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Diluted Josephson-junction arrays in a magnetic field:
Phase coherence and vortex glass thresholds
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The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic
field are considered. For rational values of the average flux quantum per plaquettef , the superconducting
transition temperature vanishes, for increasing dilution at a critical valuexS( f ), while the vortex ordering
remains stable up toxVL.xS , far below the valuexp corresponding to the geometric percolation threshold. For
xVL,x,xp , the array behaves as a zero-temperature vortex glass. Numerical results forf 51/2 from defect
energy calculations are presented and are consistent with this scenario.@S0163-1829~98!00818-2#
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Vortex-glass states in disordered three-dimensional su
conductors have been the focus of much recent interest.1–5 In
the absence of screening, they are believed to have a
superconducting phase, with vanishing linear resistivity,
finite temperatures. By contrast, in two dimensions, vort
glass models2 and experiments on superconducting film5

show that vortex-glass order is destroyed at any finite te
perature with a nonzero but exponentially small resistiv
This zero-temperature vortex glass can be characterized
thermal correlation length exponentnT which determines, for
example, the current density scale,Jnl;T11nT, where non-
linear behavior shows up in the current-volta
characteristics.2,5 Recent estimates givenT;2 for various
vortex glass models.2

Randomly diluted Josephson-junction arrays~JJA’s! have
been used to model disordered superconductors.3,6,7 In zero
field, the superconducting transition temperature vanishe
the percolation threshold8 xp , wherex is the concentration o
diluted junctions. Forx.xp there are only uncoupled finit
clusters and long-range phase coherence is destroyed. Axp ,
the infinite percolating cluster shows up in the scaling beh
ior of the dynamic conductivity6 and nonlinear resistivity.7 In
the presence of an external field, a diluted JJA is an exp
mentally controllable model to investigate phase cohere
and vortex glasses in two dimensions. For rational value
the flux quantum per unit cellf , an ordered (x50) JJA has
a ground state consisting of a periodic pinned vortex latt
with additional discrete symmetries resulting from comme
surability effects.1,9 The melting of this vortex lattice at a
temperatureTVL , driven by domain-wall excitations, com
petes with the superconducting transition atTS driven by the
Kosterlitz-Thouless vortex unbinding. Forf 51/2, these tran-
sitions either coincide or have very close transiti
temperatures,1 TVL*TS . Similar behavior is expected fo
570163-1829/98/57~17!/10314~4!/$15.00
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other low rational values off . In presence of random
dilution disorder, two natural questions arise:~i! are there
two dilution thresholds,xS andxVL , for phase coherence an
vortex-lattice order, respectively? Does a vortex-glass ph
occur over a significant rangex.xVL?

In this work, we argue that for rational values off , the
superconducting transition temperature of the array vanis
for increasing dilution, at a critical valuexS( f ). The vortex-
lattice ordering remains stable up toxVL( f ).xS( f ) but both
values are much below the valuexp corresponding to the
geometric percolation threshold. ForxVL,x,xp there is a
zero-temperature vortex glass. These features are verified
merically for f 51/2, using a bond-diluted frustratedXY
model on a triangular lattice, and extensive zero-tempera
calculations. Domain-wall energy calculations give an e
mate of a wide range,xVL,x,xp , for a zero-temperature
vortex glass below the geometrical percolation thresholdxp
50.652. We findxS50.14(1) andxVL50.17(1) consistent
with the proposed scenario. In the vortex-glass phase,nT
;1.9, as estimated from the size dependence of defect e
gies excitations. Interestingly enough, this estimate is v
close to the value obtained for the gauge-glass model2 which
may suggest a common universality class.

We consider a two-dimensional Josephson-junction ar
in a magnetic fieldB described by the Hamiltonian of
frustratedXY model

H52(̂
i j &

Ji j cos~u i2u j2Ai j !, ~1!

whereu i is the phase of the condensate wave function i
grain at sitei and Ji j is the Josephson coupling. The sum
mation is taken over all nearest neighbors of a regular re
ence lattice. The dimensionless line integral of the vec
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potential Ai j about each elementary reference-latt
plaquette of areaS is (pAi j 52p f , where the frustration
parameterf 5BS/Fo measures the number of flux quantaFo
per plaquette. A bond-dilution concentrationx corresponds
to Ji j being zero orJ, with probabilitiesx and 12x, respec-
tively. Since any closed loops of nonzero bondsJ have an
area which is an integer multiple of the elementary areaS,
the properties of this model are periodic inf with period 1,
and it is therefore sufficient to consider 0, f ,1.

For f 50, the Hamiltonian reduces to the standard dilu
XY model, which is known to be superconducting for8 x
,xp . When f Þ0, there must also be a thresholdxVL for
vortex-lattice disordering4 below the percolation threshold
xVL,xp . In the undiluted casex50, the ground state fo
rational f 5p/q (q>2) consists of a pinned vortex lattice9

with a q3q unit cell. For small dilutionx!xVL , the long-
range order of the vortex lattice persists, provided an infin
cluster of these cells exists. SincexVL( f ) corresponds
roughly to the percolation threshold for cells of sizeq3q,
the percolation threshold forq3q cell dilution is reached
much below the unit bond-dilution threshold. Alternative
long-range order of the vortex lattice requires connectiv
over at leastq bonds, as in bootstrap percolation,10 which is
known to lead to a percolation threshold below the unit bo
percolation. Since vortex-lattice disordering leads to supp
sion of phase coherence,1 xVL is an upper bound for the
superconducting thresholdxS . This implies that the transi
tion temperature should vanish at anxS<xp , and that the
thresholds are as illustrated in Fig. 1. At least for low-ord
rational values off , we would expectxS( f 8),xS( f ) if f 8
, f since f 8 requires a higher connectivity. ForxVL( f ),x
,xp , there is no long-range order, and this phase sho
correspond to a two-dimensional vortex glass, where a
phase transition is known to occur only atT50.2,11 An in-
tervening glass phase near percolation threshold is also
pected from mean-field theory.3 This phase can be
characterized2 by a critical exponentu that determines how
low-energy excitationsDE(L) from the ground state behav
at long length scalesL. For a T50 vortex glassDE;Lu,
with u,0, and thermal excitations of scalej;T2nT destroy

FIG. 1. Schematic phase diagram of a diluted JJA as a func
of temperatureT and dilutionx, for an average rational frustratio
f , showing a superconducting phase~S!, a normal ordered vortex
lattice phase~N!, and a vortex-glass phase~VG!. A single transition
is assumed atx50. If the transitions are already separated ax
50, dilution would further increase the separation. AtT50, a van-
ishing linear resistance is expected forx,xp due to vortex pinning.
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the glass order at any finite temperature, leading to an id
tification of the thermal correlation length exponent asnT

51/uuu. Our numerical results forf 51/2, described below
are consistent with this behavior, and provide an estima
of nT . In absence of thermal fluctuations, atT50, vortices
are pinned by disorder and a nonlinear response to an ap
current is expected leading to a vanishing linear resista
and nonzero critical current forx,xp .

We have carried out a detailed numerical study forf
51/2 at zero temperature, using a bond diluted frustra
JJA on a triangular lattice, where the critical dilution thres
old for bond percolation8 is xp50.652. For this value off ,
vortex-lattice ordering can be conveniently described
terms of a Z2 chirality order parameterx5(^ i j &(u i2u j

2Ai j )/(2p), where summation is taken about an element
plaquette of the actual lattice, and the gauge-invariant ph
difference is restricted to the interval@2p,1p#. In the un-
diluted case, the ground state consists of a pinned vo
lattice corresponding to an antiferromagnetic arrangemen
x561/2. To study the stability of the ordered phases,
use a defect energy renormalization analysis12 at T50. A
defect is created in a system of sizeL3L by imposing a
change in the boundary conditions in one direction. T
changeDE(L) in the ground-state energy for small system
is calculated for a large number of samples by direc
searching for the minimum energy. We used an improv
algorithm based on Ref. 13. Typically, 3000 configuratio
of disorder have been used for each system size. To s
both phase coherence and vortex-lattice order, we cons
two types of defects:~i! From the energy difference betwee
periodic Ep and antiperiodicEa boundary conditions in the
phasesu i we obtainDE15Ea2Ep , which is a measure o
phase coherence, and is related to the renormalized stiff
constantJ(L)5rDE1/2p2, wherer52/) is a geometrical
factor for the triangular lattice. In the thermodynamic limit,J
is finite in the phase-coherent state and vanishes in the i
herent state;~ii ! A domain-wall defect energy is obtained a
DE25Er2Ep , where Er is the ground-state energy wit
reflected boundary conditions,13 corresponding to the energ
cost for a domain wall in the vortex lattice. In the presence
disorder,DE1 and DE2 fluctuate between samples, with
distribution that can be characterized by its moments. Sta
ity of the ground state against thermal fluctuations requ
that the average@DE#, where@ # denotes a disorder averag
is finite or increases withL for theU(1) andZ2 symmetries,
respectively. Figure 2 shows the behavior of the@DE1# as a
function ofL for increasing dilution. For smallx, it increases
with L, indicating the existence of long-range pha
coherence.14 For sufficiently largex it clearly decreases fo
increasingL, indicating a disordered phase. The change
the behavior yields an estimate ofxS50.14(1). Figure 3
shows a similar plot for@DE2#. The increasing trend withL
for small x corresponds to a vortex-lattice ordered pha
which persists for a small but finite range abovexS . For
large x, it decreases withL, and yields an estimate ofxVL
50.17(1). ThusxVL.xS , as indicated in Fig. 1. The disor
dered phase forxVL,x,xp can be regarded as a vorte
glass, since it lacks long range order in the vortex lattice

The stability of the glass phase against thermal fluct
tions is determined by the size dependence of the sec

n
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moment of the energy excitationswi5A@DEi
2#2@DEi #

2

}Lu. Hereu.0 indicates a glass phase at nonzero temp
ture, whereasu,0 implies that arbitrarily low-energy exci
tations at long length scales can be thermally excited,
stroying the glass phase at any finite temperature.12 The size
dependence ofw, for a value ofx50.3 in this region15 is
shown in Fig. 4 and clearly indicates a negativeu for both
w1 andw2 , and so the vortex glass only occurs atT50. The
exponentnT 51/uuu of the superconducting thermal correl
tion lengthz}T2nT can be estimated from the slope ofw1 in
a log-log plot, givingnT;1.9. Interestingly enough, this es
timate is very close to the value obtained for the gauge-g
model,2 suggesting a common universality class, but furth
data would be necessary to check whethernT is x dependent.

At finite temperatures, thermally excited vortices and d
order effects can significantly reduce the ordered phases
x,xVL( f ), since bond dilution introduces correlated ra
domness in the flux, as in the case of an array with disor
only in the positions of the grains.16 Unlike positional disor-

FIG. 2. Finite-size behavior of defect energy@E1# probing the
superfluid density for increasing dilutionx and various system size
L. The change in theL dependence determines the thresholdxS .

FIG. 3. Finite-size behavior of defect energy@E2# probing the
vortex-lattice stability for increasing dilutionx and various system
sizesL. The change inL dependence determines the thresholdxVL .
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der, random dilution does not explicitly affect the phase d
ferenceu i2u j between two superconducting grains in E
~1!. Its relevance can be studied through two coupled fr
tratedXY models

H52
J

2 (̂
i j &

@cos~u i2u j2Ai j !1cos~f i2f j2Ai j 2pt i j !#

2h(
i

cos~u i2f i !, ~2!

wheret i j is 1 or 0 with probabilityx and 12x, respectively.
In the limit h→`, the phases are coupledu i5f i , and the
original model in Eq.~1! is recovered. The second term h
the same form as the Hamiltonian describing positional d
order in a superconducting array in the presence of magn
field,16 with a particular bimodal distribution oft i j . A de-
tailed analysis in the smallh limit combined with knownT
Þ0 results1,9 for x50 and the above calculations atT50,
suggest the phase diagram of Fig. 1. For coupledXY models
without disorder,16 the couplingh renormalizes to large val
ues even when initially small, while the phase transitions c
be described in terms of vortices in the average phase v
able (u i1f i)/2. Guided by this, we consider initially th
two XY models in Eq.~2! to be independent, and consid
the particular rational value,f 51/2, where the relevant ex
citations, chiral domain walls and vortex charges, are be
understood.1,16 In this case, the disorder variables act as ra
dom bonds on the chiral order parameterx, and as random
dipoles on the vortex charges. If the transition in the pu
case is single~simultaneous disordering of the chiral an
XY-like variables!, the differently acting disorder can thu
separate the two transitions with vortex unbinding at te
peratures below the chiral transition.16 In fact, Monte Carlo
simulations for the frustratedXY model on a square lattice
with positional disorder are consistent with the splitting in
two transitions.17 For the triangular lattice considered her
we have estimated the chiral transition temperature ax
5xS , where TS50 ~Fig. 1!, from the peak in the chira

FIG. 4. Finite-size behavior of the second moment of the de
energy distributionw1 and w2 in the regionxVL,x,xp for x
50.3. The negative slope of lnw13ln L gives an estimate of 1/nT .
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susceptibility and foundTVL50.27(3) which can be com
pared with the estimated separation20 DTc50.01 atx50, if
one assumes a double transition, which clearly shows
disorder tends to separate the transitions. The chiral tra
tion is expected to be in the universality class of the rand
bond Ising model, where recent studies have shown that
specific heat has a broad peak with a very weak log-loT
2Tc) divergence but the other exponents remain with
pure Ising model values.18 This is consistent with Monte
Carlo simulations of the frustratedXY model on a site-
diluted square lattice,19 where it is found that the specifi
heat has a broad peak which does not clearly grow w
lattice size, in contrast to the undiluted case which gro
almost logarithmically. Even when a finite coupling betwe
the two terms in the Hamiltonian of Eq.~2! is taken into
account, the effects of disorder on the chiral order param
o
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should still remain, since the coupling term should ess
tially lock equivalent vortices and chiral variables in bo
phasesu i andf i . For other values off , we expect similar
qualitative behavior, as illustrated in Fig. 1, but with th
chiral transition replaced by the thermal disordering tran
tion of a vortex lattice with a higher-order discrete symm
try.

Experimentally, the vortex-glass phase forxVL,x,xp

could be identified through the change in the current-volta
characteristics5 extracting the critical exponentnT . Another
signature would be the disappearance of ordered-phase r
tance minima atf 5p/q when x is in the f -insensitive
vortex-glass regionxVL( f 51/2),x,xp .
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FAPESP~Proc. 97/07250-8!.
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