. In Sec. V, the effec
Hamiltonian obtained by Ginzburg-Landau expansions
presented and its relation to coupledXY models and the
XY-Ising model is discussed. In Sec. VI, we present num
cal results of Monte Carlo simulations for the phase diagr
and chiral critical exponents obtained from finite-size sc
ing. Finally, Sec. VII is devoted to the conclusions.

II. THE MODEL

The generalized version of the frustratedXYmodel intro-
duced by Bergeet al.17 can be regarded as anXY version of
one of the two frustrated Ising models with periodic intera
tions first introduced by Andre´ et al.23 The other model has
the important feature that it reduces to the triangular-lat
antiferromagnetic Ising model in one particular limit.
analogy to this model, we consider a system of class
XY spins on a square lattice with nearest-neighbors inte
tions modulated in a periodic pattern. The Hamiltonian
this zig-zag model is given by

H52
1

2 (
^ i , j &

Ji j SW i•SW j , ~1!

where the sum is restricted to the first neighbors andSW i is a
two-component unit vector. The couplingsJi j can have two
different values,J andJ8, distributed periodically in a zig-
zag pattern as indicated in Fig. 1. We chooseJ to be ferro-
magnetic (J.0) and defineJ852rJ, wherer is the cou-
pling ratio. We are interested in the caser.0, where each
plaquette has an odd number of antiferromagnet bonds,
lain’s odd rule,4 which leads to frustration effects.
-
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Whenr51, the model reduces to the SFXY model while
in the limit r→1` it is topologically equivalent to the TF
XYmodel. The latter limit can be easily established after p
forming the ‘‘gauge’’ transformation Si→e iSi ,
Ji , j→Ji j e ie j , wheree i51 and21 on the sublatticesA and
B of Fig. 1, respectively, resulting in antiferromagneticJ and
ferromagneticJ8 couplings. Whenr→1`, each pair of
spins connected by aJ8 bond become locked and may b
replaced by an effective spin, leading to an antiferromagn
XY model with the same coordination number as the tri
gular lattice. The model is then well suited for the study
the universality classes of both SFXY and TFXY models.
Whenr50, Eq.~1! reduces to a ferromagneticXYmodel on
a hexagonal lattice which undergoes a KT transition.

III. GROUND STATE

In another generalization of the frustratedXY model,17 it
has been shown that the lowest energy state can be
structed by building up the configuration of the infinite la
tice from the ground-state configuration of a single plaque
In our case, the same procedure can be used if we allow
rotations and reflections of the ‘‘one plaquette ground-st
configuration’’ which also assures that the true ground s
is obtained. No assumption on the periodicity of the grou
state is made. The plaquette configuration is indicated in
2~a! for r.1/3 and it is the same as used in Ref. 17. The s
configuration is collinear forr,1/3 and a canted one fo
r.1/3. For the canted configuration one can define a ch
variable for each plaquetteP

sP5
1

s0
(

^ i j &PP
Ji j SW i3SW j , ~2!

where (^ i j &PP is a direct summation around the plaque
ands0 is a normalization factor given by

s05
3r11

2r
A3r21

r
. ~3!

For r.1/3, the ground state of the infinite system co
structed by the above procedure consists in a helical s
ordering which is incommensuratewith the underlying
square lattice, except whenr51 andr5`, corresponding to
the SFXY and TFXY models. The pitchD of the helical

FIG. 1. Generalized frustratedXY model with zig-zag coupling
modulation. Continuous lines correspond to couplingJi j5J and
double lines toJi j5J8. The sitesA andB denote two sublattices
where spins do not interact.
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55 8363PHASE TRANSITIONS IN A FRUSTRATEDXY MODEL . . .
configuration, can be obtained from half the phase differe
within the same sublattice in thex̂ direction and is given by

D52 cos21S 12Ar11

r D 5arccosS 12r

2r D . ~4!

In Fig. 2~b! we show the resulting ground-state config
ration. The ground state is double degenerate, correspon
to an antiferromagnetic arrangement of plaquette chirali
s561.

For r,1/3, where the single plaquette configuration
at
ce

re
o

d
et

-
tte
e

ing
s

collinear, the ground state is a ferromagnetic configuration
spins.

As an alternative to the above method, the ground s
can also be obtained by a direct minimization of the Fouri
transform interaction matrix,2Jq,q8. In the present case, w
note that there are two noninteracting sublattices, co
sponding to the sitesA andB in Fig. 1, where the Fourier
transform can be easily carried out. The interaction ma
Jq
k.l , wherek,l denote the sublatticesA andB, can be writ-
ten as
Jq
k.l5JS 0 eiqx2re2 iqx1eiqy1e2 iqy

2reiqx1e2 iqx1eiqy1e2 iqy 0 D . ~5!

The eigenvalues are given by,lq56Vq , where

Vq5JA~11r!214@2r cos2~qx!1cos2~qy!1~12r!cos~qx!cos~qy!#, ~6!
by
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er-
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and the dominant eigenvaluelq51Vq reaches a maximum
at

~qx50,qy50! for r< 1
3 ,

$qx56arccos@~12r!/~2r!#,qy50% for r> 1
3 . ~7!

From Eq.~7!, the wave vector characterizing the ground st
for r.1/3 is, in general, incommensurate with the latti
periodicity in the x̂ direction, except forr51 and r5`
corresponding to the SFXY and TFXY models. The eigen-
vector associated to the largest eigenvalue is a possible
ization of ground state provided the corresponding spin c
figuration satisfy the unit vector conditionuSW i u51. In the
present case, they do satisfy this condition and correspon
the same configuration as found from the single plaqu
method described above.

FIG. 2. Ground state forr.1/3 consisting in a helical configu
ration of spins.~a! Ground-state configuration of a single plaque
and ~b! spin configuration for the infinite lattice.
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IV. MEAN-FIELD PHASE DIAGRAM

The general form of the phase diagram can be obtained
a mean-field~MF! analysis. Although, at finite temperature
this analysis neglects the role of fluctuations it gives nev
theless a good qualitative picture of the phase diagram
can also be greatly improved by perturbative or variatio
techniques. The details are described in the Appendix.

Figure 3 shows the phase diagram obtained by the me
field approximation. Forr,1/3, the system undergoes
transition from a paramagnetic to a ferromagnetic ph
along the transition lineXL. This transition is in the KT
universality class since there is only a single critical mo
q5(0,0) and no additional symmetry in the ground sta
besides the continuous U~1! symmetry. Forr.1/3, there is a
paramagnetic phase at high temperatures and a helical p
at low temperatures which is incommensurate with the lat
periodicity except forr51 andr1` where the model re-
duces to the SFXY and TFXY models, respectively. The he
lical phase has an additional discreteZ2 symmetry associated

FIG. 3. Mean-field phase diagram.F indicates the ferromagnetic
phase,P the paramagnetic phase andH the helical~chiral! phase.
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8364 55MOURAD BENAKLI AND ENZO GRANATO
with the antiferromagnetic arrangement of plaquette chir
tiessP in the ground state. The mean-field analysis give
single transition forr.1/3. Therefore, the whole lineLT for
r.1, including the TFXY limit, is expected to have the
same type of behavior as the SFXY model at r51. The
nature of this transition however cannot be studied at
mean-field level and other methods are required, as wil
presented in Secs. V and VI. Note that, in contrast to
generalized version of the frustratedXY model considered
by Bergeet al.,17 where a clear separation into two trans
tions forrÞ1 is already found at the mean-field level,19 the
zig-zag model displays two transitions only forr,1/3
within the same kind of approximation. This suggests t
the separation of these transitions is not simply a result of
induced anisotropy forrÞ1 but should be related to th
nature of the coupling between chiral~Ising! andXY degrees
of freedom, in agreement with arguments based on an ef
tive coupled XY-Ising model Hamiltonian.14 As will be
shown in Sec. IV, for the zig-zag model the form of th
coupling is unchanged forr;1 andr.1, suggesting that a
clear separation is not expected.

The transition lineCL separating the ferromagnetic from
helical phase can be regarded as a commensu
incommensurate transition which joins the other transit
lines, XL and LT, at a Lifshitz pointL at TÞ0. In mean
field, this transition line is given byr51/3 corresponding to
the stability boundary between the two modes in Eq.~7!.
Although, there are interesting questions regarding the
cise location of the Lifshitz point and the nature of the pha
transition along this line,25–28these will not be the subject o
a detailed study in this work.

V. EFFECTIVE HAMILTONIAN

The universality class of phase transitions can be con
ered on the basis of an effective Hamiltonian obtained
Ginzburg-Landau expansions. Invoking the universality h
pothesis, one expects that models with the same effec
Hamiltonian differing only by irrelevant terms are in th
same universality class. In this section, we discuss the c
cal behavior in the regionr.1/3 where the ground state
double degenerated by deriving the corresponding effec
Hamiltonian. An effective Hamiltonian can be obtained fro
the free-energy functional, describing fluctuations around
MF solution discussed in Sec. IV, via a Hubbar
Stratonovich transformation in a standard way.29,30 One re-
places Eq.~1! by

F
kT

5
1

2(i , j Ki j
21tW i• tW j2(

i
W~ u tW i u!, ~8!

where tW i are unconstrained spins weighted
W(x);x2/42x4/641O(x6) andKii j 5Ji j /kT. In the present
case, we can separate the lattice spins into two noninterac
sublattices, corresponding to sitesA and B in Fig. 1. The
interaction matrixJq

l ,k is then given by Eq.~5! and the cor-
responding eigenvalues by Eq.~6!. Forr.1/3, there are two
degenerated modesfW Q2 andfW Q1, that maximizes the domi
nant eigenvaluel51VQ , corresponding to the wave vec
tors in Eq.~7!. Retaining these modes only and introduci
the real two-component fieldsfW 151/2(fW Q21fW Q1) and
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fW 25(1/2)i (fW Q22fW Q1) , one can expand Eq.~8! to quartic
order infW 1,2 leading, in the continuum limit, to a free energ
density of the form

b f5
1

2
r 0~fW 1

21fW 2
2!1

1

2
eF S ]

]x
fW 1D 21S ]

]x
fW 2D 2G

1
1

2
f F S ]

]y
fW 1D 21S ]

]y
fW 2D 2G1u~fW 1

21fW 2
2!2

1v@~fW 1•fW 2!
22fW 1

2fW 2
2#, ~9!

where r 05kT/lQ21/2, e5(kT/2lQ
2 )(]2/]qx

2)lQ ,
f5(kT/2lQ

2 )(]2/]qy
2)lQ , andu,v.0. For r,1/3, there is

only one critical mode, (qx ,qy)5(0,0), and the resulting
Ginzburg-Landau expansion has a single two-compon
fluctuating field which is known to lie in the KT universalit
class. Apart from the space anisotropy,eÞ f whenrÞ1, that
can be eliminated by rescaling thex andy space directions
appropriately, the free energy~9! has the same form as thos
obtained for the SFXY and TFXY ~Refs. 29, 31, 30, and 15!
in terms of complex scalar fieldsw i5uwueiu i . In particular,
since the present model incorporates both the SFXYand
TFXY as special cases, it clearly demonstrates that the
XY and TFXYare described by the same Ginzburg-Land
free energy up to quartic order, in agreement with the ar
ments of Ref. 15.

As usual, in two dimensions, fluctuations in the mag
tude of the order parameter are assumed to be irrelevant
can then approximate these magnitudes by their corresp
ing mean-field valuesuc1,2u5c052r 0(2u2v) and consider
only fluctuations of the phaseu i in Eq. ~9!, leading to an
effective lattice Hamiltonian in the form of two couple
XY models

bH52(̂
i j &

@G1cos~u1,i2u1,j !1G2cos~u2,i2u2,j !#

2h(
i
cos2~u1,i2u2,i !, ~10!

whereG15G25uc0uAe f and the spatial anisotropy has be
removed by rescalingx→xAe/ f , y→y. In a renormalization
study of this model,18 theG15G2 subspace is only preserve
under renormalization if they are initially equal. ForG1
ÞG2, a double transition is found with an Ising followed b
a KT transition as temperature is increased. It is also fou
that the coupling termh is a relevant variable locking the
phase difference intou2i5u1i1pt, where t50,1. This
leads, in theh→`, to an effective Hamiltonian in the form
of coupledXY and Ising models14,15

bH52(̂
i j &

@~Aeff1Beffs is j !cos~u i2u j !1Ceffs is j #,

~11!

whereAeff , Beff, andCeff are effective couplings which de
pend on the initial values ofG1,2, h and other couplings
generated by the renormalization procedure, a
s i52t i21561 is an Ising-like variable. The condition
Aeff5Beff is preserved ifG15G2 in Eq. ~10! as is the case for
the zig-zag model, even though this model is anisotropic
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55 8365PHASE TRANSITIONS IN A FRUSTRATEDXY MODEL . . .
rÞ1. This should be contrasted to the generalized SFXY
model considered by Bergeet al.,17 where the Ginzburg-
Landau free energy has the same form as in Eq.~9! but with
a spatial anisotropy, in thex and y directions, of different
magnitudes for thefW 1 and fW 2 fields which cannot be re
moved by simple rescaling.18 This leads to coupledXYmod-
els with G1ÞG2 in Eq. ~10! and consequently should b
described by anXY-Ising model withAÞB in Eq. ~11!
which undergoes two separate transitions, an Ising follow
by a KT transition for increasing temperatures, in agreem
with simulations.17

The phase diagram of theXY-Ising model of Eq.~11! for
A5B consists of three branches which meet at a multicriti
point.15 One of the branches corresponds to single transiti
with simultaneous loss ofXY and Ising order, and the othe
two to separate KT and Ising transitions. The line of sin
transitions eventually becomes first order further away fr
the branch point. Our model corresponds to a particular p
through the phase diagram of theXY-Ising model and the
single or double character of the transition depends on
relative position to the multicritical point. Since there a
already indications from numerical simulations9,10,12 that
both SFXY and TFXY limits are in the single transition re
gion, we expect that the whole transition lineLT for r.rL
in Fig. 3 should correspond to this critical line. Numeric
estimates of critical exponents associated with theZ2 order
parameter for theXY-Ising model deviate significantly from
the pure Ising values along the critical line15,16 and will be
used in Sec. VI to identify which particular path through t
phase diagram is realized for the zig-zag model.

VI. MONTE CARLO SIMULATIONS

Due to the presence of an incommensurate phase,
standardperiodic boundary conditionsare not appropriate
for the zig-zag model since they cause an additional frus
tion in the system. Therefore we use aself-consistent bound
ary condition that allow the system to adapt the bounda
condition to the pitch of the helical configuration.26,27 In ad-
dition, this boundary condition also improves the determi
tion of the spin stiffness. A similar method8 has also been
used recently for the SFXY.

A. Phase diagram

To determine the global phase diagram we used sim
tions of a 36336 system for various values ofr. For each
value, two separate simulations, one starting from the gro
state and the other from the high-temperature phase, w
used to estimate the critical temperature. The transition t
perature,TI , associated with the chiral order parameter, w
obtained from the peak in the chiral staggered susceptibi
with the chiral order parameter defined by Eq.~2!. An esti-
mate of the KT transition temperature,TKT , was obtained
from the expected universal value of the spin stiffnessg,
g(TKT)/kTKT52/p, at the transition. Since forrÞ1 the
model is anisotropic,g was obtained asg5Agxxgyy, where
gxx and gyy are thex and y components of the stiffnes
g i j . This is the quantity that should be universal at the K
transition. The anisotropy of the renormalized Gauss
model, at the critical point, can be removed by rescaling
d
nt
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coordinate axes, as in the derivation of Eq.~10!, leading to
the geometric mean as the effective stiffness. The same
eraging procedure has also been used in Ref. 20 to trea
anisotropic model of Ref. 17.

The phase diagram obtained by Monte Carlo simulatio
is shown in Fig. 4. The estimates ofTI andTKT agree within
the errorbars forr larger than a critical valuerL , which we
take as an estimate of the Lifshitz point. This phase diagr
is similar to the MF result of Sec. III but the Lifshitz point i
located at (rL.0.6,TL.0.35) and should be compared wit
the MF result, (r51/3,T57/6). The transition lineXL has
the main features of a KT transition with a jump in the sp
stiffness consistent with the universal value 2/p and a non-
divergent specific heat.

The transition lineCL is characterized by a divergen
chiral susceptibility and an apparent continuous vanishing
gxx while gyy remains finite as shown in Fig. 5. An analys
similar to the one used in Ref. 20 for the model studied
Bergeet al.17 can also be applied to the zig-zag model a

FIG. 5. Temperature dependence of spin stiffness and ch
susceptibility through theCL transition line of the phase diagram i
Fig. 4 atr50.4. The data points forgxx are scaled by 10 and fo
xs scaled by 1/10.

FIG. 4. Phase diagram obtained from Monte Carlo simulatio
For r.r l , critical-temperature estimatesTI andTKT agree within
errorbars and onlyTI is indicated.
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8366 55MOURAD BENAKLI AND ENZO GRANATO
shows thatgxx is inversely proportional to the chiral susce
tibility and should therefore decrease continuously at
transition when the susceptibility diverges. Similar behav
has been found in a generalized model for the triangu
lattice.26,27

B. Critical exponents

There have been recently many attempts to obtain
proved estimates of the critical exponents for the fully fru
trated XY model.21,9–12 For the continuous symmetry, th
available scaling forms requires the simultaneous fit of t
or more parameters and an assumption of KT behavior. T
may lead to systematic errors in the location of the KT tra
sition temperature. For the chiral~Ising-like! order parameter
there exist scaling analysis which do not require a prec
knowledge of the bulkTc and can provide an estimate of th
critical exponents with a one-parameter fit. As simple e
mates ofTI andTKT already agree within errorbars along th
transition line forr.rL , as indicated in Fig. 4, attemptin
to locate the transition line using, separately, KT scal
forms for the U~1! symmetry and pure Ising critical behavio
for the chiral variables will inevitably lead to estimates
critical points which are difficult to resolve on purely nu
merical grounds due to errorbars. However, if the criti
behavior along this line is in fact in the same universa
class as theXY-Ising model as suggested by the analysis
Sec. V, then in order to verify the single nature of the tra
sition, it is sufficient to study theZ2 degrees of freedom.

14 If
the critical exponents are inconsistent with pure Ising valu
the transition cannot correspond to the Ising branch o
double transition or to a single but decoupled transiti
Moreover, the value of the critical exponent can be used
verify if indeed the critical behavior corresponds to the cr
cal line of theXY-Ising model. In order to estimate the chir
critical exponents independently ofTc , we use the same
method, based on the finite-size scaling of free-energy ba
ers, which has been applied to the SFXY and TFXY
models.15

In order to obtain good statistics, we consider only s
tems of size 838 to 36336, with typically 62123106

Monte Carlo steps. The simulations were performed near
effective~finite-size! critical temperature found in the prev
ous section. The histogram method is then used to extra
late the needed quantity for different temperatures in the
cinity of the critical temperature. We follow the sam
method used in Refs. 15,9 for the SFXY and TFXY models.
The thermodynamic critical temperatureTc can be deter-
mined by the crossing of the free-energy barriersDF(T,L),
obtained from the chirality histogramN(s) as
DF5AM(T,L)2Am(T,L), whereAM is the maximum and
Am is one of the two minima inA(s)52 lnN(s). At the
critical point DF is scale invariant but sufficiently close t
Tc , DF can be expanded to linear order intL1/n as
DF5a1btL1/n, where t5(T2Tc)/Tc . In this scaling re-
gime, the exponentn I can be extracted from the finite-siz
behavior of the temperature derivative]DF/]T5bL1/n as a
one-parameter fit in a log-log plot, without requiring a pr
cise ~simultaneous! determination ofTc . The exponent
2b/n is extracted from the scaling behavior
smin;L2b/n, corresponding to the minimum
e
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Am(smin), which only holds at the critical point and thus
more affected but the estimate ofTc .

We have studied two different values ofr in detail,
r50.7 andr51.5, which are located between the SFXY
model limit and the Lifshitz point and between the SFXY
model and the TFXY model limit, respectively. Forr51.5
we observed crossing ofDF for L>18 as shown in Fig. 6.
Corrections to scaling are clearly seen for 6<L<12. These
sizes were not used for the estimates of critical expone
Note that, this free-energy barriers suffer less from corr
tions to scaling than Binder’s cumulant,32 UL

512^sL
4&/3^sL

2&2, which is also expected to cross at
unique point. This is shown in Fig. 7 where a sign of uniq
crossing is only observed at the largest system sizes.
latter behavior has been used by Olsson8 in relation to the
SFXY model to suggest that there are in fact two separ
transitions and the estimates ofn are still dominated by smal
system sizes. The method we are using, however, indic
clearly a single crossing point suggesting a reliable estim
of n I . Figure 8 shows the size dependence of the sl
]DF/]TuTc from where 1/n51.25(1) can be estimated an

Fig. 9 shows the behavior ofsmin which gives the estimate
2b/n50.29(2). The critical temperature is obtained from

FIG. 6. Finite-size scaling of the free-energy barrierDF for
r51.5.

FIG. 7. Finite-size scaling of Binder’s cumulantUL for
r51.5.
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the value ofT at the crossing point in Fig. 7 and give
Tc50.4935(5). The same analysis has been done
r50.7 giving Tc50.408(2), 1/n51.28(2) and 2b/n
50.32(4). These estimates deviate significantly from t
pure Ising values, 1/n51 and 2b/n51/4, and suggest a
single transition scenario. Moreover, these values are con
tent with those found for theXY-Ising model along the criti-
cal line.15,16 This is the same behavior found for the SFXY
and TFXY models using the same methods.15

VII. CONCLUSION

We have introduced a generalized version of the squ
lattice frustratedXYmodel where unequal ferromagnetic a
antiferromagnetic couplings are arranged in a zig-zag
tern. One of the main features of the model is that the ra
between the couplingsr can be used to tune the syste
through different phase transitions and in one particular li
it is equivalent to the isotropic triangular-lattice frustrat
XY model. The model can be physically realized as
Josephson-junction array with two different couplings and
a magnetic field corresponding to a half-flux quanta
plaquette. We used a mean-field approximation, Ginzbu
Landau expansion and finite-size scaling of Monte Ca
simulations to study the phase diagram and critical behav
Mean-field approximation gives a phase diagram wh

FIG. 8. Finite-size scaling of]DF/]T for r51.5.

FIG. 9. Finite-size scaling ofsmin for r51.5.
r
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qualitatively agrees with the one obtained by Monte Ca
simulations. Depending on the value ofr, two separate tran-
sitions or a transition line with combinedZ2 and U~1! sym-
metries, takes place. Based on an effective Hamiltonian,
showed that this transition line is in the universality class
theXY-Ising model and the phase transitions of the stand
SFXY and TFXY models correspond to two different cu
through the same transition line. Estimates of the ch
(Z2) critical exponents from a finite-size analysis of Mon
Carlo data were found to be consistent with previous e
mates for the SFXY and TFXYmodels using the same meth
ods. They also agree with the corresponding values along
critical line of the coupledXY-Ising model suggesting a pos
sible physical realization of theXY-Ising model critical line
in a frustratedXY model or Josephson-junction array with
zig-zag coupling modulation.

APPENDIX

The mean-field equations for the zig-zag model can
derived by an analysis similar to the one used in Ref. 19. T
corresponding MF equations are

Mi[^SW i&MF5R~bHi !
HW i

Hi
, ~A1!

where HW i5( j Ji j MW j is the mean field,R(x)5I 1(x)/I 0(x)
andb51/kT.

To find the MF phase diagram we expand Eq.~A1! about
the transition temperatureTc

MF using R(x)5(1/2)x1O(x)
for x→0, which reduces to

MW i5
1

2

1

Tc
MF(

j
Ji j MW j . ~A2!

It appears that one needs to make an assumption on the
of the solutionMi in order to findTc

MF . However, if we note
the similarity of Eq.~A2! and the zero-temperature limit o
Eq. ~A1!, we can identify the transition temperature as

Tc
MF5

HGS

2
, ~A3!

provided the local fieldHi5( j Ji j MW j is independent of the
position. Although this property is not expected to hold
general, it is satisfied exactly in the ground state found
Sec. III. We then obtain

r<
1

3
→Tc

MF5~2r13!/2,

r>
1

3
→Tc

MF5A~11r!3/4r. ~A4!

If, in addition, we assume thatHi remains independent ofi at
any temperature 0,T,Tc

MF we obtain

R~bH !

H
5

1

HGS. ~A5!

This equation, together with Eq.~A1!, shows that the struc
ture of the local configuration around a plaquette and
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pitch of the helical configuration is independent of the te
perature in this approximation.

For r→1` we expect to retrieve the mean-field solutio
of the TFXY model. However Eq.~A4! leads to a diverging
value ofTc

MF asr→1`. As can be seen from Eq.~A1!, the
temperature is scaled by the magnitude of the mean-fi
vector (u( j Ji j MW j u) which diverges when→1`. This is an
a

ys

. B
-

ld

artifact of the mean-field approximation and oth
methods, such as perturbative or variational approxim
tion,24 can remove this divergence. In fact, the phase diag
obtained by Monte Carlo simulations in Sec. V leads to
transition temperature that saturates, forr→1`, to a value
consistent with the transition temperature of the TFXY
model.
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