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Dynamical transitions and sliding friction in the two-dimensional Frenkel-Kontorova model
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The nonlinear response of an adsorbed layer on a periodic substrate to an external force is studied via a
two-dimensional uniaxial Frenkel-Kontorova model. The nonequlibrium properties of the model are simulated
by Brownian molecular dynamics. Dynamical phase transitions between pinned solid, sliding commensurate
and incommensurate solids and hysteresis effects are found that are qualitatively similar to the results for a
Lennard-Jones model, thus demonstrating the universal nature of these features.@S0163-1829~99!04707-4#
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I. INTRODUCTION

In recent years, there has been an increasing effort ai
at trying to understand the frictional force between two m
roscopic sliding surfaces at the microscopic level.1–9 It is
now understood that in the case of boundary lubrication,
tightly bound monolayer in the regions of closest cont
between the two surfaces plays a crucial role in determin
the macroscopic sliding friction. At the same time, new e
perimental techniques such as the quartz-cry
microbalance10 ~QCM! and atomic force microscope3 ~AFM!
allow the direct probing of frictional force at the atom
level. Thus, the central theoretical issue in understand
boundary lubrication and atomic-scale friction is to det
mine how an adsorbed layer responds to an external dri
force. In the linear regime, the response is characterized
the collective diffusion constant, which is itself an importa
transport coefficient in determining surface dynamics such
growth of thin films.11 The nonlinear regime is the one re
evant for actual conditions of macroscopic sliding motio
Persson2 has made a series of pioneering studies on
problem based on a model of an adlayer of particles inter
ing with Lennard-Jones potentials. The central result is t
there are intriguing dynamic phase transitions betw
pinned solid, sliding solid, and liquid phases. Strong hys
esis effects exist in the transitions between these pha
leading to the ‘‘stick and slip’’ motion often observed in th
sliding motion between two macroscopic flat surfaces un
an external driving spring. In addition, Persson has use
general hydrodynamic argument to predict that the ratio
the static and sliding friction threshold should take a univ
sal value of approximately 2 for all systems with strong co
pling to the substrate.

The qualitative features of the results from this isotro
Lennard-Jones system are very encouraging. Besides the
evance for the boundary lubrication problem, the dynam
phase transitions that have been observed are of intri
interest and very different from the more familiar equili
rium transitions. However, actual adsorbate layers usu
have strong anisotropies and complicated many-body in
actions among the adatoms. The question then arises
how universal are the results for the Lennard-Jones sys
PRB 590163-1829/99/59~7!/5154~8!/$15.00
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Recently, Braunet al.7 have studied the nonlinear mobilit
of an adlayer based on a generalized vector Fren
Kontorova model. They have also observed a strong hys
esis effect in the transition between the pinned and runn
state, while the nature of the running state and the ratio of
static to sliding friction threshold they obtained are qu
different from the corresponding results of Persson. Ho
ever, it is difficult to make a direct comparison between the
studies. Persson focused mainly on an initial pinned s
that is commensurate with the substrate, while Braunet al.
focus almost exclusively on an initial state that is incomme
surate with the substrate. In the latter case, the sliding mo
is dominated by the response of the kinks or antikinks to
external force.

To facilitate a more direct comparison with Persson
study and address the question of universality in the sal
features, we present in this paper the results from a st
based on a uniaxial Frenkel-Kontorova model that is diff
ent from the one employed by Braunet al. In particular, the
particles in our model have harmonic springlike interactio
that prevent them from moving away from each other. T
implies a fixed coordination number for each adparticle an
very different nature of the liquid phase from the correspo
ing phase for the Lennard-Jones system. Moreover, the
ticle displacement is a scalar variable in contrast to the ve
displacements in the other models. Also, in this paper
focus mainly on an initial pinned state that is commensur
with the substrate. Surprisingly, we find that almost all t
features of the dynamic phase transitions and hysteresis
fects found in the Lennard-Jones system are present als
our generalized Frenkel-Kontorova model. The only nota
difference between the models is in the value of the ratio
the static to sliding friction threshold. We present below t
details of the model and the results. Preliminary results h
been reported in an earlier conference proceeding.5

II. MODEL

We consider a two-dimensional version of the Frenk
Kontorova ~FK! model, which is the simplest extension o
the one-dimensional model,13 obtained by coupling linear
harmonic chains along the additional dimension. The part
5154 ©1999 The American Physical Society
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PRB 59 5155DYNAMICAL TRANSITIONS AND SLIDING FRICTION . . .
displacement is always along the same direction, wh
makes it particularly convenient for numerical computatio
This model is clearly more appropriate to describe uniax
systems of adsorbed layers;14 however, we believe that th
main features of the dynamical behavior that we conside
this work should be independent of this type of anisotro
We have in fact checked that the dynamical transitions
hysteresis effects remain essentially the same if a more
tropic version of the model12 is used.

The model is described by the Hamiltonian

H5(
i , j

F pi j
2

2m
1

Kx

2
~xi 11,j2xi j 2b!21

Ky

2
~xi , j 112xi j !

2

2Uo cosS 2pxi j

a D G , ~1!

wherem is the mass of the particles;Uo the amplitude of the
periodic potential with perioda; Kx andKy are elastic con-
stants in thex andy directions, andb is the average distanc
between the particles in the absence of the external poten
The second term in the brackets represents the elastic i
action within a chain and the third term the interaction b
tween adatoms on different chains. Note that the indexi , j
labels the particles within a chain with integeri ( i
51, . . . ,Nx) and the chain with integerj ( j 51, . . . ,Ny),
so that the system consists of a total number ofNx3Ny
particles. In the simulations we have consideredNx5Ny
5N and Kx5Ky5K. Typical equilibrium particle configu-
rations above and below the depinning temperatureTc are
illustrated in Fig. 1 forb/a52.

We use periodic boundary conditions in most of the c
culations. This is obtained by requiring that the partic
(Nx11,j ) is a periodic image of the particle (1,j ) in the
same chain and soxNx11,j5x1,j1Nsa, whereNs is the num-

FIG. 1. Snapshot pictures of the adsorbate above and below
depinning temperatureTc . ~a! T53 and~b! T50.5.
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ber of local minima of the periodic substrate in thex direc-
tion. In the other direction, periodic boundary conditio
means thatxi ,Ny115xi ,1 . The average distance between pa
ticles b in each chain is determined through the bound
condition and is given byb5Nsa/N and therefore the over
layer coverage, or atomic concentration, can be defined
u5N/Ns5a/b. With this set up,u andb cannot be changed
independently. With free boundary conditions in thex direc-
tions, the ratiob/a can assume arbitrary nonrational value
The system now can remain commensurate for a giveu
only up to a critical valuedc of the misfit parameter13 d
5(b2a)/a. This boundary condition is particularly usefu
to study incommensurability effects.

An important feature of the model is that the particl
have a fixed number of neighbors. So, even at high temp
tures, where a liquid phase with particles diffusing arou
independently is usually expected, there is some crystal
order although the correlations decay as a power law.14 We
shall, nevertheless, refer to this phase as a ‘‘fluid,’’ keep
in mind its distinct nature. At low temperatures, the period
potential is able to pin the overlayer and true long-ran
order prevails leading to a finite static friction. The low- an
high-temperature phases are separated by a commens
solid to fluid transition at a critical temperatureTc where the
overlayer at high temperatures becomes disordered an
effectively depinned from the substrate. We shall also re
to this transition as ‘‘melting’’ although topological defect
as dislocations, are not allowed due to the fixed-neigh
constraint. In the absence of a periodic potential, disor
plays an important role in pinning the overlayer15,16 and
glassy behavior is expected.

The periodic potential in Eq.~1! arises from an adiabatic
average over the substrate degrees of freedom. The non
batic excitations of the substrate provide energy excha
between the substrate and the adlayer and lead to dam
and fluctuation in the motion of the adatoms. In our mod
this effect is described by the usual Markovian-Langevin d
namics. The substrate acts as a heat bath at an equilib
temperatureT and the coupling of the substrate excitatio
and adlayer is characterized by a friction parameterh. Note
that in the absence of the periodic potential, the adatom
teractions do not affect the collective response of the adla
and the macroscopic sliding friction is equal to the micr
scopic coupling parameterh.

III. GENERAL PROPERTIES OF SLIDING FRICTION

To characterize the response of the adlayer to the exte
driving force, we define the sliding friction coefficienth̄
through the relation

vd5F/mh̄, ~2!

wherevd is the average velocity of all the adparticles rep
senting the drift velocity in the direction of the force. I
general, the sliding frictionh̄ has a complicated dependen
on the external forceF in the nonlinear regime. First, we
remark on a number of qualitative features of the drift velo
ity vd and the sliding frictionh̄ that can be readily under
stood without detailed calculations.18 In the presence of the
external forceF, the potential is tilted like a washboard wit

he
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5156 PRB 59ENZO GRANATO AND S. C. YING
local minima which become weaker as the strength of
force is increased. Beyond a critical force valueFo , the ef-
fective potential minima disappears. For the present mo
Fo52pUo , the same result as for the one-dimensio
case.14 At T50 and for a commensurate value of covera
u, vd remains zero for any applied force less thanFo .
When F@Fo , the layer slides as a whole with a slidin
friction h̄>h. At low but finite temperatures, the drift ve
locity induced by a small external force is limited by th
nucleation and mobility of defects in the commensur
structure. In one dimension, these defects are kinks and
tikinks ~local compression or extension of the commensur
atomic configuration! and can always be excited at any fini
temperature leading to a finiteh̄ at anyTÞ0. In two dimen-
sions, however, the corresponding excitations are linear
fects~domain walls! that have a nonzero free energy per u
length for temperatures below the melting transition te
peratureTc . As thermal fluctuations, these defects can o
be nucleated as closed loops with an activation energy
portional to its length and therefore do not contribute sign
cantly to the linear mobility of the system, limF→0vd /F, in
the thermodynamic limit and one expects that, for a pinn
solid, 1/h̄ is essentially zero forT,Tc in this regime. When
the external force is increased from zero, activated nu
ation and growth of commensurate domains induced by
external force can contribute to a finite mobility, leading to
nonlinear frictionh̄.h with a complicated dependence o
the external forceF. Eventually, in the limit of large externa
force such that the effect of the periodic potential is neg
gible altogether,h̄ again reduces to the microscopic frictio
parameterh.

In the nonlinear regime, the behavior of drift velocityvd
for increasing external forceF is expected to depend strong
on the initial phase2 at F50. If the adsorbate, whenF50, is
a fluid,vd will be nonzero for arbitrarily small external force
This result is also true for the present model. In the flu
phase aboveTc , the overlayer is essentially depinned a
any small force leads to nonzerovd . Moreover, the relation
vd5 f (F) should show no hysteresis. For an initial state
F50 that is incommensurate, the critical value of the for
for finite mobility can be much lower as shown in previo
works of Persson2 and Braunet al.7

IV. MOLECULAR-DYNAMICS SIMULATION

To analyze the nonlinear sliding friction of the model pr
sented in Sec. II, we have performed a molecular-dynam
simulation study of the Langevin equation resulting from t
model. An external driving forceF, representing the effect o
the other surface in the boundary lubrication problem, is
sumed to act on each of the adsorbates. The equatio
motion for the particle with coordinatexi j is given by the
Langevin equation,

mẍi j 1mh ẋi j 52
]V

]xi j
2

]U

]xi j
1F1 f i j , ~3!

where U is the periodic potential,V is the adsorbate
adsorbate harmonic interaction potential, andf i j is a random
e
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force that is related to the microscopic friction parameterh
by the fluctuation dissipation theorem

^ f i j ~ t ! f i 8 j 8~ t8!&52hmkBT d i ,i 8d j , j 8d~ t2t8!. ~4!

We have studied the sliding friction by simulating th
above equations using methods of Brownian molecu
dynamics,17 which treat accurately the effect of the system
atic and stochastic forces in the problem. The calculati
were performed at a commensurate coverageu51/2 (b/a
52). Typically, the time variable was discretized with tim
step dt50.0220.06t where t5(ma2/Uo)1/2 and 4210
3105 time steps were used in each calculation allowing 15

time steps for equilibration. Calculations were performed
function of temperature and external force on systems c
taining N3N adsorbate particles, where typicallyN510,
and the elastic constant was set toK510.

In the calculations, the system was allowed to evolve i
a steady state such that the time average of physical qu
ties, like the drift velocityvd , approached a constant. Th
effective temperatureT* of the overlayer during sliding was
obtained by two different methods. Using the fluctuation
particle velocities from the average as

kT* 5m~^v2&2^v&2! ~5!

and by equating the energy transferred to the adsorbed
tem by the external force to the energy transferred to
substrate, which gives2

T*

T
511

F2

mhh̄T
S 12

h

h̄
D , ~6!

where h̄5F/mvd . The two methods agree within the es
mated errors, for calculations expected to be equilibrated
steady state, and provide additional support for the assu
tion that local thermalization of the overlayer can be d
scribed by an effective temperatureT* .

V. RESULTS AND DISCUSSION

In this section we present results from our molecul
dynamics simulations. We use units in whicha51, m51,
and U051, which sets the scales for length, mass, and
ergy, respectively. The corresponding time scale ist
5(ma2/Uo)1/2, and the temperature scale isT05U0 /kB . It
is also convenient to normalize the external force by
zero-temperature critical valueFo .

To obtain an estimate of critical temperatureTc , we cal-
culatedh̄, as a function of temperature for a small value
the external force,F/Fo50.035. At low temperatures, 1/h̄ is
essentially zero and the adlayer is in a pinned state. As
temperature is increased 1/h̄ remains zero until5 Tc;2.3,
beyond which it increases significantly and should appro
1 at high enoughT. The value ofTc correspond to the com
mensurate solid-fluid transition. AboveTc , the overlayer is
effectively depinned from the substrate.

In Fig. 2 we show the behavior ofvd and the effective
temperature of the layerT* , obtained at a temperatureT
53 which is aboveTc . In this case, the adlayer is in a flui
state at zero external force. The results forF increasing from
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PRB 59 5157DYNAMICAL TRANSITIONS AND SLIDING FRICTION . . .
zero and decreasing from its highest value are the sa
showing a total absence of hysteresis effects. The effec
friction coefficienth̄ is finite even at vanishingly small val
ues ofF. In the absence of the periodic potential,h̄5h and
vd should depend linearly onF as indicated by the dotte
line in Fig. 2. In the present case, the net motion of
overlayer is limited by defect excitations induced by the co
pling to the periodic potential leading to an enhancemen
h̄ over the microscopic friction parameterh and an increase
of T* over the equilibrium temperatureT, as F increases.
The sliding friction h̄ approachesh only for largerF. The
calculation of the effective temperatureT* assumes that the
particle velocities have a Maxwellian probability distributio
of width kBT* . In fact, as shown in Fig. 3 the velocity dis
tribution can be well described by a Gaussian distributio

For T,Tc , however, where a commensurate solid ph

FIG. 2. Drift velocity vd and effective temperatureT* as a
function of external forceF for h50.6 andT53. Dotted lines
correspond to free overlayer behavior.

FIG. 3. Probability distribution~circles! of particle velocities in
the stead state forF/Fo50.35 in Fig. 2. Solid line is a Gaussian fi
e,
ve

e
-
f
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prevails whenF50, a critical forceFa is necessary to depin
and initiate sliding. It was found for the Lennard-Jon
system2 that in this case the nonlinear sliding friction exhi
its hysteresis as a function ofF, i.e., the relation between
velocity and external force depends on whetherF increases
from zero or decreases from a high value. We find the sa
behavior in our model for sufficiently low temperatures.
Fig. 4, we show the results forvd and the effective tempera
ture of the adlayerT* as a function ofF for h50.6 obtained
at a temperatureT50.5, which is much less thanTc . This
temperature is also considerably below the amplitude of
periodic potentialUo . As will be discussed below, we find
that T,U0 seems to be necessary in order that a sharp h
teresis feature appears in thevd3F characteristics. The cal
culation was performed with the adlayer initially in a pinne
state, then the external force was increased to different
ues. An hysteresis loop is clearly seen in Fig. 4 and sha
the same features as found in the simulations of the Lenn
Jones systems.2

In Fig. 4, it is shown that the initial sliding phase, whe
the applied force is increased beyond the static thresholdFa ,
has almost the same temperature as the substrate an
substrate potential provides no additional resistance. This
sliding solid phase. It corresponds to the floating or inco
mensurate solid phase in the equilibrium situation. It is i
portant to note that this phase is dynamically generated
the external field since the initial temperature is belowTc
and a commensurate solid phase would be the equilibr
state. With the choice of periodic boundary conditions in o
model, the misfitd is zero and the configuration of the slid
ing incommensurate solid phase in Fig. 4 is indistinguisha
from a commensurate phase. However, using free boun
conditions and varying the misfit parameter we can confi

FIG. 4. Drift velocity vd and effective temperatureT* as a
function of external forceF for h50.6 andT50.5 and periodic
boundary conditions. Squares correspond to data for increasinF
and circles for decreasingF. The arrow indicates the minimum
velocity vb .
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5158 PRB 59ENZO GRANATO AND S. C. YING
that this phase corresponds to a sliding solid phase inc
mensurate with the substrate. In Fig. 5 we show the struc
factor S(q) for two values of the overlayer lattice spacin
b/a52 andb/a51.9, and at two different limits of the ex
ternal force,F/Fo50.1 in the pinned phase@Fig. 5~b!# and
F/Fo50.7 in the sliding phase@Fig. 5~a!#. In the sliding
phase,S(q) is peaked at the wavevector 2p/b independent
of the substrate while it remains locked to the commensu
valuep in the pinned phase. Thus the external force indu
a pinned commensurate solid to sliding incommensu
solid transition atF5Fa . As the force is decreased from i
highest value throughFa , there is a jump inT* accompa-
nied by a simultaneous decrease invd at a critical forceFc .
This corresponds to an overheating of the overlayer to
effective temperature that is aboveTc , dynamically ‘‘melt-
ing’’ the sliding solid phase. This can be regarded as a s
ing solid to fluid transition. Finally atF5Fb , the fluid phase
condenses into a pinned commensurate solid phase an
temperature of the adlayer and the substrate become
same again. The fact that there is a condensation from
‘‘melted’’ phase is confirmed by noting that the temperatu
of the adlayer at this condensation is almost identical to
equilibrium critical temperatureTc . Persson2 has observed
very similar dynamical transitions for Lennard-Jones s
tems, showing that these features are universal in the no
ear response of overlayers and not just for specific model
fact, other versions of the Frenkel-Kontorova model a
show some of these features.7 In addition the present result
show that a conventional ‘‘liquid’’ phase is not required a
a high-temperature thermally disordered phase with nonz
linear mobility is sufficient to show some of these effects

We now consider the behavior of the nonlinear slidi
friction at a higher temperatureT51.5 but still less thanTc .
As can be seen from Fig. 6, the hysteresis disappears buFa

FIG. 5. Structure factorS(q) for b/a52 andb/a51.9 with h
50.6 andT50.5 and free boundary conditions, in the sliding~a!
and pinned~b! phases.
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can still be defined. In addition, a smooth sliding fluid
solid transition takes place atFc.Fa . At this higher tem-
perature, the system is able to relax in a short enough tim
a stable single velocity, independent of the history of for
variation. The behavior does not depend significantly on
rate of change of the force since calculations with differe
equilibration times give the same result as indicated in
figure. The hysteresis observed at low temperature is also
affected significantly. However, we cannot exclude that
large enough equilibration times the range of temperat
where hysteresis is observed is much smaller. The beha
of Fa ,Fb , andFc as a function of temperature is shown
Fig. 7. Within the present model, hysteresis disappearsT
;U0,Tc in contrast with the arguments2 suggesting that
smooth sliding only occurs aboveTc .

An important feature of theF3vd curve in Fig. 4 is the

FIG. 6. Drift velocity vd and effective temperatureT* as a
function of external forceF for h50.6 andT51.5. Circles and
crosses correspond to calculations using equilibration times dif
ing by a factor of 10.

FIG. 7. Critical forcesFa ,Fb , andFc as a function of tempera
ture for h50.6.
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PRB 59 5159DYNAMICAL TRANSITIONS AND SLIDING FRICTION . . .
existence of a ‘‘velocity gap,’’ 0,v,vb , which leads to
stick-and-slip motion.2 In the gap region, the overlayer can
not sustain a constant sliding velocity and stick-and-slip m
tion is expected when it is driven by a spring moving w
constant velocity lying in the gap, as measured in slid
friction experiments.1 Smooth sliding is possible only fo
vs.vb . We have confirmed this behavior by calculating t
time dependent drift velocityvd(t) and forceF(t) when
each particle of the overlayer is subject to an elastic exte
force of the form

F~ t !5Ks~xcm2vst !, ~7!

whereKs is the spring elastic constant andxcm is the position
of the center of mass of the overlayer. Indeed, stick and
motion is obtained forvs,vb as shown in Fig. 8 and smoot
sliding motion forvs.vb as shown in Fig. 9.

We have also studied the effects of varying the mic
scopic friction parameterh on the nonlinear mobility. The
F3vd characteristics is shown in Fig. 10 for a larger val
of h50.9. In this case, the sliding fluid to solid transitio
occurs atFc.Fa and the return to the pinned solid phase
Fb occurs at an effective temperature of the overlayerT*
below Tc , so the results are qualitatively different from th
for h50.6. Persson2 has argued, based on hydrodynamic
considerations that wheneverT* ,Tc is satisfied atFb , the
ratio Fb /Fa between the kinetic and static friction force
should be a universal value;1/2. For the present model, w
find instead that the ratioFb /Fa depends onh and T as
shown in Fig. 11. The ratio approaches 1 forh;3 at T
50.5. At lower temperatures, the results indicate that
ratio would asymptotically approach one at larger values
h. This behavior is expected since in the largeh limit the
system is overdamped and hysteresis is not expected. In

FIG. 8. Time evolution of thevd and F when the system is
pulled by a spring at constant velocityvs50.01, belowvb , for h
50.6, T50.5, andKs50.5.
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we have confirmed through direct calculation that when
inertial term is dropped in the equation of motion, Eq.~3!,
hysteresis effects disappear andFb /Fb51 even for the low-
est temperature in Fig. 11. This should be contrasted to
results obtained by Persson2 for the Lennard-Jones system
whereFb /Fa seems to saturate for largeh at '0.6 for tem-
peratures belowTc .

FIG. 9. Time evolution of thevd and F when the system is
pulled by a spring at constant velocityvs50.1, abovevb , for h
50.6, T50.5, andKs50.5.

FIG. 10. Drift velocity vd and effective temperatureT* as a
function of external forceF for h50.9 andT50.5. Squares corre
spond to data for increasingF and circles for decreasingF. The
arrow indicates the minimum velocityvb .
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5160 PRB 59ENZO GRANATO AND S. C. YING
We should note, however, that the nature of the hi
temperature phase in the FK model is quite different fr
the Lennard-Jones system, with power law instead of
exponential decay of density correlations as a function
separation distancer. This follows from the fixed-neighbo
constraint in the model of Eq.~1! that excludes topologica
defects, such as dislocations. It is well known that therma
excited dislocations can destroy crystalline order and lea
exponential decay of density correlations.14 Therefore, in the
absence of dislocations, the equilibrium high temperat
phase forT.Tc and F50 is a depinned elastic solid an
correlations decay as a power law. In the sliding state
F.0, one thus expect that when the effective temperatur
the overlayerT* is larger thanT, overheating of the over
layer leads to power-law decay of density correlatio
whereas long-range order should occur whenT* 5T. This
expected behavior is confirmed in Fig. 12 where the fin
size behavior of the structure factor peak for different valu
of F andh is shown, corresponding to the different dynam
cal phases in Figs. 4 and 10. For density correlations
decay algebraically asr 2ho, the normalized peak height o
S(q) at the commensurate wave vectorq5p should scale as
a power lawS(p)/N2}N2q2ho while it should be a constan
when long-range order prevails.14 For the fluid phases wher
T* .T, corresponding to the value ofF/Fo50.32 in Fig. 4
andF/Fo50.4 in Fig. 10, the log-log plotS(p) vs N has an
apparent linear behavior with nonzero slope as shown in
12, consistent with algebraic order. For the pinned so
phase whereT* 5T at F50, the quantityS(p)/N2 is a con-
stant indicating long-range order. For the sliding solid ph
at F/Fo50.7, the corresponding value forS(p)/N2 de-
creases very slowly with increasingN, indicating that it is
not a phase with full long-range order in contrast with t
pinned solid phase atF50 but much larger system size
would be required to fully confirm this behavior.

The hydrodynamics arguments used by Persson2 suggest-
ing a universal valueFb /Fa;0.5 are based on the existen
of a drag force acting on a nucleating domain of solid ph
surrounded by the fluid phase. Since the nature of the fl
phases in the FK and Lennard-Jones models are very di
ent, this argument is not valid for the FK model and th
could account for the different behavior of the ratioFb /Fa .
However, in view of the many common features shared
the two models as shown in Figs. 4 and 10, it is also poss
that the relationFb /Fa;0.5 is in fact valid only within a

FIG. 11. RatioFb /Fa as a function ofh andT.
-

e
f

y
to

e

r
of

,

-
s

at

g.
d

e

e
id
r-

y
le

limited range ofh and T, as shown in Fig. 11, and th
Lennard-Jones system simply has a broader crossover re
than the present model.

VI. CONCLUSIONS

Comparing our results for the nonlinear response for
Frenkel-Kontorova model to the earlier study based on
Lennard-Jones interaction,2 we found that all the importan
features such as the appearance of dynamic sliding solid
fluid phases, the transition between these phases , the s
hysteresis effects, and the velocity gap for constant velo
sliding are common to both models. This indicates that th
are robust features that do not depend on the details of
model such as many body interactions among the adat
and surface geometry or anisotropies. The strong qualita
similarity of the results for mobility in these models to th
effects observed in macroscopic sliding between two s
faces support strongly the idea that the response of the lu
cant layer to an external force is the key factor in controlli
boundary lubrication.

Besides the relevance to the macroscopic sliding fricti
the dynamic phases generated by the external force ar
intrinsic interest and have no counterparts in equilibriu
They are certainly worthy of more detailed study both e
perimentally and theoretically and may also be relevant
other types of driven lattice systems16 as for vortex lattices in
type-II superconductors.
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FIG. 12. Finite-size behavior of the peak in the structure fac
S(q) for different values ofF in Figs. 4 and 10.
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