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We study the effect of random offset charges in the insulator to conductor transition in systems of
capacitively coupled grains, as realized in two-dimensional arrays of ultrasmall Josephson junctions. In
the presence of disorder, the conductive transition and charge ordering at nonzero gate voltages are both
destroyed for any degree of disorder at finite temperatures in the thermodynamic limit, but crossover ef-
fects will dominate at finite length scales. The conductance is linear and thermally activated but nonlin-
ear behavior sets in at a crossover voltage which decreases as temperature decreases. For large disorder,
the results are supported by Monte Carlo dynamics simulations of a Coulomb gas with offset charges
and are consistent with the thermally activated behavior found in recent experiments. [S0031-9007(98)
07499-7]
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Two-dimensional arrays of Josephson junctions whe
the charging energy of the grains is much larger than t
Josephson coupling energy are interesting systems wh
collective charging effects can be studied experimenta
in great detail [1–4]. In these systems, the net charges
the grains have a long range logarithmic interaction whe
the junction capacitanceC is small enough. The charges
play the same role as vortices in the resistive behavi
of the array, when capacitive effects can be neglecte
This allows for the possibility of a Kosterlitz-Thouless
(KT) charge unbinding transition corresponding to a
insulating to conducting transition at finite temperatur
[1]. Below the critical temperatureTc, neutral charge pairs
would be present in the insulating phase while aboveTc,
screening of the electrostatic potential gives rise to fre
isolated charges and a conducting phase. Experimenta
a transition has in fact been observed in the conductan
of small capacitance arrays of normal and superconducti
grains [1–3] at an apparent temperature consistent w
the estimate based on logarithmically interacting charge
Recently, however, a closer analysis of the experimen
data of different groups revealed that the onset of fini
conductance at finite temperatures could be described j
as well by thermal activation of free charges [2,3] with
an activation energyEa ø 1

4 Ec when the grains are in
the normal state andEa ø 1

4 Ec 1 D for superconducting
grains, where2D is the superconducting energy gap at zer
temperature. This interpretation neglects the logarithm
interaction between charges expected for an ideal arr
[1,4] and suggests in turn that, in the experimental system
the interaction is screened by some unknown mechani
and is essentially short ranged. Although disorder effec
in the form of random offset charges which may b
trapped near the grain-substrate interface [1], could be
possible explanation for these results, an understanding
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how differently prepared systems, and therefore differe
degrees of disorder, can still lead to the same activa
behavior of the linear conductance is still lacking.
particular, measurable nonlinear effects resulting fro
disorder have not been considered so far.

In this Letter, we consider the effects of random offs
charges on the charge-anticharge unbinding transition
an otherwise perfect two-dimensional array of capacitive
coupled normal or superconducting grains in the class
regime of large charging energyEc and finite temperature
T . We show that, in the presence of offset charges,
unbinding transition and charge ordering at nonzero g
voltages are both destroyed for any degree of disorders in
the thermodynamic limit, consistent with the common b
havior of different experimental arrays. The conductan
is linear and thermally activated, but crossover effects w
dominate at length scales smaller than a disorder and t
perature dependent length,js,T ­ T2nfssT2nd, wheren

is the thermal critical exponent characterizing theT ­ 0
charge glass transition. Nonlinear behavior sets in a
characteristic voltageVc , Tyjs,T . For larger disorder,
the results are supported by a Monte Carlo simulation
the nonlinear conductance leading toVc , T11n with a
very rough estimaten , 1.7.

The electrostatic energy of the net mobile chargesQi ­
epni, multiples of an elementary chargeep, located at the
sitesi of an array is given by [1,5]

E ­
1
2

X
i,j

sQi 1 qidC21
ij sQi 1 qid , (1)

whereep ­ e, the electron charge, for a normal grain an
ep ­ 2e for a superconducting grain.Cij is the capaci-
tance matrix andqi represents a net offset charge in a gra
induced by charged impurities trapped near the gra
substrate interface [1,6]. The equilibrium properties in t
© 1998 The American Physical Society
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classical limit are described by the partition functionZ ­P
hnij e2EykT , where the sum is over all integersni and the

offset chargesqi act as quenched disorder with a nonzer
uncorrelated component. We also assume that tunnel
of charges between the grains provides the dynamics
equilibrate the charge distribution and the junction dissip
tion is sufficiently small [1]. Since an offset charge equa
to an integer number ofep can be compensated by shift-
ing ni ! ni 2 m, one can consider offset charges with
probability distribution of widths , ep peaked at zero.
In general, the elements of the inverse capacitance m
trix C21

ij fall off exponentially forrij . L, whereL ,q
CyCg is a screening length,C is the capacitance be-

tween neighboring grains, andCg is the capacitance to
the ground. We consider the regimeryL ø 1, where [5]
C21

ij ­ 2
1

2pC logrij 2 1y4C. Under these conditions,
the interaction energy above describes a two-dimensio
Coulomb gas of logarithmically interacting chargesQi in
a background of quenched random chargesqi. This prob-
lem has been considered before in relation to the effects
geometrical disorder in classical superconducting arrays
a magnetic field whereQi represents vortices andqi a ran-
dom flux [7] and in the gauge-glass model [8] of disordere
superconductors where theqi are random but correlated.

In the absence of offset charges,qi ­ 0, a charge-
anticharge unbinding transition in the KT universality
class has been predicted [1] at a finite temperatu
o
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kTc ø ep2y8pC. However, in the presence of offse
charges with a nonzero component of uncorrelated d
order,kqiqjl ­ s2dij, the behavior is drastically change
as bound charge-anticharge pairs are unstable at a s
ciently large length scalej determined by the degree o
disorder. In fact, the net charge fluctuation due to rando
charges in a domain of areapL2 will neutralize a test
chargeQ ­ ep when L ­ js ­ epy

p
p s. For length

scales larger thanjs , charges are unbound and will con
tribute to the linear conductanceG provided that charges
are mobile. This shows that even for smalls, disorder is
a strongly relevant perturbation.

In general, there will also be a contribution from
correlated disorder. However, this is either irrelevant
the fixed point of the pure system or at most margin
for sufficiently small disorder. To lowest order in th
wave vectork, the moments of disorder distribution ar
given by kqkl ­ 0 and kqkq2kl ­ s2 1 s

2
2k2 1 Osk4d.

The first term corresponds to uncorrelated randomness
discussed above and the second term to offset char
correlated as random dipolesp ­ qjri 2 rjj, where ri

and rj are neighboring sites, sincekpkp2kl ­ s
2
2k2.

Higher order terms correspond to multipole correl
tions. Using standard methods to convert the partiti
function of Eq. (1) to a sine-Gordon model [9] and th
replica trick to average the free energy over disorder,
obtain an effective reduced Hamiltonian in terms ofn
replicas
HykT ­
1
2

Z
d2r

"
1
K

X
a

s=wad2 1

√
2ps

ep

!2 X
a,b

wa
r wb

r 1

√
2ps2

ep

!2 X
a,b

=wa=wb 2 y
X
a

coss2pwa
r d

#
, (2)
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whereK ­ Ecy2p2kT . Higher order gradient terms have
been neglected. In the absence of disorder this mo
has a massless phase forpK . 2 when the charge fugac-
ity y is irrelevant corresponding to an insulating phas
For pK , 2, y is relevant leading to a conducting phas
From renormalization-group arguments, the relevance
the disorder perturbation on the massless phase can n
be determined from the eigenvaluel ­ d 2 x where2x
is the correlation function exponent evaluated at the unp
turbed fixed point. For uncorrelated disorder,s fi 0, it
is sufficient to consider the diagonal contributiona ­ b.
This has an eigenvaluel ­ 2 in the massless phase sinc
x ­ sd 2 2d ­ 0 in two dimensions, which corresponds
to a scaling behaviors02 ­ s2b2 under a change of lat-
tice spacing by a factor ofb, in agreement with the domain
argument given above leading to a characteristic disord
lengthjs ~ 1ys. For correlated disorder alone,s2 fi 0,
the contribution from the diagonal term

P
a =wa=wa just

renormalizes the value ofK but the off-diagonal perturba-
tion

P
afib =wa=wb is marginal,l ­ 0. The higher order

gradient terms in the Hamiltonian are then irrelevant.
The disorder dependent lengthjs is the scale up to

which the chargesQi are mobile. Beyond this scale, they
are neutralized by the random background of quench
del
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chargesqi. At a scaleL . js , the system is better
described as a set of pinned charges interacting by a sh
range potential, and we expect that it behaves simila
to a charge glass. Since these charges play the sa
role as vortices in a two-dimensional superconducto
one expects that glass order occurs atT ­ 0 only, with
a thermal correlation lengthjT ~ T2n, where n is a
thermal critical exponent associated with theT ­ 0 fixed
point [8]. Assuming that the model of Eq. (1) is in the
same universality class, we expect thatn * 2. Standard
crossover scaling leads to a correlation lengthjs,T ­
T2nfssT2nd where the scaling functionfsxd is a function
of the dimensionless ratiox ­ jT yjs with fsxd , 1 for
x ¿ xc andfsxd , 1yx for x ø xc so thatjs,T ~ 1ys

whensT2n , xc andjs,T ~ T2n for sT2n . xc. For
an infinite system, the predicted insulating-conductin
transition in the absence of disorder is destroyed by a
finite density of uncorrelated offset charges but crossov
effects may lead to an apparent transition ifjs,T is larger
than the system size. Note that the above argume
are not strictly correct in the limits ­ 0 or T ­ 0 as
it does not allow for the possibility of a transition to a
true insulating phase of bound pairs of charges at fin
3889
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T when s ­ 0 or for quantum tunneling [3] atT ­ 0.
In principle, such effects could be incorporated in th
crossover scaling analysis at the expense of some m
extra complications, but experiments [1–3] indicate th
there is a range of temperatures over which purely class
behavior is observed and that behavior characteristic
the absence of disorder is never observed. The crosso
scaling analysis outlined above should be relevant
experimental systems at temperatures above the cross
temperature where quantum tunneling dominates [3].

In addition to j, another length scale,jV , is set
by an applied finite voltageV across the system [10].
The additional contribution to the energy has the forP

i QiExi for a uniform electric fieldE in thex direction.
Thermal fluctuations alone, of typical energykT , lead to
a characteristic lengthjV , kTyepE over which single
charge motion is possible. ForjV . j, when charges
are unbound, this leads to a linear response to
applied voltage and a finite conductance limited by t
tunneling rate across each junction in the array. ForjV ,

j, the contribution from the applied voltage must b
balanced against the interaction energy with other char
leading to nonlinear behavior. A crossover from line
to nonlinear behavior occurs when these two lengt
are comparable, i.e., at a characteristic voltageVc ,
Tyjs,T ­ Tn11gssT2nd, wheregsxd ­ 1yfsxd.

The finite correlation lengthj in the presence of disorde
also determines the behavior of the activation energy in
regime of linear conductance. For vanishing voltage, t
current arises from thermal dissociation of the most wea
bound charge pairs. For normal metals, the energy nec
sary to unbind a typical pair isE ­

Ec

p logsjyad 1 Eo ,
whereEo . Ecy2 is the core energy of a pair with one
lattice spacing separation. For sufficiently large disord
such thatj , a, the conductance should then have an A
rhenius behavior with an activation energy given [2] b
Ea ­ Eoy2. However, for moderate disorder the activa
tion energy has a temperature and disorder dependent lo
rithmic correction logsjs,T yad. In the pure case where
s ­ 0 and js,T ! `, this implies an infinite activation
energy and the linear conductance vanishes consistent
Vc , Tyjs,T ! 0. For superconducting grains, the argu
ments above still apply except that an additional energy
3890
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[2]

equal to the superconducting energy gapEg is required to
create quasiparticles which allow charges on the grains
tunnel to neighboring grains, in the absence of Josephs
tunneling.

In the presence of a gate voltageVg on each grain, there
will be an induced chargeCgVg on each grain acting as
a frustration parameter [1]f ­ CgVgyep analogous to the
flux quanta per plaquette in Josephson junction arrays
a magnetic field. The properties of the system should
periodic in f with period 1. In particular, the Coulomb
gap width oscillates as a function ofVg with periodepyCg,
often used as an estimate ofCg. For fractional values off
the ground state is a charged ordered state with an aver
numberf of elementary charges per grain. For rationa
f ­ pyq, this leads to a ground state with a unit cell o
sizeq 3 q and a discrete degenerate ground state [11].
finite temperature transition is expected from the charg
ordered phase to a disordered phase in addition to t
charge-anticharge unbinding transition. In the presen
of disorder, the behavior at integerf will be the same as
f ­ 0, i.e., at any finite temperature the interacting charg
system is disordered and the conductance is finite. Th
behavior should persist for fractional values off since,
in addition to the discrete symmetry excitations such a
domain walls, thermally excited net charges interactin
logarithmically are also present which will be screene
by disorder at length scales larger thanj leading to a
linear thermally activated conductance. However, on
still may question if charge order remains stable in th
presence of disorder. It is sufficient to consider the ca
f ­ 1y2 since the ground states forf , 1y2 are less
stable [11]. Atf ­ 1y2 and in the absence of disorder
it is known that the ground state [11] consists of2 3

2 unit cells with an antiferromagnetic arrangement o
ni 2 f ­ 61y2 net fractional charges, in units of the
elementary chargeep. The lowest energy excitations are
domain walls separating the two degenerate ground stat
61y4 charges at domain wall corners, and unit exce
charges interacting logarithmically. In a coarse-graine
description, the variables in a unit cell can be replace
by Ising variablesSr ­ 61, which describe the charge
ordered state and chargesQR ­

P
Sry4 averaged over the

unit cell [12]. This leads to an effective Hamiltonian [7]
HykT ­ L1

X
kr ,r 0l

SrSr 0 1 2p2K
X
R,R0

QRGsR 2 R0dQR0 1 L2

X
r

Srqr 1 4p2K
X
rR

QRGsR 2 rdqr , (3)
ins
lts
-
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al
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ble
whereGsrd ­ logsryad 1 py2. The Ising variablesSr

are coupled antiferromagnetically by a nearest neighbor
teractionL1 and to a random field proportional toqr . The
excess chargesQR are still coupled to the random offse
chargesqr and will therefore lead to finite conductance a
discussed before. Since the offset charges coupled as
dom fields to the Ising variables, charge order will be d
stroyed even for small disorder. There will be, however
characteristic length scale [13]j0

s , expscys2d, beyond
which random offset charges destroy the charge orde
in-

t
s
ran-
e-
, a

red

state. For sufficiently smalls, j0
s . js and there can be

an intermediate length scale where charge order rema
but excess charge is effectively unbound. Similar resu
should apply forf , 1y2 and we expect that disorder de
stroys charge ordering for any finite gate voltage.

We have studied the linear and nonlinear conductan
of the Coulomb gas in Eq. (1) numerically using classic
Monte Carlo nonequilibrium dynamics [8], regarding th
Monte Carlo time as real time. This should be a reasona
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approximation in the overdamped limit and when quantu
effects can be ignored. It also assumes that the tunnel
rate which provides the equilibrium charge distributio
satisfies the global rule [14] when it depends on the ener
difference of the whole array. In the simulations, a Mont
Carlo step consists of adding a dipole of unit charge
and unit length to a nearest neighbor charge pair,sni , njd,
corresponding to a tunneling of the positive or negativ
charge by a unit of length. The external electric field bias
the added dipole, leading to a current as the net flow
charge is in the direction of the electric field. The unit o
time corresponds to a complete Monte Carlo pass throu
the system. The linear conductanceGL ­ limE!0 JyE is
obtained from the equilibrium current fluctuations, withou
imposing a voltage bias, from the fluctuation-dissipatio
relationGL ­

1
2kT

R
dtkIs0dIstdl.

Figures 1(a) and 1(b) show the behavior of the line
conductanceGL in the absence of disorder,s ­ 0, and in
the presence of a (large) random Gaussian distribution
offset charges with a standard deviations ­ 0.5. Since
large disorder leads to smallj, we can use a small sys-
tem sizeL 3 L with L ­ 16. Whens ­ 0, the conduc-
tance appears to vanish atTc ø 1.4 for f ­ 0 andø0.8
for f ­ 1y2, corresponding to the critical temperature fo
the conductive transition for zero and nonzero gate vo
ages. However, fors ­ 0.5, the conductance remains
finite much below the critical temperature for the pure sy
tem. In fact, as indicated in the figure, the data in the lo
temperature range can be reasonably fitted to the Arrh
nius activated formG ­ Goe2EaykT in agreement with a
disordered phase. Moreover, the calculation ofGL from
current fluctuations ensures that the activated behavior
not an artifact of a voltage bias since it is obtained witho
an external electric field. In experiments, however, a vo
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FIG. 1. (a) Linear conductanceGL with zero gate voltage
( f ­ 0) and (b) with nonzero gate voltage (f ­ 1y2). The
straight lines indicate an Arrhenius behavior. TemperatureT
is measured units ofEcy2p2. (c) Nonlinear conductanceJyE
as a function of temperature, fors ­ 0.5 and (f ­ 0). (d)
Scaling plot of the nonlinear conductance in (c).
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age bias is often used and nonlinear effects should be tak
into account. In Fig. 1(c) we show the behavior of th
nonlinear conductance as a function of the applied elect
field and temperature fors ­ 0.5 andf ­ 0. For small
E, JyE tends to the constant finite value of Fig. 1(a) whic
decreases with temperature. For the highest temperatu
T ­ 0.8, the range ofE in which this behavior is appar-
ent is more pronounced. For increasingE it clearly crosses
over to a nonlinear behavior in agreement with the analys
leading to a crossover voltageVc which is both tempera-
ture and disorder dependent. The nonlinear conductan
can be cast into a scaling form [8],JyEGL ­ FsEyEcd,
whereF is some scaling function withFs0d ­ 1. For large
disorder we haveEc , Tn11, and a scaling plot allows an
estimate ofn. This is shown in Fig. 1(d) where a reason
able data collapse is obtained by adjustingEa andn for the
largest temperatures, givingn , 1.7, in rough agreement
with theT ­ 0 stiffness exponent for gauge glass mode
[8]. This implies that the characteristic voltageVc where
nonlinearities set in should exhibit a nontrivial power law
Vc , Tn11 and should be accessible experimentally.
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