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We calculate the ground-state energies of muonic molecules formed by deuterium-deuterium,
tritium-tritiom, and deuterium-tritium nuclei plus a negative muon confined in a two-dimensional
(2D) region. We show that the equilibrium distance between nuclei is a factor of 4 smaller and the
vibrational energies are about a factor of 5 higher than the corresponding three-dimensional (3D)
muonic molecules, thus favoring fusion reactions. In fact, the estimated d +1 fusion rate is found to
be three orders of magnitude higher in 2D than in 3D.

In recent years, muonic catalysis has attracted much
attention, since it can, in principle, provide cold nuclear
fusion, circumventing entirely the need for high tempera-
tures.’? Muon-catalyzed fusion can be described as a
series of reactions induced by negative muons in cold
“hydrogen,” leading to energy-releasing nuclear fusion.
In order to get a muon-catalyzed fusion, one must bring a
deuterium nucleus and a tritium nucleus into a very close
proximity. It occurs that the tritium and deuterium nu-
clei combined with a negative muon can form a “muonic
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FIG. 1. The curves show the energy of a normal molecule
(ion) or an ionic muonic molecule in 2D as a function of dis-
tance in units of effective Rydbergs and effective Bohr radius,
respectively. The curve is universal for all the cases quoted in
Table 1. The horizontal bars represent the vibrational ground
states.

molecular ion,” in which the muon plays essentially the
same role as an electron in an ordinary hydrogen mole-
cule, i.e., the muon holds the nuclei together. However,
due to the muon’s high mass, the distance between the
nuclei in a muonic molecule is of the order of 200 times
less than the distance between the nuclei in an ordinary
molecule. An important question which arises is the fol-
lowing: is it possible to obtain a situation where the two
nuclei in the muonic molecule can be pulled together
even closer, thus favoring the occurrence of a faster
fusion reaction? In this Brief Report we show that muon-
ic molecules like (1) deuterium, tritium, and muon, (ii) tri-
tium, tritium, and muon, and (iii) deuterium, deuterium,
and muon confined in a two-dimensional (2D) region may
yield a faster reaction than the corresponding ones in a
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FIG. 2. Same as Fig. 1 for the 3D case.
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TABLE 1. Binding energies of muonic molecules and elec-
tronic molecules in two dimensions (2D) and in three dimen-
sions (3D). The values for the equilibrium distance and
minimum energy are calculated in effective units (see text) and
depend uniquely on the dimensionality of the system.

Vibrational energy

2D iD

Muonic molecule

pPu —4.669 —1.055

ddu —4.897 —1.084

dtp —4.944 —1.090

ttu —5.000 —1.098
Normal molecule

ppe —5.513 —1.163

dde —5.539 —1.166

dte —5.544 —1.166

tte —5.550 —1.167

three-dimensional (3D) region. Indeed, we show that in
2D the equilibrium distance X' between the two nuclei
is much smaller than the corresponding one in 3D

X%2Dp) _1
xX©O3D) 4

This favors quantum-mechanical tunneling, increasing
the probability that the nuclei pass through the barrier of
their mutual repulsion and become so close that the
strong nuclear force can propel them to fuse.

Although it is beyond the scope of this work to pro-
pose an experiment where the 2D confinement is realized,
we point out that in many solid-state applications [e.g.,
heterostructures, inversion layers in metal-oxide semicon-
ductors (MOS), etc.’], this kind of low-dimensional be-
havior is commonplace.

The muonic molecular system is described by the
Hamiltonian

R

(1)

2 2
H = V2 ——, 2
u X, X, )
which corresponds to a muon in the 3D field of two posi-
tive charges (nuclei) fixed at positions a and b. In the

Born-Oppenheimer approximation (which is adequate for
our purposes here*’), the ground-state energy of the
muonic molecule is given by the lower eigenstate of H,,
plus the Coulomb interaction between nuclei, i.e.,

E(X,)=E,(X,,)+2/X,, . (3)

In the above equations, energies and distances are ex-
pressed, respectively, in effective Rydbergs and effective
Bohr radii:

R"=m#e4/2h2 , 4)
ag ——“iiz/m}‘e2 R : (5)

where m u refers to the muon’s mass.

If we let small oscillations occur around the equilibri-

um distance X\, i.e., if we include vibrational modes, the

ground-state energy becomes

EO=E (X)) +(k/2fm*)'?, (6)
where
2
ab |0
*— m,my
m —m,,+m,, . (8)

f is the ratio of the mass of the proton and that of the

muon, f =1 and m, and m, are the masses in atomic
units.

We obtained E, (X)) by minimizing the following tri-
al function:

YX)=9(X,)+o"(X,) , (9)
where the 2D 1s function is given by®

172

3| ge2ex (10)

¢IX(X)=

Equation (6) is a very good approximation for the first
vibrational level, as long as it is located near the
minimum of E s this is true for the dde, dte, and tte mole-
cules. For the ppe and the muonic molecules, we ob-
tained the level E'® by solving numerically the vibration-
al Schrodinger equation in the Born-Oppenheimer ap-

TABLE II. The values near the origin of the wave function for the lowest vibrational level in 3D and 2D.

[w2P(0)|? |W3P(0)|? |W2P(0.04)|? [93P(0.04)|? [92P(0.04)12/|¥3P(0.04)|?

Muonic molecule '

pPi 1.46X 1072 5.11X1073 2.37%X107? 6.74X 1073 350

ddp 341x107° 3.31X107° 8.67X 107> 5.66X107° 1530

dtp 2.03%x1073 1.23%x10°°¢ 6.08x107? 2.31X107¢ 2630

tu ) 9.86X107% " 3.05X1077 3.75%1073 6.67X1077 5620
Normal molecule

ppe 7.57X10°% <1079 6.08X107"° <107% >10%
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FIG. 3. Normalized eigenfunctions of the first vibrational
mode for the 2D muonic molecules; we see a window with the
corresponding 3D wave functions, for comparison. Also depict-
ed is the extremely localized ppe eigenfunction.

proximation. In 3D we write the vibrational eigenfunc-
tion W*P(r) as

w’D(r)=M (11)

dqr ’

and @(r) satisfies the radial wave equation (in normalized
units):

—my, gd? _
T;%+Eu(r)¢—5¢ , (12)

whereas in 2D we write

y0(p)= S (13)

2t/

and £(r) satisfies

_ M d’ M 1|z
e + |E,(r)— > ? E=E§ . (14)

The numerical algorithm was built by a combination
between a shooting method with minimization of the
Rayleigh quotient described by Fox’ and integration by
the Numerov Royal-road formula. The eigenvalues and
eigenfunctions were obtained with an accuracy better
than 1%. Initial guesses for E© were calculated by Eq.
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(6). The results for E‘” are shown in Fig. 1. In Fig. 2 we
show the equivalent 3D results, for the sake of compar-
ison. One sees clearly that the muonic situation is in
sharp opposition to the case of normal molecules where
the vibrational spectrum is much richer. Only one vibra-
tional bound state exists for all combinations quoted in
Table I for the 3D case. However, for 2D, two vibration-
al bound states occur (only the lowest one is shown here).
We do not discuss here the rotational states, which can
be easily included in our formulation.

It is worthwhile to comment that we have also includ-
ed in Eq. (2) electronic terms in order to obtain a neutral
molecule. In this case one is found with an extra
electron-muon Coulomb term, which has been treated
with a Heitler-London approximation. One obtains the
result, in this case, in both 2D and 3D situations, that the
muonic molecule is loosely bound, maintaining quite the
same ratio

xX92p) 1
X93p) 4

i

(15)

The fusion rate A is proportional to the probability
that the nuclei are very close together:

A=A|¥(p)|?, : (16)

where V¥ is the normalized wave function describing their
relative motion. The internuclear separation p is usually
taken to be approximately 10 fm (~0.04ag ).

We make no assertions here about the dependence of
the nuclear rate constant 4 on dimensionality. The s-like
wave function associated with the nuclear motion corre-
sponds to the ground state of Egs. (12) and (14), for the
3D and 2D cases, respectively.

In Table II we show the values obtained for |W(0)|?
and |W(0.04)|? in the 3D and 2D cases. It is seen that the
enhancement of the fusion rate in the d -t system due to
the larger tunneling probability in 2D is expected to be
around three orders of magnitude.

In Fig. 3 we show the calculated eigenfunctions for the
vibrational ground state of the muonic molecules in 2D
and 3D; the corresponding eigenfunction for the ppe mol-
ecule is also shown for comparison. We stress the strik-
ing difference obtained in the 2D muonic molecule as
compared to the usual 3D situation, favoring a higher
rate of muonic fusions in a lower dimensionality.

The authors are grateful to J. Leite Lopes for very
fruitful discussions.
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