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Phase-coherence threshold and vortex-glass state in diluted Josephson-junction arrays
in a magnetic field
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We study numerically the interplay of phase coherence and vortex-glass state in two-dimensional Josephson-
junction arrays with average rational values of flux quantum per plaqgiietid random dilution of junctions.
For f=1/2, we find evidence of a phase-coherence threshold walubelow the percolation concentration of
diluted junctionsx,, where the superconducting transition vanishes. ¥erx<x, the array behaves as a
zero-temperature vortex glass with nonzero linear resistance at finite temperatures. The zero-temperature criti-
cal currents are insensitive to variationsfim the vortex glass region while they are stronfjlgependent in
the phase-coherent region.
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The study of the structure of vortex-lattice states in disor-ence of a magnetic field with an average rational value of
dered superconductors in a magnetic field has attracted mudhux quantum per plaquette phase coherence is possible at
recent interest. In three dimensions a true vortex-glasaonzero temperatures and the transition temperature only
transitiort at finite temperature is possible for strong disordervanishes, for increasing dilution of junctions at a critical
in unscreened superconduct&m/,hile for weak disorder a value xs(f) below the geometric percolation threshotg
Bragg-glass phase with quasi-long-range order has begghere the transition would vanish in the absence of the mag-
DTODOSGSC?- In two-dimensions, however, vortex-glass petic field. A vortex-glass phase with zero-temperature tran-
model$™® and experiments on superconducting fflisow  sition should also appear at a critical concentratigr xs,
that vortex-glass order and phase coherence are destroyed@fy, nonzero resistivity at finite temperatures but having a
any finite temperature with a nonzero but exponennallydiverging short-range correlation length T~ which is ex-

small resistivity in the large disorder limit whereas in the pected to determine the nonlinear behavior of the current

weak disorder limit the situation is less clear and may de'voltage characteristics. An upper bound for the phase-

pend on the particular model of disordered superconductor, S . .
Random diluted Josephson-junction arrays have been usedggherence region is set by the behaviorfat1/2 since

model disordered superconducfors and can also be fabri- higher order rational values are expected to be much less
cated with controlled amount of disorder in two Stable with a corresponding threshold value which may be

dimensiong214 For a regular array in perpendicular mag- too small to detect numerically. These results rely on the

netic field with a rational flux quanta per cdlithe ground finite-size behavior of defect energy in the ground state
sate consists of a periodic pinned vortex lattice, with addiWhich are inaccessible experimentally. However, experi-
tional discrete symmetries resulting from commensurabilityments often measure transport properties and it is of great
effects’>®and phase coherence and vortex order is possibldénterest to know how these effects could show up in the
Thus, diluted arrays in a magnetic field can provide a conbehavior of the current-voltage characteristics.

venient experimental model system to investigate the effects In this work, we present the results of extensive dynami-
of weak and strong disorder on initially pinned vortex lat- cal simulations of the current-voltage characteristics of resis-
tices and the interplay of phase coherence and vortex glagwely shunted Josephson-junction arrays with an average
states in two dimensions. In particular, in order to understanflux quantum per plaquetteand random dilution of junc-
transport properties near percolation threshold in recerfions. We find evidence of a phase coherence threshold value
experiment¥ on diluted arrays in a magnetic field, it is im- Xs<X, as indicated in Fig. 1. For<xs, the superconducting
portant to know if disorder and temperature fluctuations carransition occurs at finite temperatures while fQrx<x,
destroy phase coherence at long length scales and the natdhe array behaves as a zero-temperature vortex glass with
of vortex order in this regime. A recent studypf a model of nonzero and thermally activated linear resistance at finite
random Josephson-junction arrays with a particular type ofemperatures and diverging short-range correlation leggth
disorder(positional disorder® in a magnetic field suggests =T~ ”. A current-voltage scaling analysis provides an esti-
that no transition is possible even for weak disorder in themate of v~2. In the vortex-glass region, the zero-
thermodynamic limit but it is not clear if this scenario would temperature critical currents are roughly insensitive to
apply in general. In fact, random dilution does not explicitly changes irf.

introduces random phase shifts across the junction unlike We consider a two dimensional array of superconducting
positional disorder. In addition, an earlier study of thegrains coupled to its nearest neighbors by resistively shunted
ground-state stability of a diluted array shdWthat, in pres-  Josephson junctions and with current conservation at each
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(a) ture in units ofil /2eks . A total currentl is imposed uni-
' ' ' ' ' formly in the array using periodic boundary conditi6hs
06 f=172 1 with current densityd=1/L, whereL is the system size and
the average electric fiel& is obtained from the voltag¥

i across the system &= V/L = (%/2e)(¢;— 6;). We use pe-
riodic boundary conditions in order to eliminate possible
edge contributions to the resistance due to diluted junctions
near the boundary which could arise from open boundary
VG { % conditions?! System sizes ranging froh=8 to L=128
L L L were used in the calculations with a time step=0.07r and
03 0.4 0.5 the results averaged over 10 to 500 random diluted configu-
X rations of junctions depending on the system size.
Figure Xb) shows the behavior of the critical current den-
05 —_— ( b') sity J. where a nonzero voltage appears at zero temperature.
At low values ofx, the behavior of]. strongly depends on
the rational frustratiorf =p/q, as indicated forf =1/2 and

0.4 —o—f=1/72 ) ) . o
j\§ —o—f=1/4 1 f=1/4 in the figure, but becomes roughly insensitive tor

0.4

0.2

0.0

0.3 1 dilutions larger than a critical value much below the perco-
1 lation thresholdk, . This is consistent with the proposed vor-
tex glass phasé for the rangex, (f)<x<x, wherex, is a
;/r.:/n ] dilution threshold below which vortex-lattice order remains.
I | In the undiluted case and for small enougtihe ground-state
0.0 P R T R S energy and critical currents correlate with the orderingj of
0.0 01 0.2 0.3 0.4 05 X g unit cells and so are very sensitive to thevalue®
However, forx>x,, vortex-lattice order is completely de-
FIG. 1. (a) Phase diagram of a diluted Josephson-junction arraystroyed at long-length scales and its stability and therefore
as a function of temperatufBand concentratiow of diluted junc-  the critical current should be less sensitivegtaSince it is
tions, for an average rational frustratiés- 1/2. The superconduct- expected that x,(1/4)<x,(1/2) andx,=x., the change in
ing phase is denoted b the normal phase b, and the short-  the behavior ofl, in Fig. 1(b) allows for a very rough esti-
range vortex glass state byG. The geometrical percolation mate of the phase-coherence threshold ferl/2 as the
threshold is indicated by, and the phase-coherence threshold byyglue of dilution where the two curves overlap within the
Xs. (b) Critical current densitied.. as a function of dilutiorx for estimated errorbars(1/2)~0.20(5).
different values of frustratioh Critical temperaturegopen circley We turn now to thermal fluctuation effects. Figuréa)2
in (a) were obtained from current-voltage scaling analysis and thg,o\vs the temperature dependence of the nonlinear resistiv-
phase c_oherence thr_eshodg (fi!led circle) was inferred from the ity E/J at a value of dilutionx=0.1 below the phase-
change in the behavior ak(f) in (b). coherence thresholxl estimated above, for the largest sys-
tems sizesL=64 andL=128. As can be seen from the
figure, the linear resistivityr, =lim;_ (E/J, estimated from
the ratio E/J when J—0, tends to a finite value at high
temperatures but extrapolates to very low values at lower
A o temperatures, independent of system size, consistent with the
ﬁ 2 (6;—6))= _E [1ij sin(6;— 6, — A;j) + 71, gmstence of a finite temperatgrg superponductlng tran_sltlon
J J in the rangeT.=0.3 to 0.4. This is confirmed by a scaling
1) analysis of the nonlinear resistivity according to wHiahea-
surable quantities scale with the diverging correlation length
¢ near the transition temperature. If the transition occurs at a
finite temperature, the relaxation time divergeggsvherez
is the dynamical critical exponent, and the nonlinear resistiv-
ity satisfy the scaling form

02| A -

0.1

site!® The equations of motion for the phasésof the su-
perconducting order parameter located at sité the lattice
can be written d§-%°

whereR, is a uniform shunt resistancey;;(t) is a thermal
noise with Correlati0n5<7]ij(t) nkl(t,)>:2kBT/R05ij,k|5(t
—t’) andlj; is the junction critical current. The bond vari-
ablesA;; correspond to the line integral of the vector poten-
tial and are constrained ;;A;; =27 f, about each elemen-
tary plaquette of the referencéundiluted lattice. For
simplicity we consider a square lattice array and bond dilu- TE:{Z (ig)
tion of junctions. The qualitative behavior and critical expo- J 9=\ 7
nents presented below should remain the same for other

choices of dilution and for triangular arrays. Dilution of in two dimensions, where the and — correspond to the
junctions is introduced by taking; =0 with probabilityx  behavior above and below the transition, respectively. For a
andljj=1,, a constant, with probability +x. Dimension-  transition in the Kosterlitz-Thoule&T) universality class,
less quantities are used with time in units©t#/2e R,J,, the correlation length should diverge exponentially &s
current in units of ,, voltages in units oR, |, and tempera-  <exp@/|T/T,—1/¥?), while for a conventional transition a

2
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F T,=033 z=12 ” 1 FIG. 3. Linear resistance as a function of system dizéor
10' F O T-038 3 different temperatures at=0.1. A power-law fit afT ;= 0.33 gives
2 o 3 an estimate of the dynamical exponent
o » o T=0.36 1
oo A T=034 3 _ . _
— ‘.’ v T=032 ] also be determined from the long-time fluctuations of the
10" F & o T=030 3 phase difference across the systerigure 3, shows the
i ] finite-size behavior oR| at different temperatures. Above
107 sl our estimate off it remains finite for increasing whereas
10 10 10 10 10

below T, it appears to extrapolate to zero. RightTat, a
JE/T power-law fit givesz=1.07(5) which is consistent with the
FIG. 2. (@) Nonlinear resistivityE/J as a function of tempera- €Stimate from the current-voltage scaling and suggests there-
ture for a dilutionx=0.1 below the phase-coherence threshqid ~ fore that the transition corresponds to the underlying equilib-
and system sizels=64 andL =128 (symbols connected by lines  fium behavior. It should be noted that for the pure KT tran-
(b) Scaling plot of the daténot indicated in(a)] for the smallest  sition a dynamical exponert=2 is expected, independent
range neaiT; and smallest current densities. Open symbols correof the particular dynamics. Indeed, fé6r=0 andx=0 the
spond tol =64 and filled ones th. =128. same power-law fit giveg=2.0(1) at the critical tempera-
ture. However, forf=1/2, where an additional Ising order
0parameter is present, it is found that even for the undiluted
systemz< 2 using the present dynamitsWe also note that
attempting a scaling plot using the conventional power-law

power-law behavior is expected:| T/T.— 1|~ *, with an ex-
ponentr depending on the discrete symmetry of the pinne
vortex lattice. A scaling plot according to E@) can be used

to verify the scaling arguments and the assumption of finite lation | h ai | lue fomhich
temperature equilibrium transition. This is shown in Fig. co'relation length gives a very large value lownhich sug-

2(b), in the temperature range closest to the appaFernd gests that the exponential form is t_he appropriate one. How-
smallest current densities, assuming the correlation leagth €Ver atx=_0, both forms of correlation length gives reason-
has an exponential divergence as in the KT universality clasaPle data collapse as expected for 1/2 from the single
and usingb, T., andz as adjustable parameters so that thetransition scenario where the superconducting transition and
best data collapse is obtained. As shown in the Fig),2he  Vortex-lattice disordering transition occurs at the same tem-
two largest system sizds=64 andL =128 give the same Perature or else at very close temperatdfés-*Since the
data collapse and so finite-size effects, ignored in the scalingndiluted array atf=1/2 is expected to have a transition
form of Eq. (2), are not dominant for this range of tempera- combining the KT and Ising universalities, our results sug-
tures and current densities. We estimate a transition tempergest that for 6x<xg, the superconducting transition is in
ture T.=0.33(2) and dynamical exponemat=1.2(2). Al- the KT universality clasgstaticg while the vortex-lattice
though this estimate is based on a scaling analysis of thdisordering transition of Ising symmetry may occur sepa-
nonlinear current-voltage characteristics, which is a nonequirately in presence of weak disordérHowever, our above
librium property, we find that the finite-size behavior of the scaling analysis based on the diverging phase-coherence cor-
linear resistance af. is consistent with this analysis. In a relation length does not allow us a determination of the
finite system the divergent correlation lengths cut off by  vortex-lattice disordering transition since it is expected to
the system sizé at the transition. From Ed2), the linear  occur within the normal phasé.Using the above scaling
resistance atT. should then scale afk;«<L % The analysis, the transition temperatures for the different dilu-
linear resistance can be obtained from the Kubations can be obtained as in Fig@al For values ofx#0.1
formula of equilibrium voltage fluctuations aR, =(1/ limited data was used and the results are only rough esti-
2T) fdt(V(t)V(0)), without finite current effects, and can mates of the transition temperatures. Nevertheless, the criti-
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E/JR =g(J/ITH'") (€)

3 if the assumption of a zero-temperature transition is correct.
' ] In Fig. 4(b) we show the scaling plot according to E§) for
A - 2 1 the lowest temperatures and current densities which verifies
107 F o7 TS : E the scaling assumption and provides an estimatevof
el F 0/0/0 NG : ] =2.1(2) and an energy barri&,=1.2. This value ofv is

- 1 consistent with the estimate-1.9 based on the previous
3 finite-size scaling of defect energy in the ground state.
1 Similar analysis at different dilutionx=0.45 gives v

! =2.2(2) andE,=0.9 and at different frustratiori=1/4
10° il il givesv=2.3(2) andE,=1.45. We note that our estimate of
10 10" J 10° v~2 is roughly the same as the value obtained for the
(b) gauge-glass model of strongly disordered two-dimensional
R superconductofs which may suggest a common universal-
ity class. However, it should be noted that, for 1/2, the
system has a global reflection symmetgy-¢ — 6;) in addi-

tion to the rotational symmetfy and one would expect,

e,

w'f ]
Sk os 3 similarly to the XY (chiral) spin glas$’ which shares the
1 F e 3

<

2

LIJ

: f=1/2 x=0.35
10°F v=21 E =12

X

T-03 ] same feature, two different divergent correlation lengihs
T-025 1 and &, with corresponding distinct exponentg and v.. In
T=02 5 fact, for the chiral glass model a different universality class
] with vs~1 has been found from a current-voltage scaling
analysis> On the other hand, an analytic stdlpf the XY
spin glass for a particular distribution of disorder find a com-
1+ v mon exponent. Our estimates suggest that this could also be
J/T the case for the present percolative type of disorder or else
the exponents are too close to be resolved within the accu-
racy of our estimate. An apparent common universality class
of vortex glass models with clearly distinct symmetries has
also been found in three dimensidni addition, close to
the percolation threshold,, the above scaling analysis
cal temperature as a function of dilution reasonably extrapobased on a single diverging length scale is not valid, as one
lates to the thresholg estimated from the behavior 8§ in  must also take into account the percolation correlation length

Xod0

wEg o 0 00w

10-1 penl L3 o aanl L3 seaail
10" 10° 10' 10°

FIG. 4. (a) Nonlinear resistivityE/J as a function of tempera-
ture for a dilutionx=0.35 above the phase-coherence threskgld
(b) Scaling plot of the data ifia) for the lowest temperatures and
current densities according toTa=0 transition.

Fig. 4(b) as discussed above. &, and the fractal nature of the system at smaller length
In contrast, for a dilution above the phase-coherencecales:®'4

thresholdx>xs, the linear resistancg, is finite for all tem- In summary, we have studied the interplay of phase co-

peratures in the same range as indicated in Fig). 4Al- herence and vortex-glass state in two-dimensional diluted

though we can not exclude a transition at much lower temJosephson-junction arrays with average rational values of
peratures based on these data, the behavior is consistent witlastration. Forf = 1/2, we found evidence of a phase coher-
a superconducting transition and vortex order occurring onlience threshold valug; much below the geometric percola-

at zero temperature as for a vortex glass with a zerotion thresholdk,. This is in contrast with the conclusions of
temperature transitioh® This is consistent with defect en- Gupta and Teltéf for a Josephson-junction array with posi-
ergy calculations which show that low-energy excitationstional disorder where no phase coherence is expected at finite
above the ground state decreases with system size in thismperatures even for small disorder at length scales much
range of dilutions? In fact, R, decreases rapidly with de- larger than a disorder dependent length. Further work is re-
creasing temperature and for increasihthere is a smooth quired to verify whether the present study only reflects the
crossover to nonlinear behavior at a critical curigntwhich  finite-length scale of the system sizes used in the calculation
also decreases with decreasing temperature. From the webyr is a consequence of different type of disorder. In addition,
known scaling argumerftéeading to Eq(2), if the transition  sincef=1/2 has a particular reflection symmetry, which is
happens only at zero temperature tienT ~” and since the preserved in presence of random dilution, the behavior for
current density scale abc<kT/&, the crossover to nonlinear other values of could be qualitatively different. On the other
behavior sets in al, = T*"* which depends strongly on the hand, experiment$ are often done on systems sizes compa-
yet unknown critical exponent. Also, the linear resistivity rable to our largest system size and thus the current-voltage
R, is finite at any nonzero temperature but thermally acti-scaling behavior discussed here should be observable. In the
vated, R «exp(—Ey/kT). Thus the relaxation time«1/R_ range xs<x<x, the array behaves as a zero-temperature
diverges exponentially for decreasing temperatures. We cavortex glass with activated nonzero linear resistance at finite
then consider the behavior of the dimensionless f@tibR,  temperatures and critical currents much less sensitive to
which must satisfy the scaling fofim variations inf than in the phase-coherent region. Our results
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suggest that the phase coherence threshold can be identifiate required to confirm the observed critical behavior and
experimentally as the change in the transport properties frorobtain more accurate estimates of the critical exponents.
the weak to the strong disorder regime. However, the nu-

merical estimates of critical quantities from the current- We have benefited from many discussions with M.
voltage scaling analysis should be regarded as rough magrBenakli, S.R. Shenoy, and J. Affolter. The work of E.G. was
tudes which can be measured experimentally and used tupported by FAPESP, and the work of D.D. by CONICET
verify the prediction of a change in behavior of the transportand Fundacio AntorchagProy. A-13532/1-95 We also ac-
properties in the different phases. Equilibrium simulationsknowledge the ICTRTrieste where this work was started.
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