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Charge Glass in Two-Dimensional Arrays of Capacitively Coupled Grains
with Random Offset Charges
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We study the effect of random offset charges in the insulator to conductor transition in systems of
capacitively coupled grains, as realized in two-dimensional arrays of ultrasmall Josephson junctions. In
the presence of disorder, the conductive transition and charge ordering at nonzero gate voltages are both
destroyed for any degree of disorder at finite temperatures in the thermodynamic limit, but crossover ef-
fects will dominate at finite length scales. The conductance is linear and thermally activated but nonlin-
ear behavior sets in at a crossover voltage which decreases as temperature decreases. For large disorder,
the results are supported by Monte Carlo dynamics simulations of a Coulomb gas with offset charges
and are consistent with the thermally activated behavior found in recent experiments. [S0031-9007(98)
07499-7]

PACS numbers: 64.70.Pf, 73.40.Gk, 73.40.Rw

Two-dimensional arrays of Josephson junctions wheréow differently prepared systems, and therefore different
the charging energy of the grains is much larger than thelegrees of disorder, can still lead to the same activated
Josephson coupling energy are interesting systems whebehavior of the linear conductance is still lacking. In
collective charging effects can be studied experimentallyarticular, measurable nonlinear effects resulting from
in great detail [1-4]. In these systems, the net charges idisorder have not been considered so far.
the grains have a long range logarithmic interaction when In this Letter, we consider the effects of random offset
the junction capacitanc€ is small enough. The charges charges on the charge-anticharge unbinding transition in
play the same role as vortices in the resistive behavioan otherwise perfect two-dimensional array of capacitively
of the array, when capacitive effects can be neglecteccoupled normal or superconducting grains in the classical
This allows for the possibility of a Kosterlitz-Thouless regime of large charging enerdy and finite temperature
(KT) charge unbinding transition corresponding to an7. We show that, in the presence of offset charges, the
insulating to conducting transition at finite temperatureunbinding transition and charge ordering at nonzero gate
[1]. Below the critical temperaturg., neutral charge pairs voltages are both destroyed for any degree of disarder
would be present in the insulating phase while abBye the thermodynamic limit, consistent with the common be-
screening of the electrostatic potential gives rise to frednavior of different experimental arrays. The conductance
isolated charges and a conducting phase. Experimentallig linear and thermally activated, but crossover effects will
a transition has in fact been observed in the conductanadominate at length scales smaller than a disorder and tem-
of small capacitance arrays of normal and superconductingerature dependent length, r = T~*f(oT~"), wherev
grains [1-3] at an apparent temperature consistent witfs the thermal critical exponent characterizing fhe= 0
the estimate based on logarithmically interacting chargesharge glass transition. Nonlinear behavior sets in at a
Recently, however, a closer analysis of the experimentatharacteristic voltag&,. ~ T/&, 7. For larger disorder,
data of different groups revealed that the onset of finitehe results are supported by a Monte Carlo simulation of
conductance at finite temperatures could be described juite nonlinear conductance leading o ~ T'*” with a
as well by thermal activation of free charges [2,3] with very rough estimate ~ 1.7.
an activation energyt, = %Ec when the grains are in The electrostatic energy of the net mobile char@es=
the normal state anfl, ~ %Ec + A for superconducting ¢ 7i» multiples of an elementary charge, located at the
grains, wher@A is the superconducting energy gap at zercSitesi of an array is given by [1,5]

temperature. This interpretation neglects the logarithmic 1 .
interaction between charges expected for an ideal array E = EZ(QI' +4i)Ci; Qi + qi), (1)
[1,4] and suggests in turn that, in the experimental systems, "

the interaction is screened by some unknown mechanismheree® = e, the electron charge, for a normal grain and
and is essentially short ranged. Although disorder effectss” = 2e for a superconducting grainC;; is the capaci-

in the form of random offset charges which may betance matrix ang; represents a net offset charge in a grain
trapped near the grain-substrate interface [1], could be mduced by charged impurities trapped near the grain-
possible explanation for these results, an understanding stibstrate interface [1,6]. The equilibrium properties in the
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classical limit are described by the partition function= kT, = ¢*>/87C. However, in the presence of offset
Z{ni}e‘E/"T, where the sum is over all integetsand the charges with a nonzero component of uncorrelated dis-
offset chargeg; act as quenched disorder with a nonzeroorder,{g;q,;) = o*J;;, the behavior is drastically changed
uncorrelated component. We also assume that tunnelings bound charge-anticharge pairs are unstable at a suffi-
of charges between the grains provides the dynamics toiently large length scal¢ determined by the degree of
equilibrate the charge distribution and the junction dissipadisorder. In fact, the net charge fluctuation due to random
tion is sufficiently small [1]. Since an offset charge equalcharges in a domain of areaL? will neutralize a test

to an integer number of* can be compensated by shift- chargeQ = ¢* whenL = ¢, = ¢*/ /7 o. For length

ing n; — n; — m, one can consider offset charges with ascales larger thag,,, charges are unbound and will con-
probability distribution of widtho < ¢* peaked at zero. tribute to the linear conductance provided that charges

In general, the elements of the inverse capacitance mare mobile. This shows that even for small disorder is
trix C,}l fall off exponentially forr;; > A, whereA ~  a strongly relevant perturbation.

,\/C/C, is a screening length; is the capacitance be- In general, there will also be a contribution from
tween neighboring grains, and, is the capacitance to correlated disorder. However, this is either irrelevant at
’ 8

the ground. We consider the regimgA < 1, where [5] the flxe_d_pomt of the pure system or at most m_arglnal
col = —#Iogr- — 1/4C. Under these conditions for sufficiently small disorder. To Iowest_ or_der. in the

i 27 C i ; X X o vYave vectork, the moments of disorder distribution are
the interaction energy above describes a two—dlmensmn%.

ab9 : . . iven by(g.) = 0 and{grg_) = o2 + o3k? + O(k*).
Coulomb gas of logarithmically interacting chqr@sm The first term corresponds to uncorrelated randomness as
a background of quenched random chargesThis prob-

lem has been considered before in relation to the effects cﬂiscussed above and the second term to offset charges
correlated as random dipolgs = ¢|r; — r;|, wherer;

geometrical disorder in classical superconducting arrays in d iahbori " incé — o2
a magnetic field wher@; represents vortices anda ran- 2" hrf ar(;:‘j neltg orng SHes, Zlntc pkp_l'[k'> N 2K |
dom flux [7] and in the gauge-glass model [8] ofdisorderec{'.IIg er order terms correspond to mullipole ~correta-

. Using standard methods to convert the partition
superconductors where tlge are random but correlated. lons. :
In the absence of offset charges, = 0, a charge- function of Eqg. (1) to a sine-Gordon model [9] and the

anticharge unbinding transition in the KT universality reb;:hpa trick ftfo at\_/erag%the(;re: en_ﬁrgy over (tjlsorder,fwe
class has been predicted [1] at a finite temperatyrg ain an eftective reduced Hamiltonian n terms o

replicas
1 1 2ma ) 270\
mTo oo
H/KT = E[dzr[Ewaz +( - ) > ool +( 6*2) > Ve Vel =y cof2me } )
a a,B a,B a

wherek = E./272kT. Higher order gradient terms hav
been neglected. In the absence of disorder this modehargesg;. At a scaleL > &,, the system is better
has a massless phase foK > 2 when the charge fugac- described as a set of pinned charges interacting by a short
ity y is irrelevant corresponding to an insulating phaserange potential, and we expect that it behaves similarly
For7K < 2,y is relevant leading to a conducting phase.to a charge glass. Since these charges play the same
From renormalization-group arguments, the relevance afole as vortices in a two-dimensional superconductor,
the disorder perturbation on the massless phase can name expects that glass order occursTat 0 only, with
be determined from the eigenvalue= d — x where2x  a thermal correlation lengtlf; « 777, where v is a
is the correlation function exponent evaluated at the unpethermal critical exponent associated with the= 0 fixed
turbed fixed point. For uncorrelated disorder,# 0, it  point [8]. Assuming that the model of Eq. (1) is in the
is sufficient to consider the diagonal contributiern= 8.  same universality class, we expect thak 2. Standard
This has an eigenvalue = 2 in the massless phase since crossover scaling leads to a correlation lengthy =
x = (d — 2) = 0 in two dimensions, which corresponds 7~" f(oT~") where the scaling functiofi(x) is a function
to a scaling behavioo”? = ¢%b? under a change of lat- of the dimensionless ratio = ¢7/&, with f(x) ~ 1 for
tice spacing by a factor df, in agreement with the domain x > x. andf(x) ~ 1/x for x < x, so thaté, r « 1/o
argument given above leading to a characteristic disordevhenoT™" < x. and¢,r « T~ " for oT™" > x.. For
lengthé, o« 1/0. For correlated disorder alone; # 0, an infinite system, the predicted insulating-conducting
the contribution from the diagonal term, Ve, Ve, just  transition in the absence of disorder is destroyed by any
renormalizes the value & but the off-diagonal perturba- finite density of uncorrelated offset charges but crossover
tion> .5 Voo VegismarginalA = 0. The higherorder effects may lead to an apparent transitiod jfr is larger
gradient terms in the Hamiltonian are then irrelevant. than the system size. Note that the above arguments
The disorder dependent leng#h, is the scale up to are not strictly correct in the limi =0 or T = 0 as
which the chargeg@); are mobile. Beyond this scale, they it does not allow for the possibility of a transition to a
are neutralized by the random background of quencheftue insulating phase of bound pairs of charges at finite
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T when o = 0 or for quantum tunneling [3] aI" = 0.  equal to the superconducting energy gapis required to
In principle, such effects could be incorporated in thecreate quasiparticles which allow charges on the grains to
crossover scaling analysis at the expense of some majtunnel to neighboring grains, in the absence of Josephson
extra complications, but experiments [1-3] indicate thatunneling.
there is a range of temperatures over which purely classical In the presence of a gate voltagg on each grain, there
behavior is observed and that behavior characteristic okill be an induced charg€,V, on each grain acting as
the absence of disorder is never observed. The crossovarfrustration parameter [}] = C,V,/e* analogous to the
scaling analysis outlined above should be relevant tdlux quanta per plaguette in Josephson junction arrays in
experimental systems at temperatures above the crossovemagnetic field. The properties of the system should be
temperature where quantum tunneling dominates [3].  periodic in f with period 1. In particular, the Coulomb

In addition to ¢, another length scale¢y, is set gap width oscillates as a function Bf with periode*/C,,
by an applied finite voltaged/ across the system [10]. often used as an estlmate(og For fractional values of
The additional contribution to the energy has the formthe ground state is a charged ordered state with an average
> Q:Ex; for a uniform electric fieldt in the x direction.  numberf of elementary charges per grain. For rational
Thermal fluctuations alone, of typical energy, lead to  f = p/q, this leads to a ground state with a unit cell of
a characteristic lengtlfy ~ kT /e*E over which single sizeq X ¢ and a discrete degenerate ground state [11]. A
charge motion is possible. Fa@fy > &, when charges finite temperature transition is expected from the charge
are unbound, this leads to a linear response to therdered phase to a disordered phase in addition to the
applied voltage and a finite conductance limited by thecharge-anticharge unbinding transition. In the presence
tunneling rate across each junction in the array. foK of disorder, the behavior at integérwill be the same as
&, the contribution from the applied voltage must bef = 0, i.e., at any finite temperature the interacting charge
balanced against the interaction energy with other chargesystem is disordered and the conductance is finite. This
leading to nonlinear behavior. A crossover from linearbehavior should persist for fractional values ffsince,
to nonlinear behavior occurs when these two lengthsn addition to the discrete symmetry excitations such as
are comparable, i.e., at a characteristic voltdge~  domain walls, thermally excited net charges interacting
T/éyr =T " 'g(aT™7), whereg(x) = 1/f(x). logarithmically are also present which will be screened

The finite correlation length in the presence of disorder by disorder at length scales larger thanleading to a
also determines the behavior of the activation energy in thénear thermally activated conductance. However, one
regime of linear conductance. For vanishing voltage, thestill may question if charge order remains stable in the
current arises from thermal dissociation of the most weaklypresence of disorder. It is sufficient to consider the case
bound charge pairs. For normal metals, the energy neceg-= 1/2 since the ground states fgt < 1/2 are less
sary to unbind a typical pair i€ = E? log(¢/a) + E,, stable [11]. Atf = 1/2 and in the absence of disorder,
whereE, = E./2 is the core energy of a pair with one it is known that the ground state [11] consists DfX
lattice spacing separation. For sufficiently large disorde2 unit cells with an antiferromagnetic arrangement of
such thatt ~ a, the conductance should then have an Ar-n; — f = ®£1/2 net fractional charges, in units of the
rhenius behavior with an activation energy given [2] byelementary charge®. The lowest energy excitations are
E, = E,/2. However, for moderate disorder the activa-domain walls separating the two degenerate ground states,
tion energy has a temperature and disorder dependent loga- /4 charges at domain wall corners, and unit excess
rithmic correction logé, r/a). In the pure case where charges interacting logarithmically. In a coarse-grained
o =0 and ¢, r — =, this implies an infinite activation description, the variables in a unit cell can be replaced
energy and the linear conductance vanishes consistent witlty Ising variablesS, = *1, which describe the charge
V. ~ T/é,r — 0. For superconducting grains, the argu- ordered state and charg@g = >_ S, /4 averaged over the
ments above still apply except that an additional energy|[2]Jl’lit cell [12]. This leads to an effective Hamiltonian [7]

H/KT =Ly Y .S, + 27*K D> QrG(R — R")Qp + LZZS,q, + 4772KZQRG(R - g, (3)
(') RR

whereG(r) = log(r/a) + @/2. The Ising variabless,
are coupled antiferromagnetically by a nearest neighbor instate. For sufficiently smatl, £/ > ¢, and there can be
teractionL, and to a random field proportional . The an intermediate length scale where charge order remains
excess charge@y are still coupled to the random offset but excess charge is effectively unbound. Similar results
charges;, and will therefore lead to finite conductance asshould apply forf < 1/2 and we expect that disorder de-
discussed before. Since the offset charges coupled as rastroys charge ordering for any finite gate voltage.

dom fields to the Ising variables, charge order will be de- We have studied the linear and nonlinear conductance
stroyed even for small disorder. There will be, however, of the Coulomb gas in Eqg. (1) numerically using classical
characteristic length scale [13], ~ exp(c/o?), beyond Monte Carlo nonequilibrium dynamics [8], regarding the
which random offset charges destroy the charge orderellonte Carlo time as real time. This should be a reasonable
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approximation in the overdamped limit and when quanturmage bias is often used and nonlinear effects should be taken
effects can be ignored. It also assumes that the tunnelingto account. In Fig. 1(c) we show the behavior of the
rate which provides the equilibrium charge distributionnonlinear conductance as a function of the applied electric
satisfies the global rule [14] when it depends on the energfield and temperature far = 0.5 andf = 0. For small
difference of the whole array. In the simulations, a MonteE, J/E tends to the constant finite value of Fig. 1(a) which
Carlo step consists of adding a dipole of unit chargesiecreases with temperature. For the highest temperature,
and unit length to a nearest neighbor charge gajt;), T = 0.8, the range of£ in which this behavior is appar-
corresponding to a tunneling of the positive or negativeentis more pronounced. Forincreasing clearly crosses
charge by a unit of length. The external electric field biase®ver to a nonlinear behavior in agreement with the analysis
the added dipole, leading to a current as the net flow ofeading to a crossover voltagé which is both tempera-
charge is in the direction of the electric field. The unit ofture and disorder dependent. The nonlinear conductance
time corresponds to a complete Monte Carlo pass througban be cast into a scaling form [8]/EG, = F(E/E.),
the system. The linear conductan@e = limg_J/E is  whereF is some scaling function with(0) = 1. Forlarge
obtained from the equilibrium current fluctuations, withoutdisorder we havé&,. ~ T7**!, and a scaling plot allows an
imposing a voltage bias, from the fluctuation-dissipationestimate ofv. This is shown in Fig. 1(d) where a reason-
relationG, = %LT [ drI(0)I(1)). able data collapse is obtained by adjustifygandy for the
Figures 1(a) and 1(b) show the behavior of the lineatargest temperatures, giving ~ 1.7, in rough agreement
conductances; in the absence of disordar, = 0, and in  with theT = 0 stiffness exponent for gauge glass models
the presence of a (large) random Gaussian distribution dB]. This implies that the characteristic voltagie where
offset charges with a standard deviation= 0.5. Since nonlinearities set in should exhibit a nontrivial power law
large disorder leads to smafl, we can use a small sys- V. ~ T*"! and should be accessible experimentally.
tem sizel. X L with L = 16. Wheno = 0, the conduc- This work was supported by FAPESP, Proc. No.
tance appears to vanish Bt =~ 1.4 for f = 0 and=0.8  97/07250-8 (E.G.) and Proc. No. 29188-8 (J.M.K)),
for f = 1/2, corresponding to the critical temperature forand by a joint CNPg-NSF grant. We acknowledge the
the conductive transition for zero and nonzero gate voltsupport from ICTP, where part of the work was done.
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