
PHYSICAL REVIEW B, VOLUME 63, 094507
Phase-coherence threshold and vortex-glass state in diluted Josephson-junction arrays
in a magnetic field
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We study numerically the interplay of phase coherence and vortex-glass state in two-dimensional Josephson-
junction arrays with average rational values of flux quantum per plaquettef and random dilution of junctions.
For f 51/2, we find evidence of a phase-coherence threshold valuexs , below the percolation concentration of
diluted junctionsxp , where the superconducting transition vanishes. Forxs,x,xp the array behaves as a
zero-temperature vortex glass with nonzero linear resistance at finite temperatures. The zero-temperature criti-
cal currents are insensitive to variations inf in the vortex glass region while they are stronglyf dependent in
the phase-coherent region.
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The study of the structure of vortex-lattice states in dis
dered superconductors in a magnetic field has attracted m
recent interest. In three dimensions a true vortex-gl
transition1 at finite temperature is possible for strong disord
in unscreened superconductors,2 while for weak disorder a
Bragg-glass phase with quasi-long-range order has b
proposed.3 In two-dimensions, however, vortex-glas
models4,5 and experiments on superconducting films6 show
that vortex-glass order and phase coherence are destroy
any finite temperature with a nonzero but exponentia
small resistivity in the large disorder limit whereas in t
weak disorder limit the situation is less clear and may
pend on the particular model of disordered superconduc
Random diluted Josephson-junction arrays have been us
model disordered superconductors7–11 and can also be fabri
cated with controlled amount of disorder in tw
dimensions.12–14 For a regular array in perpendicular ma
netic field with a rational flux quanta per cellf, the ground
sate consists of a periodic pinned vortex lattice, with ad
tional discrete symmetries resulting from commensurabi
effects,15,16and phase coherence and vortex order is poss
Thus, diluted arrays in a magnetic field can provide a c
venient experimental model system to investigate the eff
of weakand strong disorder on initially pinned vortex lat
tices and the interplay of phase coherence and vortex g
states in two dimensions. In particular, in order to underst
transport properties near percolation threshold in rec
experiments14 on diluted arrays in a magnetic field, it is im
portant to know if disorder and temperature fluctuations
destroy phase coherence at long length scales and the n
of vortex order in this regime. A recent study17 of a model of
random Josephson-junction arrays with a particular type
disorder~positional disorder!18 in a magnetic field suggest
that no transition is possible even for weak disorder in
thermodynamic limit but it is not clear if this scenario wou
apply in general. In fact, random dilution does not explici
introduces random phase shifts across the junction un
positional disorder. In addition, an earlier study of t
ground-state stability of a diluted array shows11 that, in pres-
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ence of a magnetic field with an average rational value
flux quantum per plaquettef, phase coherence is possible
nonzero temperatures and the transition temperature
vanishes, for increasing dilution of junctionsx, at a critical
value xs( f ) below the geometric percolation thresholdxp

where the transition would vanish in the absence of the m
netic field. A vortex-glass phase with zero-temperature tr
sition should also appear at a critical concentrationxv*xs ,
with nonzero resistivity at finite temperatures but having
diverging short-range correlation lengthj}T2n which is ex-
pected to determine the nonlinear behavior of the curr
voltage characteristics. An upper bound for the pha
coherence region is set by the behavior atf 51/2 since
higher order rational values are expected to be much
stable with a corresponding threshold value which may
too small to detect numerically. These results rely on
finite-size behavior of defect energy in the ground st
which are inaccessible experimentally. However, expe
ments often measure transport properties and it is of g
interest to know how these effects could show up in
behavior of the current-voltage characteristics.

In this work, we present the results of extensive dynam
cal simulations of the current-voltage characteristics of re
tively shunted Josephson-junction arrays with an aver
flux quantum per plaquettef and random dilution of junc-
tions. We find evidence of a phase coherence threshold v
xs,xp as indicated in Fig. 1. Forx,xs , the superconducting
transition occurs at finite temperatures while forxs,x,xp
the array behaves as a zero-temperature vortex glass
nonzero and thermally activated linear resistance at fi
temperatures and diverging short-range correlation lengj
}T2n. A current-voltage scaling analysis provides an es
mate of n;2. In the vortex-glass region, the zero
temperature critical currents are roughly insensitive
changes inf.

We consider a two dimensional array of superconduct
grains coupled to its nearest neighbors by resistively shun
Josephson junctions and with current conservation at e
©2001 The American Physical Society07-1
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site.19 The equations of motion for the phasesu i of the su-
perconducting order parameter located at sitei of the lattice
can be written as10,20

\

2eRo
(

j
~ u̇ i2 u̇ j !52(

j
@ I i j sin~u i2u j2Ai j !1h i j #,

~1!

whereRo is a uniform shunt resistance,h i j (t) is a thermal
noise with correlationŝ h i j (t)hkl(t8)&52kBT/Rod i j ,kld(t
2t8) and I i j is the junction critical current. The bond var
ablesAi j correspond to the line integral of the vector pote
tial and are constrained to( i j Ai j 52p f , about each elemen
tary plaquette of the reference~undiluted! lattice. For
simplicity we consider a square lattice array and bond d
tion of junctions. The qualitative behavior and critical exp
nents presented below should remain the same for o
choices of dilution and for triangular arrays. Dilution o
junctions is introduced by takingI i j 50 with probability x
and I i j 5I o , a constant, with probability 12x. Dimension-
less quantities are used with time in units oft5\/2eRoJo ,
current in units ofI o , voltages in units ofRoI o and tempera-

FIG. 1. ~a! Phase diagram of a diluted Josephson-junction ar
as a function of temperatureT and concentrationx of diluted junc-
tions, for an average rational frustrationf 51/2. The superconduct
ing phase is denoted byS, the normal phase byN, and the short-
range vortex glass state byVG. The geometrical percolation
threshold is indicated byxp and the phase-coherence threshold
xs . ~b! Critical current densitiesJc as a function of dilutionx for
different values of frustrationf. Critical temperatures~open circles!
in ~a! were obtained from current-voltage scaling analysis and
phase coherence thresholdxs ~filled circle! was inferred from the
change in the behavior ofJc( f ) in ~b!.
09450
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ture in units of\I o/2ekB . A total currentI is imposed uni-
formly in the array using periodic boundary conditions20

with current densityJ5I /L, whereL is the system size and
the average electric fieldE is obtained from the voltageV
across the system asE5V/L5(\/2e)^u̇ i2 u̇ j&. We use pe-
riodic boundary conditions in order to eliminate possib
edge contributions to the resistance due to diluted juncti
near the boundary which could arise from open bound
conditions.21 System sizes ranging fromL58 to L5128
were used in the calculations with a time stepDt50.07t and
the results averaged over 10 to 500 random diluted confi
rations of junctions depending on the system size.

Figure 1~b! shows the behavior of the critical current de
sity Jc where a nonzero voltage appears at zero tempera
At low values ofx, the behavior ofJc strongly depends on
the rational frustrationf 5p/q, as indicated forf 51/2 and
f 51/4 in the figure, but becomes roughly insensitive tof for
dilutions larger than a critical value much below the perc
lation thresholdxp . This is consistent with the proposed vo
tex glass phase11 for the rangexv( f ),x,xp wherexv is a
dilution threshold below which vortex-lattice order remain
In the undiluted case and for small enoughx the ground-state
energy and critical currents correlate with the ordering oq
3q unit cells and so are very sensitive to theq value.16

However, forx.xv , vortex-lattice order is completely de
stroyed at long-length scales and its stability and theref
the critical current should be less sensitive toq. Since it is
expected that11 xv(1/4),xv(1/2) andxv*xs , the change in
the behavior ofJc in Fig. 1~b! allows for a very rough esti-
mate of the phase-coherence threshold forf 51/2 as the
value of dilution where the two curves overlap within th
estimated errorbars,xs(1/2);0.20(5).

We turn now to thermal fluctuation effects. Figure 2~a!
shows the temperature dependence of the nonlinear res
ity E/J at a value of dilutionx50.1 below the phase
coherence thresholdxs estimated above, for the largest sy
tems sizesL564 and L5128. As can be seen from th
figure, the linear resistivityRL5 limJ→0E/J, estimated from
the ratio E/J when J→0, tends to a finite value at high
temperatures but extrapolates to very low values at lo
temperatures, independent of system size, consistent with
existence of a finite temperature superconducting transi
in the rangeTc50.3 to 0.4. This is confirmed by a scalin
analysis of the nonlinear resistivity according to which4 mea-
surable quantities scale with the diverging correlation len
j near the transition temperature. If the transition occurs
finite temperature, the relaxation time diverges asjz, wherez
is the dynamical critical exponent, and the nonlinear resis
ity satisfy the scaling form

T
E

J
5j2zg6S J

T
j D ~2!

in two dimensions, where the1 and 2 correspond to the
behavior above and below the transition, respectively. Fo
transition in the Kosterlitz-Thouless~KT! universality class,
the correlation length should diverge exponentially asj
}exp(b/uT/Tc21u1/2), while for a conventional transition a

y
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power-law behavior is expectedj}uT/Tc21u2n, with an ex-
ponentn depending on the discrete symmetry of the pinn
vortex lattice. A scaling plot according to Eq.~2! can be used
to verify the scaling arguments and the assumption of fin
temperature equilibrium transition. This is shown in F
2~b!, in the temperature range closest to the apparentTc and
smallest current densities, assuming the correlation lengj
has an exponential divergence as in the KT universality c
and usingb, Tc , andz as adjustable parameters so that
best data collapse is obtained. As shown in the Fig. 2~b!, the
two largest system sizesL564 andL5128 give the same
data collapse and so finite-size effects, ignored in the sca
form of Eq. ~2!, are not dominant for this range of temper
tures and current densities. We estimate a transition temp
ture Tc50.33(2) and dynamical exponentz51.2(2). Al-
though this estimate is based on a scaling analysis of
nonlinear current-voltage characteristics, which is a none
librium property, we find that the finite-size behavior of th
linear resistance atTc is consistent with this analysis. In
finite system the divergent correlation lengthj is cut off by
the system sizeL at the transition. From Eq.~2!, the linear
resistance atTc should then scale asRL}L2z. The
linear resistance can be obtained from the Ku
formula of equilibrium voltage fluctuations asRL5(1/
2T)*dt^V(t)V(0)&, without finite current effects, and ca

FIG. 2. ~a! Nonlinear resistivityE/J as a function of tempera
ture for a dilutionx50.1 below the phase-coherence thresholdxs

and system sizesL564 andL5128 ~symbols connected by lines!.
~b! Scaling plot of the data@not indicated in~a!# for the smallest
range nearTc and smallest current densities. Open symbols co
spond toL564 and filled ones toL5128.
09450
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also be determined from the long-time fluctuations of t
phase difference across the system.5 Figure 3, shows the
finite-size behavior ofRL at different temperatures. Abov
our estimate ofTc it remains finite for increasingL whereas
below Tc it appears to extrapolate to zero. Right atTc , a
power-law fit givesz51.07(5) which is consistent with the
estimate from the current-voltage scaling and suggests th
fore that the transition corresponds to the underlying equi
rium behavior. It should be noted that for the pure KT tra
sition a dynamical exponentz52 is expected, independen
of the particular dynamics. Indeed, forf 50 and x50 the
same power-law fit givesz52.0(1) at the critical tempera
ture. However, forf 51/2, where an additional Ising orde
parameter is present, it is found that even for the undilu
systemz,2 using the present dynamics.22 We also note that
attempting a scaling plot using the conventional power-l
correlation length gives a very large value forn which sug-
gests that the exponential form is the appropriate one. H
ever atx50, both forms of correlation length gives reaso
able data collapse as expected forf 51/2 from the single
transition scenario where the superconducting transition
vortex-lattice disordering transition occurs at the same te
perature or else at very close temperatures.16,23–25Since the
undiluted array atf 51/2 is expected to have a transitio
combining the KT and Ising universalities, our results su
gest that for 0!x,xs , the superconducting transition is i
the KT universality class~statics! while the vortex-lattice
disordering transition of Ising symmetry may occur sep
rately in presence of weak disorder.11 However, our above
scaling analysis based on the diverging phase-coherence
relation length does not allow us a determination of t
vortex-lattice disordering transition since it is expected
occur within the normal phase.11 Using the above scaling
analysis, the transition temperatures for the different d
tions can be obtained as in Fig. 1~a!. For values ofx5” 0.1
limited data was used and the results are only rough e
mates of the transition temperatures. Nevertheless, the c

-

FIG. 3. Linear resistance as a function of system sizeL for
different temperatures atx50.1. A power-law fit atTc50.33 gives
an estimate of the dynamical exponentz.
7-3



po

nc

m
t w
n
ro
-
n
t

-

we

r
e

cti

c

ect.

ifies
f

s
.

f
the
nal
l-

,

ss
ng

m-
o be
else
cu-

ass
as

s
one
gth
gth

co-
ted

of
r-
-
f
i-
nite
uch
re-

the
tion
on,
is
for
r
a-

tage
the

ure
nite

to
lts

-

d

ENZO GRANATO AND DANIEL DOMÍNGUEZ PHYSICAL REVIEW B63 094507
cal temperature as a function of dilution reasonably extra
lates to the thresholdxs estimated from the behavior ofJc in
Fig. 1~b! as discussed above.

In contrast, for a dilution above the phase-cohere
thresholdx.xs , the linear resistanceRL is finite for all tem-
peratures in the same range as indicated in Fig. 4~a!. Al-
though we can not exclude a transition at much lower te
peratures based on these data, the behavior is consisten
a superconducting transition and vortex order occurring o
at zero temperature as for a vortex glass with a ze
temperature transition.4,5 This is consistent with defect en
ergy calculations which show that low-energy excitatio
above the ground state decreases with system size in
range of dilutions.11 In fact, RL decreases rapidly with de
creasing temperature and for increasingJ there is a smooth
crossover to nonlinear behavior at a critical currentJnl which
also decreases with decreasing temperature. From the
known scaling arguments4 leading to Eq.~2!, if the transition
happens only at zero temperature thenj}T2n and since the
current density scale asJ}kT/j, the crossover to nonlinea
behavior sets in atJnl}T11n which depends strongly on th
yet unknown critical exponentn. Also, the linear resistivity
RL is finite at any nonzero temperature but thermally a
vated,RL}exp(2Eb /kT). Thus the relaxation timet}1/RL
diverges exponentially for decreasing temperatures. We
then consider the behavior of the dimensionless ratioE/JRL
which must satisfy the scaling form4

FIG. 4. ~a! Nonlinear resistivityE/J as a function of tempera
ture for a dilutionx50.35 above the phase-coherence thresholdxs .
~b! Scaling plot of the data in~a! for the lowest temperatures an
current densities according to aT50 transition.
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E/JRL5g~J/T11n! ~3!

if the assumption of a zero-temperature transition is corr
In Fig. 4~b! we show the scaling plot according to Eq.~3! for
the lowest temperatures and current densities which ver
the scaling assumption and provides an estimate on
52.1(2) and an energy barrierEb51.2. This value ofn is
consistent with the estimate;1.9 based on the previou
finite-size scaling of defect energy in the ground state11

Similar analysis at different dilutionx50.45 gives n
52.2(2) andEb50.9 and at different frustrationf 51/4
givesn52.3(2) andEb51.45. We note that our estimate o
n;2 is roughly the same as the value obtained for
gauge-glass model of strongly disordered two-dimensio
superconductors4,5 which may suggest a common universa
ity class. However, it should be noted that, forf 51/2, the
system has a global reflection symmetry (u i→2u i) in addi-
tion to the rotational symmetry26 and one would expect
similarly to the XY ~chiral! spin glass27 which shares the
same feature, two different divergent correlation lengthsjs
andjc with corresponding distinct exponentsns andnc . In
fact, for the chiral glass model a different universality cla
with ns;1 has been found from a current-voltage scali
analysis.5 On the other hand, an analytic study28 of the XY
spin glass for a particular distribution of disorder find a co
mon exponent. Our estimates suggest that this could als
the case for the present percolative type of disorder or
the exponents are too close to be resolved within the ac
racy of our estimate. An apparent common universality cl
of vortex glass models with clearly distinct symmetries h
also been found in three dimensions.2 In addition, close to
the percolation thresholdxp , the above scaling analysi
based on a single diverging length scale is not valid, as
must also take into account the percolation correlation len
jp and the fractal nature of the system at smaller len
scales.13,14

In summary, we have studied the interplay of phase
herence and vortex-glass state in two-dimensional dilu
Josephson-junction arrays with average rational values
frustration. Forf 51/2, we found evidence of a phase cohe
ence threshold valuexs much below the geometric percola
tion thresholdxp . This is in contrast with the conclusions o
Gupta and Teitel17 for a Josephson-junction array with pos
tional disorder where no phase coherence is expected at fi
temperatures even for small disorder at length scales m
larger than a disorder dependent length. Further work is
quired to verify whether the present study only reflects
finite-length scale of the system sizes used in the calcula
or is a consequence of different type of disorder. In additi
since f 51/2 has a particular reflection symmetry, which
preserved in presence of random dilution, the behavior
other values off could be qualitatively different. On the othe
hand, experiments12 are often done on systems sizes comp
rable to our largest system size and thus the current-vol
scaling behavior discussed here should be observable. In
range xs,x,xp the array behaves as a zero-temperat
vortex glass with activated nonzero linear resistance at fi
temperatures and critical currents much less sensitive
variations inf than in the phase-coherent region. Our resu
7-4
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suggest that the phase coherence threshold can be iden
experimentally as the change in the transport properties f
the weak to the strong disorder regime. However, the
merical estimates of critical quantities from the curre
voltage scaling analysis should be regarded as rough ma
tudes which can be measured experimentally and use
verify the prediction of a change in behavior of the transp
properties in the different phases. Equilibrium simulatio
.
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y
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are required to confirm the observed critical behavior a
obtain more accurate estimates of the critical exponents.
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