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We study a generalized version of the square-lattice frustéa¥dhodel where unequal ferromagnetic and
antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the coumimbe used
to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice fruXtvateaddel.
The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic
field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion
and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behavior.
Depending on the value gf, two separate transitions or a transition line in the universality class of the
XY-Ising model, with combined, and U1) symmetries, takes place. In particular, the phase transitions of the
standard square-lattice and triangular-lattice frustrat¥dnodels correspond to two different cuts through the
same transition line. Estimates of the chirdl) critical exponents on this transition line deviate significantly
from the pure Ising values, consistent with that along the critical line oKtfidsing model. This suggests that
a frustratedX'Y model or Josephson-junction array with a zig-zag coupling modulation can provide a physical
realization of theXY-Ising model critical line[S0163-18207)06813-4

[. INTRODUCTION some appealing arguments which exclude one of the two
possibilities, Ising followed by a KT transition for increasing
There has been an increasing interest in frustraat temperature, in the case of a double transition sceRario.
models in relation to Josephson-junction arrays in a magneti©ther numerical works, however, which attempt an im-
field1® At a particular value of the external field, corre- proved estimate of the chiral critical exponents tend to con-
sponding to half flux quanta per plaquette of the array, thelude that these exponents deviate significantly from the pure
ideal system is isomorphic to a frustratéd model, or Vil-  Ising values:*®*?In particular, based on the results for the
lain’s odd modef with ferromagnetic and antiferromagnetic coupled XY-Ising model as an effective Hamiltonian for
bonds satisfying the odd rule, in which every plaquette haghese systems;**it has been argued that, in the case of the
an odd number of antiferromagnetic bonds. Frustration hasingle transition scenario, both the X6¥ and TEXY model
the effect of introducing a discretg, symmetry in the display a transition with exponents deviating from the pure
ground state with an associated chifsing-like) order pa-  Ising values. Moreover, the exponents are given by the cor-
rameter, in addition to the continuoug1) symmetry. The responding values along the critical line of this model. Esti-
interplay between these two order parameters may lead twates of chiral exponents from Monte Carlo datand
critical behavior which is not present in the unfrustratedtransfer-matrix calculation$*? are consistent with the
model which is known to have a transition in the Kosterliz- X Y-Ising model universality class:*®
Thouless(KT) universality class. A generalized version of the SF¥ model has been intro-
Earlier Monte Carlo simulation results for the isotropic duced by Bergeet al!” where the strength of the antiferro-
square-lattick!” (SFXY) and triangular-lattice® (TFXY)  magnetic bonds can be varied. This introduces a particular
frustratedX Y model, and some recent onésuggest a criti-  anisotropy into the system and leads to clearly separated
cal behavior associated with the chiral order parameter ihsing and KT-like transitions for unequal strengfti€C but
agreement with pure Ising exponents while the continuousvhich appear to merge into a single one for equal strengths,
(XY) degrees of freedom display the main features of the KTcorresponding to the isotropic &% model. There is a criti-
transition, possibly with a nonuniversal jump. Estimates ofcal value for the bond strength, 1/3, below which the twofold
the corresponding critical temperatures are always too closdegeneracy disappears. Other generalizations have been in-
to be satisfactorily resolved within the error bars, speciallytroduced for the TKY model that also leads to a critical
when possible systematic errors due to the assumed KT scaitrength below which the frustration effect is suppre£e.
ing forms are taken into account. These results can either beommon feature in the topology of the phase diagram of
regarded as an indication of a single but decoupled transihese generalized versions is that the isotropic model always
tion, where the Ising ani'Y variables have standard behav- corresponds to the region where chiral a0d ordering can-
ior and the same critical point, or else there are two separateot be clearly resolved. However, so far, theX3fFand
by close transitions of Ising and KT type. There exist alsoTFXY models have been treated as separated models.
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In this work, we introduce a generalized version of the B A B A
SFEXYmodel where unequal ferromagnetic and antiferromag-
netic couplings are arranged in a zig-zag pattern. The ratio
between the couplingp can be used to tune the system,
continuously, from the isotropic S& to the TEXYmodel,
allowing the study of both models within the same frame- A B A B
work. The model can be physically realized as a Josephson-
junction array with two different couplings, in a magnetic
field corresponding to half-flux quanta per plaquette. We use
a mean-field approximation, Ginzburg-Landau expansion,
and finite-size scaling of Monte Carlo simulations to study , L )
the phase diagram and critical behavior. Depending on the F'C: 1. Generalized frustratedy model with zig-zag coupling
value of p, two separate transitions or a transition line with mOdmat'.on' ComTu,ous Ilne_s correspond to couplig=1J a.nd

. . double lines taJ;;=J'. The sitesA and B denote two sublattices
combinedZ, and U1) symmetries, takes place. Based on an : |

. . A . . ~~ = . where spins do not interact.
effective Hamiltonian, we show that this transition line is in
the universality class of th¥Y-Ising model and the phase
transitions of the standard XF and TEXY models corre-
spond to two different cuts through the same transition line
Estimates of the chiralZ,) critical exponents are consistent forming  the “gauge” transformation S—eS

with that along the critical line of the coupledY-Ising J.;—Jj €i€; . wheree;=1 and—1 on the sublatticea and

model, suggesting a possible physical realization of the)" : L i .
XY-Ising model critical line in a frustrateXY model or e]?eﬁg;‘g'gﬁé:izee(ét(;\(}i?{h;isuwzgéginﬂfzrroergiﬁnggﬁngf

Josephson-junction array with a zig-zag coupling modula—spins connected by &' bond become locked and may be

B A B A

Whenp=1, the model reduces to the $F model while
in the limit p— + it is topologically equivalent to the TF
XYmodel. The latter limit can be easily established after per-

tion. ; . X . .
. . . replaced by an effective spin, leading to an antiferromagnetic
The remalnd_er of the paper is organized as follows. InXY model with the same coordination number as the trian-
Sec. Il, we define the model. In Sec. lll, the ground-stat€e

properties obtained by two different methods are presente ular lattice. The model is then well suited for the study of

In Sec. IV, a mean-field approximation is used to obtain th hi unlv_e(r)saélty i:laszes of tbOﬂ; ZF and Tﬁ%YY mgdlels.
global features of the phase diagram. In Sec. V, the effectiv henp— ’ | Iq.(' )re #.Cﬁs oda erromagneucy modet on
Hamiltonian obtained by Ginzburg-Landau expansions if hexagona attice which undergoes a KT transition.
presented and its relation to couplédy models and the

XY-Ising model is discussed. In Sec. VI, we present numeri- . GROUND STATE

cal results of Monte Carlo simulations for the phase diagram

: o . Priast In another generalization of the frustraté¢Y model}” it
and chiral critical exponents obtained from finite-size scal-
) . ) . has been shown that the lowest energy state can be con-
ing. Finally, Sec. VIl is devoted to the conclusions.

structed by building up the configuration of the infinite lat-
tice from the ground-state configuration of a single plaquette.
Il. THE MODEL In our case, the same procedure can be used if we allow for
) _ ) rotations and reflections of the “one plaquette ground-state
The generalized version of the frustratédf model intro- - ¢onfiguration” which also assures that the true ground state
duced by Berget al." can be regarded as & version of 5 gptained. No assumption on the periodicity of the ground
one of the two frustrated Ising models with periodic interac-state is made. The plaguette configuration is indicated in Fig.
tions first introduced by Andret al?* The other model has 2(a) for p>1/3 and it is the same as used in Ref. 17. The spin
the important feature that it reduces to the triangular—lattic%onﬁguration is collinear fop<1/3 and a canted one for

antiferromagnetic Ising model in one particular limit. In ,~ 1/3 For the canted configuration one can define a chiral
analogy to this model, we consider a system of classica| g iaple for each plaquette

XY spins on a square lattice with nearest-neighbors interac-
tions modulated in a periodic pattern. The Hamiltonian of

S E 1 ..
this zig-zag model is given by op=— > JSxS, (2)
0 (ijyeP
1 S 368 where 2 ;jycp is a direct summation around the plaquette
H=- 2 & %S S, @ and oy is a normalization factor given by

where the sum is restricted to the first neighbors 8nis a o :3P+1 3 /3p_ 1. ®)
two-component unit vector. The couplindg can have two o 2p p
different valuesJ andJ’, distributed periodically in a zig-
zag pattern as indicated in Fig. 1. We chods® be ferro- For p>1/3, the ground state of the infinite system con-
magnetic (>0) and definel’ = —pJ, wherep is the cou- structed by the above procedure consists in a helical spin

pling ratio. We are interested in the cgse 0, where each ordering which is incommensuratewith the underlying
plaguette has an odd number of antiferromagnet bonds, Vilsquare lattice, except wher=1 andp =, corresponding to
lain’s odd rule? which leads to frustration effects. the SEXY and TEXY models. The pitchA of the helical
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configuration, can be obtained from half the phase differenceollinear, the ground state is a ferromagnetic configuration of
within the same sublattice in thedirection and is given by Spins.
As an alternative to the above method, the ground state
1-p can also be obtained by a direct minimization of the Fourier-
- rcco% ?) 4) transform interaction matrix;- J, 4. In the present case, we
note that there are two noninteracting sublattices, corre-
In Fig. 2(b) we show the resulting ground-state configu- sponding to the site& andB in Fig. 1, where the Fourier
ration. The ground state is double degenerate, correspondifghnsform can be easily carried out. The interaction matrix
to an antiferromagnetic arrangement of plaquette chiralitie§g.| _wherek,| denote the sublattices andB, can be writ-
o==*1.
For p<1/3, where the single plaquette configuration isten as

A=ZCos‘13 prl
2 p

0 e'%x— pe 19+ eldy+ e idy
JEJ:J iy i i —i (5)
—pe'Ix+e '+ gy + e 0
The eigenvalues are given by,= +V,, where
Vq=Jv(1+p)*+4[—p coS(q,) +cos(q,) +(1—p)cogd,)cogqy)], (6)
and the dominant eigenvalug,= +V, reaches a maximum IV. MEAN-FIELD PHASE DIAGRAM

at The general form of the phase diagram can be obtained by

a mean-field MF) analysis. Although, at finite temperatures,
this analysis neglects the role of fluctuations it gives never-
theless a good qualitative picture of the phase diagram that
can also be greatly improved by perturbative or variational
1 techniques. The details are described in the Appendix.
{ax=*arcco$(1-p)/(2p)],q,=0} for p=3. (7) Figure 3 shows the phase diagram obtained by the mean-
field approximation. Forp<<1/3, the system undergoes a

From Eq.(7), the wave vector characterizing the ground statdransition from a paramagnetic to a ferromagnetic phase
for p>1/3 is, in general, incommensurate with the lattice@long the transition line&XL. This transition is in the KT
periodicity in thex direction, except forp=1 and p=c° universality class since there is only a single critical mode

corresponding to the SEY and TFXY models. The eigen- 9=(0,0) and no additional symmetry in the ground state
vector associated to the largest eigenvalue is a possible red€sides the continuous(l) symmetry. Fop>1/3, there is a
ization of ground state provided the corresponding spin conP@ramagnetic phase at high temperatures and a helical phase
figuration satisfy the unit vector conditiof§|=1. In the at low temperatures which is incommensurate with the lattice
9 ' eriodicity except forp=1 andp+ where the model re-

present case, they do satisfy this condition and correspond £ . i
the same configuration as found from the single pIaquetté)uces to the SkY and TEXY models, respectively. The he

method described above. ical phase has an additional discr@esymmetry associated

(qXZO,quO) for p< %,
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FIG. 2. Ground state fop>1/3 consisting in a helical configu-
ration of spins(a) Ground-state configuration of a single plaquette  FIG. 3. Mean-field phase diagraif.indicates the ferromagnetic
and (b) spin configuration for the infinite lattice. phase P the paramagnetic phase aHdthe helical(chiral) phase.
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with the antiferromagnetic arrangement of plaquette chirali-ggzz(l/z)i((;Q,_ (ZQ+) , one can expand E@8) to quartic

ties op in the ground state. The mean-field analysis gives &rder ind -, leading. in the continuum limit. to a free ener
single transition fop>1/3. Therefore, the whole lineT for o cir ((j))fl’chE forn?, ’ oy

p>1, including the TKXY limit, is expected to have the

same type of behavior as the X¥ model atp=1. The 1 ., ., 1 9 .\%2 [¢g.\2
nature of this transition however cannot be studied at the  Bf=5ro(d1+d7)+5€/| —d1]| +| -2
. . . 2 2 [\ ax IX
mean-field level and other methods are required, as will be
presented in Secs. V and VI. Note that, in contrast to the 1[(a.\%2 [a.)\? =2 22s
generalized version of the frustratét¥ model considered T30\ ayP) Tl gy e [TU(dit )
by Bergeet al.,!” where a clear separation into two transi-
tions forp+1 is already found at the mean-field levéthe ol (- do)2— 2421, 9)

zig-zag model displays two transitions only fer<1/3 Iy s a2
within the same kind of approximation. This suggests thatVhere — ro=kT/Aq—1/2, e=(KT/2.Q) (6°1da,) N g,
the separation of these transitions is not simply a result of thé= (KT/2\3)(¢°/dq;)\q, andu,v>0. For p<1/3, there is
induced anisotropy fop#1 but should be related to the only one critical mode, d,qy)=(0,0), and the resulting
nature of the coupling between chikiing) andX Y degrees ~ Ginzburg-Landau expansion has a single two-component
of freedom, in agreement with arguments based on an effedluctuating field which is known to lie in the KT universality
tive coupled XY-Ising model Hamiltoniad* As will be  class. Apart from the space anisotropy; f whenp# 1, that
shown in Sec. IV, for the zig-zag model the form of this can be eliminated by rescaling theandy space directions
coupling is unchanged fgs~1 andp>1, suggesting that a appropriately, the free energ9) has the same form as those
clear separation is not expected. obtained for the SKY and TFEXY (Refs. 29, 31, 30, and 15
The transition lineCL separating the ferromagnetic from in terms of complex scalar fields,=|¢[€'* . In particular,
helical phase can be regarded as a commensuratéince the present model incorporates both theX*&#nd
incommensurate transition which joins the other transitionTFXY as special cases, it clearly demonstrates that the SF
lines, XL and LT, at a Lifshitz pointL at T#0. In mean XY and TEXYare described by the same Ginzburg-Landau
field, this transition line is given by = 1/3 corresponding to free energy up to quartic order, in agreement with the argu-
the stability boundary between the two modes in Ef.  ments of Ref. 15.
Although, there are interesting questions regarding the pre- As usual, in two dimensions, fluctuations in the magni-
cise location of the Lifshitz point and the nature of the phasdude of the order parameter are assumed to be irrelevant. We
transition along this 1iné>-?®these will not be the subject of can then approximate these magnitudes by their correspond-

a detailed study in this work. ing mean-field valuepy, J = o= —ro(2u—v) and consider
only fluctuations of the phasé; in Eq. (9), leading to an
V. EEFECTIVE HAMILTONIAN effective lattice Hamiltonian in the form of two coupled
XY models

The universality class of phase transitions can be consid-
ered on the basis of an effective Hamiltonian obtained by
Ginzburg-Landau expansions. Invoking the universality hy- BH= _<i2j> [I'108 6= 61)) + '2C08 65— 6) ]
pothesis, one expects that models with the same effective
Hamiltonian differing only by irrelevant terms are in the
same universality class. In this section, we discuss the criti-
cal behavior in the regiop>1/3 where the ground state is ) )
double degenerated by deriving the corresponding effectiviherel’s =T'>=|4;| Jef and the spatial anisotropy has been
Hamiltonian. An effective Hamiltonian can be obtained from removed by rescaling—x./e/f, y—y. In a renormalization
the free-energy functional, describing fluctuations around thétudy of this modet? theT'; =T, subspace is only preserved
MF solution discussed in Sec. IV, via a Hubbard-under renormalization if they are initially equal. Féy
Stratonovich transformation in a standard vi&y° One re-  #I',, @ double transition is found with an Ising followed by
places Eq(1) by a KT transition as temperature is increased. It is also found
P that the coupling ternh is a relevant variable locking the
. 1r 2 > phase difference intod,;= 64+ w7, where 7=0,1. This
kT E% Kij t"tJ_Ei wltil). 8 |eads, in theh—c, to an effective Hamiltonian in the form
A of coupledXY and Ising modefé-*
where 2ti azrle uncoglstrained spins  weighted by
W(X) ~x“/4—x*164+ O(x®) andK;;; =J;; /kT. In the present _
case, we can separate the lattice Jspiné into two noninteracting pH= <|E]> [(Aeirt Beri) €09 0= ) + Cegri o],
sublattices, corresponding to sitésand B in Fig. 1. The 11

. . . |’k . .
interaction matrixJ¢™ is then given by EQ(5) and the cor- \haren B . andC, are effective couplings which de-
responding eigenvalues by E@). For p>1/3, there are two pend on the initial values of ;,, h and other couplings

degenerated modesg - and ¢q+, that maximizes the domi- generated by the renormalization procedure, and
nant eigenvalue\= +Vq, corresponding to the wave vec- 4,=27,—1==+1 is an Ising-like variable. The condition
tors in Eq.(7). Retaining these modes only and introducing A 4= B is preserved il ;=T in Eq. (10) as is the case for
the real two-component field$§1=1/2($¢+ <ZQ+) and the zig-zag model, even though this model is anisotropic for

—h>) cosA 6y;— b)), (10)
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p#1. This should be contrasted to the generalized'6F 08
model considered by Berget al,}’” where the Ginzburg-
Landau free energy has the same form as in(Bgbut with

a spatial anisotropy, in the andy directions, of different

magnitudes for thep, and ¢, fields which cannot be re-
moved by simple rescalinf.This leads to coupled Y mod-

els with I';#I', in Eg. (10) and consequently should be
described by anXY-Ising model withA#B in Eq. (11)
which undergoes two separate transitions, an Ising followed
by a KT transition for increasing temperatures, in agreement
with simulations’

The phase diagram of theY-Ising model of Eq(11) for
A=B consists of three branches which meet at a multicritical
point® One of the branches corresponds to single transitions
with simultaneous loss XY and Ising order, and the other

two to separate KT and Ising transitions. The line of single FIG. 4. Phase diagram obtained from Monte Carlo simulations.

transitions eve_:ntually becomes first order further away fromeq, p>p,, critical-temperature estimatds and Ty agree within
the branch point. Our model corresponds to a particular patQ,orpars and onlyf, is indicated.

through the phase diagram of t€Y-Ising model and the

single or double character of the transition depends on the di in the derivati f leadi
relative position to the multicritical point. Since there are 9°' Inate axes, as in the derivation of K4, leading to
already indications from numerical simulati§t&? that the geometric mean as the effective stiffness. The same av-

both SEXY and TFXY limits are in the single transition re- eraging procedure has also been used in Ref. 20 to treat the

- e anisotropic model of Ref. 17.
gion, we expect that the whole transition lib& for p>p, : . . .
in Fig. 3 should correspond to this critical line. Numerical . 'I;]he ph_asls_ d'ig[ﬁ:n obtgmed b%/ Mog_tre Carlo S|m_url]§1t|ons
estimates of critical exponents associated with Zheorder 'i N ownbm ']9' I € e?]umates_ .f aln IKT agrer(]e_ V;’]'t in
parameter for th&X'Y-Ising model deviate significantly from the errorbars op arger t ana (.:rmca' valug, , which we
the pure Ising values along the critical I#5&® and will be take as an estimate of the Lifshitz point. This phase diagram

: : . . : is similar to the MF result of Sec. Il but the Lifshitz point is
used in Sec. VI to identify which particular path through the!S SIM! .
phase diagram is realized for the zig-zag model. located at p, =0.6,T, =0.35) and should be compared with

the MF result, p=1/3,T=7/6). The transition lineXL has

the main features of a KT transition with a jump in the spin
VI. MONTE CARLO SIMULATIONS stiffness consistent with the universal valuer2ind a non-
rlivergent specific heat.

p

Due to the presence of an incommensurate phase, t = . ) ) )
standardperiodic boundary conditiongre not appropriate  1he transition lineCL is characterized by a divergent
for the zig-zag model since they cause an additional frustrachiral susceptibility and an apparent continuous vanishing of
tion in the system. Therefore we uss@f-consistent bound- ¥xx While vy, remains finite as shown in Fig. 5. An analysis
ary conditionthat allow the system to adapt the boundarySimilar to the one used in Ref. 20 for the model studied by
condition to the pitch of the helical configuratié®?’ In ad-  Bergeetal.”” can also be applied to the zig-zag model and
dition, this boundary condition also improves the determina-
tion of the spin stiffness. A similar methbdas also been
used recently for the SEY.

2.0

A. Phase diagram

To determine the global phase diagram we used simula-
tions of a 36<36 system for various values @f For each o
value, two separate simulations, one starting from the ground ol
state and the other from the high-temperature phase, were>.ii ’
used to estimate the critical temperature. The transition tem- .»
perature,T,, associated with the chiral order parameter, was
obtained from the peak in the chiral staggered susceptibility, o5t
with the chiral order parameter defined by E8). An esti-
mate of the KT transition temperatur€y;, was obtained
from the expected universal value of the spin stiffness
Y(Tkr)/KTr=2/7, at the transition. Since fop#1 the 0.00
model is anisotropicy was obtained ag= \ yyyyyy, Where
¥xx and yy, are thex andy components of the stiffness  F|G. 5. Temperature dependence of spin stiffness and chiral
vij - This is the quantity that should be universal at the KTsusceptibility through th€L transition line of the phase diagram in
transition. The anisotropy of the renormalized GaussiarFig. 4 atp=0.4. The data points foy,, are scaled by 10 and for
model, at the critical point, can be removed by rescaling the,, scaled by 1/10.
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shows thaty,, is inversely proportional to the chiral suscep- 50 —
tibility and should therefore decrease continuously at the . s—oL=8
oy T . .. . o—o =12
transition when the susceptibility diverges. Similar behavior =18
. . . a0 — =24

has been found in a generalized model for the triangular o L=30
lattice 2627 v =36

30 -

AF

B. Critical exponents

There have been recently many attempts to obtain im- 27

proved estimates of the critical exponents for the fully frus-
trated XY model?°~12 For the continuous symmetry, the 10}
available scaling forms requires the simultaneous fit of two
or more parameters and an assumption of KT behavior. This
may lead to systematic errors in the location of the KT tran- 0.480 0.490 0500 0510
sition temperature. For the chirdsing-like) order parameter T
there exist scaling analysis which do not require a precise o . )
knowledge of the bulk'. and can provide an estimate of the _FIG' 6. Finite-size scaling of the free-energy barrief for
critical exponents with a one-parameter fit. As simple estif >
mates ofT, and T« already agree within errorbars along the
transition line forp>p, , as indicated in Fig. 4, attempting Am(omin), Which only holds at the critical point and thus is
to locate the transition line using, separately, KT scalingmore affected but the estimate of .
forms for the U1) symmetry and pure Ising critical behavior ~ We have studied two different values of in detail,
for the chiral variables will inevitably lead to estimates of p=0.7 andp=1.5, which are located between the XSF
critical points which are difficult to resolve on purely nu- model limit and the Lifshitz point and between the)SF
merical grounds due to errorbars. However, if the criticalmodel and the TKY model limit, respectively. Fop=1.5
behavior along this line is in fact in the same universalitywe observed crossing &F for L=18 as shown in Fig. 6.
class as th&Y-Ising model as suggested by the analysis ofCorrections to scaling are clearly seen feeb=<12. These
Sec. V, then in order to verify the single nature of the tran-sizes were not used for the estimates of critical exponents.
sition, it is sufficient to study th&, degrees of freedotf.If ~ Note that, this free-energy barriers suffer less from correc-
the critical exponents are inconsistent with pure Ising valuesjons to  scaling than Binders cumulaift, U_
the transition cannot correspond to the Ising branch of a=1—<af)/3<of)2, which is also expected to cross at a
double transition or to a single but decoupled transition.unique point. This is shown in Fig. 7 where a sign of unique
Moreover, the value of the critical exponent can be used t@rossing is only observed at the largest system sizes. The
verify if indeed the critical behavior corresponds to the criti- latter behavior has been used by Olssonrelation to the
cal line of theXY-Ising model. In order to estimate the chiral SFXY model to suggest that there are in fact two separate
critical exponents independently df., we use the same transitions and the estimatesmofre still dominated by small
method, based on the finite-size scaling of free-energy barrisystem sizes. The method we are using, however, indicates
ers, which has been applied to the XSF and TEXY  clearly a single crossing point suggesting a reliable estimate
models!® of v,. Figure 8 shows the size dependence of the slope
In order to obtain good statistics, we consider only sys-9A F/(9T|Tc from where 1/=1.25(1) can be estimated and

tems of size &8 to 36<36, with typically 6-12xX10°  Fjg. 9 shows the behavior af,,;, which gives the estimate

Monte Carlo steps. The simulations were performed near thg g/, = 0.292). The critical temperature is obtained from
effective (finite-size critical temperature found in the previ-

ous section. The histogram method is then used to extrapo-
late the needed quantity for different temperatures in the vi-
cinity of the critical temperature. We follow the same
method used in Refs. 15,9 for the ¥ and TEXY models. 060 -
The thermodynamic critical temperatuiie, can be deter-
mined by the crossing of the free-energy barri&is(T,L),
obtained from the chirality histogram N(o) as
AF=An(T,L)—AL(T,L), whereAy, is the maximum and >
A, is one of the two minima iPA(o)= —InN(0). At the 050 |
critical point AF is scale invariant but sufficiently close to
T., AF can be expanded to linear order ‘" as
AF=a+btLY", wheret=(T—T.)/T.. In this scaling re-
gime, the exponent, can be extracted from the finite-size
behavior of the temperature derivativAF/dT=bL"” as a
one-parameter fit in a log-log plot, without requiring a pre-
cise (simultaneous determination of T.. The exponent
2B/v is extracted from the scaling behavior of FIG. 7. Finite-size scaling of Binder's cumulant, for
omin~L A, corresponding to the minimum p=1.5.

0.40 . "
0.480 0.490 T 0.500 0.510
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qualitatively agrees with the one obtained by Monte Carlo
simulations. Depending on the valuemftwo separate tran-
sitions or a transition line with combined, and U1) sym-
metries, takes place. Based on an effective Hamiltonian, we
100 | ; showed that this transition line is in the universality class of
the XY-Ising model and the phase transitions of the standard
SEXY and TEXY models correspond to two different cuts
through the same transition line. Estimates of the chiral
(Z,) critical exponents from a finite-size analysis of Monte
» Carlo data were found to be consistent with previous esti-
mates for the SKY and TEXY models using the same meth-
ods. They also agree with the corresponding values along the
critical line of the coupledX Y-Ising model suggesting a pos-
10 ] sible physical realization of th¥Y-Ising model critical line

in a frustratedX'Y model or Josephson-junction array with a

FIG. 8. Finite-size scaling ofAF/JT for p=1.5. zig-zag coupling modulation.

d(AF)/dT

the value of T at the crossing point in Fig. 7 and gives APPENDIX
T.=0.493%5). The same analysis has been done for
p=0.7 giving T,=0.4082), 1/»=1.28(2) and Blv
=0.34). These estimates deviate significantly from the
pure Ising values, =1 and 28/v=1/4, and suggest a
single transition scenario. Moreover, these values are consis- H.

tent with those found for th& Y-Ising model along the criti- Miz<§>MF: R(IgHi)_‘, (A1)
cal line?>8 This is the same behavior found for the YSF H;i

and TEXY models using the same methdds.

The mean-field equations for the zig-zag model can be
derived by an analysis similar to the one used in Ref. 19. The
corresponding MF equations are

where H;=3;J;;M; is the mean fieldR(x)=1,(x)/lo(x)
and 8= 1/kT.
VIl. CONCLUSION To find the MF phase diagram we expand E4l) about

We have introduced a generalized version of the squardh€ transition temperaturg" using R(x) = (1/2)x+0O(x)
lattice frustratedK Y model where unequal ferromagnetic and for x—0, which reduces to
antiferromagnetic couplings are arranged in a zig-zag pat- 11
tern. One of the main features of the model is that the ratio M. =— MFZ M. (A2)
between the couplingg can be used to tune the system 2Tl
through different phase transitions and in one particular limi
|)t(\|(s r?%tjjl(\a/ﬁ Ie_metorrﬁgzells (Z[;(:]p|tc)etr|§rr]13:ilfarl-lljttr|gglil;rgjtrztsed of the solutionM, in order to findT¥F . However, if we note
Josephson-junction array with two different couplings and in he similarity of E.q'(Az.) and the z'e.ro-temperature limit of
a magnetic field corresponding to a half-flux quanta petEq' (A1), we can identify the transition temperature as
plaquette. We used a mean-field approximation, Ginzburg- HGS
Landau expansion and finite-size scaling of Monte Carlo TQ"F:T, (A3)
simulations to study the phase diagram and critical behavior.

Mean-field approximation gives a phase diagram whichyq ided the local fielH;=3;J;;M; is independent of the

position. Although this property is not expected to hold in
general, it is satisfied exactly in the ground state found in
Sec. lll. We then obtain

tIt appears that one needs to make an assumption on the form

025 1
p= §—>T2AF=(—p+3)/2,

0.20 -

€ 010 , p= 35— THF= {1+ p)V4p. (A4)
If, in addition, we assume that; remains independent ofat
03| ] any temperature @ T<TY we obtain
R(BH) 1
0105 13 16 20 25 2 ) H H_GS (A5)

L
This equation, together with E§A1), shows that the struc-
FIG. 9. Finite-size scaling of, for p=1.5. ture of the local configuration around a plaquette and the
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pitch of the helical configuration is independent of the tem-artifact of the mean-field approximation and other
perature in this approximation. methods, such as perturbative or variational approxima-

For p— + we expect to retrieve the mean-field solution tion,?* can remove this divergence. In fact, the phase diagram
of the TEXY model. However Eq(A4) leads to a diverging obtained by Monte Carlo simulations in Sec. V leads to a
value of Ty asp— +. As can be seen from E¢AL), the  transition temperature that saturates, gor + <, to a value
temperature is scaled by the magnitude of the mean-fieldonsistent with the transition temperature of theXWF
vector GE]-J”-M]-D which diverges when-+c. This is an  model.
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