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Edge effects in a frustrated Josephson-junction array with modulated couplings
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A square array of Josephson junctions with modulated strength in a magnetic field with half a flux quantum
per plaquette is studied by analytic arguments and dynamical simulations. The modulation is such that alternate
columns of junctions are of different strength compared to the rest. Previous work has shown that this system
undergoes aiXY followed by an Ising-like vortex-lattice disordering transition alboaer temperature. We
argue that resistance measurements are a possible probe of the vortex-lattice disordering transition as the linear
resistancdR (T)~A(T)/L with A(T)=(T—T,) at intermediate temperatur&syy>T>T,, due to dissipation
at the array edges for a particular geometry and vanishes for other geometries. Extensive dynamical simula-
tions are performed which support the qualitative physical argumgs@4.63-18208)03805-3

There has been a lot of interest in arrays of superconductwhere K, ,,=K=J/kgT on all nearest-neighbor bonds ex-
ing grains coupled by Josephson junctions. In the absence eépt on alternating columns whet€, ;= 7K. A(r,r’)

a magnetic field perpendicular to the plane of the array, SUCt—L(ZTrICDO)f['A-dI where A is the vector potential of the

a systgm is rather well described b.y a_classical tWO'external magnetic field and, is the quantum of flux. The
dimensional XY model and experimental transport

measurements are well described by the dynamical frustration of pIqquetteR s f(R):E,DRA(r’r,)/&.T:l/Z
extensiof of the static theory:* The most recent technique where the sum is over the bonds,r’) surrounding the
employed to measure truly equilibrium properties of a Superplaquet_te. Itis a gauge-mvangnt de_fInItIOE’l and a convenient
conducting array is a magnetic-flux noise measuremend@uge is the Landau gauge in whiglfr,r’)=m on every
which does not require an imposed current. Earlier experi$&cond column of bonds ak{r,r’)=0 otherwise. Such an
mental studies measured the voltagedue to an applied array is experimentally realizable by varying the area of the
zero-frequency current,®~*2 and the frequency-dependent a@ppropriate junctions to obtain alternating columns of
impedanceZ(w) by two coil mutual inductance techniquks. strengthnK and is currently being investigateiThe model
The agreement between theory and experiment is quite googlescribed by Eq(1) has been studied numericafly®*and
In the presence of a magnetic field normal to the array, thé was found that, by varying the anisotropy paramejgthe
situation is not so clear as, even in the simplest case of halfrder of theXY and Ising transition is reversed. In the iso-
a flux quantum per elementary plaquette 1/2 on a square tropic system aty=1 the XY transition occurs at a lower
lattice, the system is much more complicated and less wellemperature than the Ising transition but when- 1| is suf-
understood. Even in the absence of disorder, which is inevificiently large the Ising is at a lower temperature thanXhe
tably present in an experimental systéhthere are two transition. The early simulations were unable to separate the
types of competing order when=1/2: a discret&, symme-  transitions for| 7—1|~0 but later work**® provided con-
try of the ground state of the vortex lattice and thél)J vincing evidence for two separate transitions wilh,
symmetry of the superconducting order parameter. In an isa>T.yxy. Another generalized version of the square array at
tropic system where all the junction strengths are the samé=1/2 has been considered recefftiy which the couplings
the phase coherence of the superconducting order paramety . ; in Eq. (1) are modulated in the andy directions
must be destroyed at a lower temperature or, at best, thgimultaneously, in a zig-zag pattern. In this case, varyng
same temperature as the discrete order of the vortex lattice.in the ranges>0.6 does not lead to a change in the order of
The most recent simulations on this®>agree that the phase thez, and U1) transitions and the critical properties remain
order is destroyed by a Kosterlitz-Thoulg8d) transition at  the same as for the isotropic square array.
a very slightly lower temperature than the discrete order In a two-dimensional plane of superconductor in a mag-
which undergoes a transition in the Ising universality class.netic field normal to the plane a vortex lattice is formed. If a
An interesting variant of the isotropic square array withvortex is subjected to a force due to an external applied cur-
f=1/2 was proposed by Berget al'® in which alternate rent, it will move in a direction perpendicular to the current
columns of junctions are of different strength than the restand this creates a voltage~n;l wheren; is the density of
This model is described by the Hamiltonian free vortices, which implies a finite linear resistance. This is
regarded as signaling the destruction of superconductivity.
An array of Josephson junctions with no disorder in a mag-
—H/ksgT= 2, K, ,co§6(r)—6(r')—A(r,r’)], (1)  neticfield with a frustratiorf = p/q has a ground state which
ey is a vortex lattice commensurate with the underlying lattice
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and is pinned and superconducting. As the temperature is 5 5
raised, the vortex lattice will melt or become a floating phase x fox
which is not pinned. In either case, one would naively expect 5 @
that the system becomes nonsuperconducting as the vortices (@
will move and induce a voltage when an external current is
applied. In particular, a square array with=1/2 and
7>1/3 has a ground stdfewhich is a vortex lattice with a
vortex in every second plaquette commensurate with the un-
derlying lattice. Since the vortex lattice is pinned by com-
mensurability effects, the system will be superconducting
and should become nonsuperconducting when the lattice
melts. In the anisotropic array of E(l), the vortex lattice
melts by an Ising transition &= T but XY order (super- /T
conductivity persists to higher temperatuté€® although AN /A " 5
the vortex lattice has melted, which seems to contradict the x X X
standard belief that, when the vortex lattice melts, supercon- ? ? ?
ductivity disappears. It seems to us that there are three pos- (0)
sibilities to reconcile the equilibrium behavior of the aniso-
tropic system of Eq(1) with these qualitative arguments : ;
about the transport properties with a small applied curtent ‘ ['
at intermediate temperatufie, <T<T.xy Where the vortex N :
lattice is melted(1) the present understanding of the effect x X X
of the melting of a vortex lattice on superconductivity is : : :
wrong; (2) the equilibrium calculations dt=0 have no re-
lation to the dynamics as—0; (3) the properties of the FIG. 1. (a) States of opposite Ising order of<2 unit cells.
melted vortex lattice in the anisotropic array are special angolid (dotted lines denote strongweak bonds. Unit charges are
the qualitative argument that superconductivity is destroyedePresented by x'sh) A domain of opposite Ising order. The do-
by the melting does not apply. main wall is the dash-dott.ed line. Fillddnfilled) dots at domain-

In this paper, we take the view that the system of @y.  vall comers aret 1/4 fractional charges.
is special and that scenari{8) is the explanation, and also
address the question of the signatiifeany) of the low-  tion by a set of unit charges in a checkerboard pattern on half
temperature Ising transition in experimental measurerhéntsthe sites of the dual lattic€. The important low-energy ex-
on an anisotropic array with column modulation. Two-coil Citations which destroy the Ising order are domain walls be-
mutual inductance experiments measure the dynamical imfween regions of different Ising order and these domain walls
pedanceZ(w) which is proportional to the inverse of the lie along the bonds of the original lattice. It is well known
helicity modulu$ y. At the Ising transition, this has a harm- that there are fractional charggs= = 1/4 at the corners of
less singularity of the forf#® y~tint wheret=T/T,—1  these domain wall&~2* One may argue that such domains
which implies that the impedance will also not show anywith a net integer charge formed of corner charges of the
divergence as an observable signature. The implications f&@ame sign are the excitations which undergo a KT unbinding
the flux noise spectrum have not been worked out and itransition at the same temperature as the Ising transition.
would be of some interest to do this. There is one possibilityHowever, numerical simulatiotfs*®*® show that theXY
which is the linear resistance which we discuss in the rest ofnd Ising transitions are separated for almost all values of the
this paper. We study by qualitative analytical methods andnisotropy parametey which implies that the fractional cor-
by numerical simulations the zero-frequericy/ character- ner charges and the integer charges do not screen each other.
istics of an anisotropic array and show that the onset of linealn the case of interest herfe;— 1| sufficiently large, one can
resistance occurs at the low-temperature lIsing transitiorynderstand this by considering the domain wallsTgt<T
which may be detectable by experiment. This is an edge<Tcxy. As shown by Eikmanst al,'® the domain walls
effect and, in anL XL array, the linear resistandg (T)  between regions of different Ising ground states lie along the
~A(T)/L with A(T)>0 whenT>T,,. We begin by defin- strong bonds since the energy of these is less than those on
ing the model and argue that the onset of linear resistance e weak bonds. In fact, they find numerically that there is a
due to the formation and growth of domains of reversed chinegligible density of domain walls on weak bonds fbr
ral order at the edges of the array. The geometry of the arras T¢xy but the density on the strong bonds grows rapidly
and the direction of the applied current is important, and wevhenT>T,. Thus, these domains carry zero net charge as
first define the various geometries and boundary conditionthe fractional corner charges must alternate betwgen
and what is to be expected on physical grounds in each case.1/4. For a domain to have an integer charge, one of the
We then discuss the results of numerical simulations andtertical walls must lie along a weak bond which costs a lot
show that these are consistent with our analytical argumentsf free energy. The unit cell describing the Ising degree of

The low-temperature Ising transition may be described ifreedom may be taken to be four adjacent elementary
terms of the proliferation of domain walls separating regionsplaquettes bounded by strong bonds as shown in Fig. 1 and
of different ground states. A ground-state configuration ofat T=T., domains with an integer number of these unit cells
Eqg. (1) may be represented in the Coulomb-gas representavill proliferate. Since these domains carry zero net charge
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charge. The situation for arrays with weak bonds at the ver-

_ : 5 : tical edges is very different and this is shown in Fi¢g)2In

- ; : ; 5 this geometry, one can regard these edges as splitting the unit
' 1 5 cells of Fig. 2a) in half thus forcing fractional charges of

I = x: x Cx opposite signs at the two ends of the domains. Sifice

, ; >T,, the domain walls may be regarded as having melted

il ; xF x and having zero line tension as the edge undergoes an ordi-
’ : ‘ nary transition slaved to the bulk transiti#hAlong the

: : ‘ i 5 | edges of the array of linear siig these charges are effec-

L R X x: Lo tively free unbound charges of concentratiop~1/Lé.

: : ; This implies that in an array with weak bonds at the vertical

D ox I edges as in Fig.(2) there will be a linear resistance

E RU(T)~ UL ~L H(T=T), ®

(a) (b) provided there are free boundary conditions at these edges.
This can be realized by uniform current injection. Other
methods of current injection such as injection from super-
conducting busbars will suppress this effect as the busbars
epel the vorticegcharge$ from the edges and the linear
L~ "K), 2235 in arrays with

FIG. 2. (a) Ising domain at the array edge with a weak bond at
the edge(b) Edge domain for the strong bond at the edge.

and zero dipole moment, they cannot contribute to the "nearesistance will be reduced ©
resistance which is proportional tg, the concentration of strona bonds at the vertical edges
thermally excited free chargewortices.? Because of the 9 ges.

zero dipole moment, the mechanism of stretching of domain%r-ln_]%gh;r%kultgﬁoﬁgogﬁ ggriltsatl;eb%;dlcgggsétmes h;r\]/g \I/Ovi;]
by the applied currenit suggested by Mon and Teitélas a y 9

ibuti i ; both uniform current injection and injection from supercon-
contribution to the nonlinear resistance f- T, of the ducting busbars. Also, to avoid the effects of finite applied
form V~lexp(— f4(T)/IKT), where f4(T) is the domain- 9 : ' pp

c ) . . current which causes a nonlinda¥W relation in the thermo-
wall free energy, is not a dominant effect for the anisotropic STy . .
. L dynamic limit>“® we have computed the linear resistance
arrays considered in this paper.

We consider a B, x 2N, lattice of elementary plaguettes. o/t & M€ HESEE SRS BB B SRS
corresponding to a (8,+1)Xx(2N,+1) lattice of super- q ' p g g

: P 30
conducting grains coupled by weak links. There are two geym dynamical method of Falet al.” We assume that the

ometries to considefa) columns of weak bonds at the two junctions on alternate columns have critical curreqitg and

. |, elsewhere and are shunted by equal resistaRge€ach
vertical edges an¢b) columns of strong bonds at the edgesSu erconducting arain has a small capacitadde around
as sketched in Figs.(@ and Zb). In case(b), there are P 99 p 9 '

. The dynamical equations for the phasksand the voltages

N, >N, complete unit cells and the current is injected UNI*\, of the grain at sité follow from charge conservation and
formly in the x direction perpendicular to the weak bonds. A ;' 9 . 9
the Josephson equation

linear resistance is due to the current driving the pre-existing

thermally excited charges across the system but such charges

do not exist in the bulk because, near the Ising transition, de, /dt=2eV, /#,

only neutral domains are present as the domain walls are

constrained to lie along the strong borl©ne may expect

that free, unbound fractional charges exist near the edges of

the array because of domain formation at the edges. We ex-CdYV, /dt=|02 7 SiN(0;— 0;— Ajj) + Rs‘12 (Vij—Vi)

pect that forT=T,, the system will consist of a set of do- { 2

mains of opposite Ising order of size determined by the bulk "

correlation lengthé,~A,t~*» in the bulk and at the edges +2 110, 4

for free boundary conditions by the surface correlation (

length &~ Ayt ™"l with »,= =1 The amplitudes, and _

Ay are nonuniversal but their ratio is universal and is given inwhere ;=1 on all horizontal bonds angj;;= 7,1 on alter-

terms of critical exponents from conformal invariaficby ~ nating vertical bonds as in Fig. 1 and the sums dygrare

over the nearest neighbors of sig). The thermal noise

ATAL= nyl =114, (2 currentl ! on the bondij ) is Gaussian distributed and obeys

with the bulk and edge exponefits®’ 7,=1/4 and = 1 the fluctuation dissipation theorem

which implies that the density of edge domains is larger than

that in the bulk of the array. This is of no significance for the IO Y = (2TIRI (S 81— S Si) S(t—t 5
linear resistance in arrays where the strong bonds are at the {Ohat)=( ) (9 = 00 9j) & - ©
edges, as in Fig.(B), as there are no net fractional charges at

the ends of these edge domains and these will behave juBor the columns of grains at either edge of the array labeled
like the domains in the bulk of Fig.() which carry no net byi=1.2,...L,,
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FIG. 3. 1-V characteristics for an array with weak edge bonds as FIG. 4. |-V characteristics for an array with strong edge bonds
in Fig. 2@. #=0.5,L,=17,L,=16, and periodic BC in the as in Fig. Zb). »=0.5,L,=17L,=16, and periodic BC in thg
direction. direction.

VIR o=[o(t;) — #(0)]/t,, ®

whereg(t) = 6, (t) — 6x(t) is the phase difference across the
array at timet andt, is the run time of a simulation. The
X2 (Vi=VP)+ 2 1, temperaturel is measured in units dfl,/2e and the timet
) o (6) is in units of lk;=(%Cl2ely)*? the inverse Josephson
plasma frequency. A time step of typicalst=0.05 in these
CdVF/dt=—1+10>, 7;sin(6;— 6, —A;j)+Rg* units’® was used in the numerical integration. Changing the
W time step does not change the results. Most of our simula-
R " tions have been done on small systems Wifk=17 andL,
X2 (Vi=VH+2 1, =16 with periodic boundary conditions in tlyedirection. In
M M any event, we found that boundary effects in the transwerse

wherel is the current per bond injected into each grain ondirection are not significant to the accuracy of our simula-
the left column and extracted from each grain on the rightjons.

column. For convenience, we choose system sizes with the The|-V relation is shown in Figs. 3 and 4 for the anisot-

number of columnd., an odd integer with free boundary ropy parameter;=0.5 at different temperatureg with the
conditions at the left- and right-hand edges and the numbefyrrent! applied perpendicular to the weak bonds using the
Ly of horizontal rows areveninteger with periodic boundary method of uniform injection described by E@) with peri-
conditions in the vertical direction. We choose to use thepdic boundary conditions in the transvergadirection. For
Landau gauge wherdji=0 on all horizontal bondsAY,  the array of Fig. 2), the onset of linear Ohmic behavivr

= m on the odd numbered vertical columésst, third, ..., =R, is consistent with the data fdr=0.2 which is close to
lash and AY, =0 on even numbered columns. This is a par-the estimate of the Ising critical temperatufg~0.18 for
ticularly convenient choice of lattice size and gauge as ithis value ofy=0.5. When the geometry is changed so that
permits an integer number ofX22 unit cells, and also for a the strong bonds are at the edges as in Fitp),20hmic
simple formulation when superconducting busbars are corbbehavior is observed only at higher temperatufes0.5
nected to the left- and right-hand edges of the array by a set 0.6, which is closer to the estimate of the¥ transition at

of L, junctions as the phase and voltage on each busbar 15,,,~0.5 as expected. Fop=2, as expected from the
theny independent. The equations governing these phasegialitative arguments, the situation is reversed and the re-
6, (1), 6x(t) and the voltage¥, (t), Vg(t) are theR® sults of the simulations are shown in Fig. 5 for arrays with

CdVH/dt=1+10>, 7;sin(6;— 6;—Aj) +Rs "
M

dGL'R/dt=2€VL'R/ﬁ,

1_
i:Ly

CdV /dt=1+L," >, [losin(6;—6,)
i=1

01¢

NN NN
1 T T T
cooooo
RO O =
PEERTY

0.01

+RIY(V— V) +1IM, %

0.001
= Ly

CdVg/dt=—1 +Ly‘1i§l [10Sin(6;— 6g)

0.0001

w0k 4

+Rg V= VR) +I IB] (7) 1x10™ ! ,

0.01 0.1 1
Here the sums overare over thel, sites connected to the
busbars. The mean voltage drdmcross the system is given FIG. 5. I-V characteristics for an array with strong edge bonds.
by n=2,L,=17,L,=16, and periodic BC in thg direction.
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FIG. 6. |-V characteristics for an array with weak edge bonds. ] / !
n= 2, LXZ 17,Ly:16, and periodic BC in thg direction. 0'000.00 0._20 - 0.40 0.60

T
the » or strong bonds at the edges as in Fi@g) 2and in Fig.

6 for arrays with they bonds not at the edges as in FigbR FIG. 8. Linear resistanc® as a function ofT from Kubo

. LY T fi la of Eq.(9) at1=0 f ithL,=17,L,=16,7=0.51
In the latter case, the onset of linear dissipation is observed #;m; E\IN(i)th vee(alla:edge bg:,;;firﬁ with strc;né edgénbonc(bl)n
T~0.4, close toTy,, _Wh"e in _the _former caS(_e ar~0.6, . Note thatR, (T)>0 for T.xy>T>T,, for weak edge bonds and
closer to theXY transition. Again this agrees with our quali- T>Txy for strong edge bonds.

tative arguments.

When the applied curreritis finite, thel-V relation al- : o :
ways has a nonlinear contribution. The resistance, defined bthe Ising transition and may be observable by experiment.

®ur results for arrays of size,=17, L,=16 with =0.5
— ; : —7KR(T) H _ y X y Ly n .
R (;/“’ IS plr_op?rtlﬁln:;lll tol bR fortrTiTc, Illn thz.tTeé i and periodic boundary conditions in tledirection are sum-
mo V”"?‘T'C ImIdDWlI/CL rr_1ray c;)ts_cure € sr(rj\af_ ptr_e Icted IN- harized in Fig. 8 where we show the linear resistaRc€rT)
car resistance (1L). Too ain a more definitive signa- computed from the Kubo expression of E®) for arrays
ture which is free of these nonlinear finite current effects

one can define the linear resistariReby a Kubo formula in geometries of Figs. (@ and ab). From this it is clear that

terms of an ilibrium voltage-volt rrelation funci nthere is an onset of linear resistance arodnd when the
aetl—soo an equ um voftage-voltage corretation TUNCUON, o4k ponds are at the edges and at a higher temperature

~T.xy When strong bonds are at the edges. Our results for
Foo the phase diagram in thel'(n) plane are shown in Fig. 9
RL=(1/2T)f dt(V(t)V(0)), (9)  where we plotT(7%) determined by purely equilibrium
o Monte Carlo simulations and also by the onsetRyf for
where V(t) is the total size-dependent voltage across théirays of Fig. 2a) from Eq. (9). To the accuracy of our
array. The results of the dynamical simulation using theSimulations, the two methods agree providing additional evi-
Kubo expression of Eq(9) at 1=0 are shown in Fig. 7 dence to support our qualitative arguments. As a final check,
together with those from a simulation witill ,=0.02, the ~We performed a series of simulations at finlteon larger
lowest accessible current, and definiRg=V/I. This is al-  Systems up t&. =200 to check the predictioR_~ 1/L of Eq.
ways larger than the value obtained from E®). because of (3 for T>T¢,. In Fig. 10 we show/L/l for several values
the nonlinear contribution wher>0. This can be regarded Of L and we see that this is consistent with being an
as confirmation of our arguments that the onset of lineat-independent constant, although the errors are fairly large.

dissipation aff, is not an artifact but a real effect caused by ~ The temperatures at which the onset of linear resistance
occurs is consistent with the Ising critical temperature and

0.16 T

0.14 -

0.12

08 | Rp>0 e -1
Ising —

01|
Ry 008 [
T/J
0.06 -
0.04 -

0.02 |-

0.7 2.5

FIG. 7. Linear resistance for an array with weak edge bonds, FIG. 9. Onset temperatufk for R (T)>0 from Kubo formula
7=0.5,L,=17,L,=16 and periodic BC in thg direction, as es- Eq. (9) as function ofy denoted by solid dots. Ising and KT tran-
timated from the Kubo formula of Eq9) atI=0 and fromV/I at sition temperatures from equilibrium Monte Carlo simulations are
1=0.02. open diamonds and pluses, respectively.
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L

FIG. 10. Plot of ¥/1)L at T=0.4,1=0.02 against array size.

happens for arrays of Fig.(& when <1 and Fig. 2b) o )
when 7> 1. This suggests that the linear resistance observeyhere the current is injected and extracted by attaching the

whenT, <T<T_.xyis aresult of both Ising disorder and fre

Wi

FIG. 12. I-V characteristics of array witi,=17,L,=16,
7n=0.5, and current in thg direction along weak bonds.

e €dges of the array to superconducting busBatsscribed by

boundary conditions at the array edges allowing for motiorEd: (7)- In this geometry, fractional chargésortices are

of fractional charges induced by the domains, as predicted b

pelled from the edges and domain formation is suppressed,

qualitative arguments. The presence of weak bonds at tH&US minimizing or completely suppressing edge contribu-
tions to the dissipation. ThieV relation for such an array of

edges of the arrays of Fig(a for <1 and of Fig. 2b) for

7>1 is not essential as changing the strength of the edggi9- 2@ with 7=0.5 is shown in Fig. 11 for the curreit
bonds does not change the scenario in any qualitative wajormal to the weak bonds and in Fig. 12 foparallel to the
but only quantitatively. The determining factor is that the Weak bonds. There is good agreement between-¥eela-
periodicity of the Ising domain walls is two lattice spacings,t'ons of Fig. 11 and Figs. 4,5 in which there are strong bonds

which is a consequence of the energy of a domain wall on &t the edges and where we expect there to be no linear con-
tribution. One also observes that the slopes ofl thecurves

weak bond being larger than on a strong bond+#er1l and

the reverse fom>1. When the edges correspond to a weakin the busbar geometry are independent of the directidn of
as the slopes in Figs. 11 and 12 are the same for the same

bond, domains at edges have width 1/2 unit cells which

implies that there are free fractional charges at the ends

these domains in thermal equilibrium and these are free t

move under the influence of an applied current. The strengti ~ (vxvy

demperaturd’. This slopea(T)=InV/Inl is plotted in Fig. 13

fpgether with that deduced from the helicity moddfus
)¥2 by?® a(T)=my/T. The agreement between the
of the edge bonds does not affect the argument in any essefiifferent methods is by no means perfect but we believe the
tial way except to alter the magnitude of the dissipation. Weumerical support for our qualitative predictions is more
have checked that the dissipation onseT gtis, in fact, an

edge effect by performing simulations in a busbar geometry The conclusion we reach is that the IGwising transition
In anisotropic arrays of Josephson junctions does have an

effect which may be observable in zero-frequency transport

than adequate to demonstrate their validity.

measurements. This effect is the onset of a linear resistance
+ T=0.1 e} § g
107" | o T=02 g 3 X 8
9 £ % o
X T=0.3 * + X
X 7
. *x  T=04
107 + Te0s e * x + E —— from helicity modulus
- + ° 6l + cument transverse to weak bonds
° o T=06 * X ©  current parallel to weak bonds
E_w‘“, X T=0.7
= ¥ T=08 * o 5r
. + T=1.0
| wal
10 o T=15 * la + 4
* o 3
107°F
x
+ 2r 5
6 L © +
10 -2 -1 0 L
10 10 10 1
g + 7
.
. . . 0 + H i I 1 |
FIG. 11.1-V characteristics of arrays with weak bonds at edges 05 1 15 2 25 3 35

1T
in busbar geometry of size,=17,L,=16, »=0.5 with current in

the x direction, normal to weak bonds. FIG. 13. Exponenta(T) from |-V curves and helicity modulus.
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at T, in arrays of the appropriate geometry. Although this isin the thermodynamic limiL—o the linear dissipation in

an edge effect wittR (T)~(T—Tg)/L it should be large the temperature randgg,<T<T.xy Where the vortex lattice
enough to be measurable in an array of reasonable size. This melted should vanish. It would be much more satisfying if
onset is an unambiguous signature of the Dusing transi-  some equilibrium bulk quantity would give a signal of the
tion as, in the thermodynamic limiR (T)L=A(T)~(T Ising transition but in view of the very weak signal in the
—T¢) and bulk finite-size corrections to this will decay very helicity modulust®*® this will be a very difficult effect to
rapidly with increasind- and should be negligible compared opserve. There is the possibility that a flux noise measure-
to the 1L contribution discussed here. These bulk finite-sizement similar to that of Shawet al® may show a detectable
effects can be estimated by performing the same measurgigna| of the Ising transition. However, naively this seems
ment with the current parallel to the weak bonds when the,q; very hopeful as the noise spectrum basically measures
1/L contribution toR_ will be absent, which provides a o time-dependent correlation functi¢hi(t)N(0)) where

method of assessing the feasibility of the proposed measur(?\T(t) is the total vorticity(charge enclosed by the supercon-

ment. This sma_ll e(_jge c_ontnbunon to the I!near resistance IIcfiucting guantum interference device detector. Since the Ising
a real effect which is a signal of the bulk Ising transition bUt’.transition is signaled by the proliferation of domains with

as Is vye_ll known, the interpretation of such measurements 'factional corner charges but with zero net charge, as in Fig.
very difficult at temperatures well below the KT temperaturel(b) it is difficult to see how these can contribute signifi-

Texy because of screening effectS. We have not attempted cantly to the correlation function determining the noise spec-

to takg .SUCh effects into account in this work k?Ut there is &rum. However, this is still worth investigating as it is one of
possibility that they may invalidate our conclusions. CIearIythe few remaining possibilities to detect this elusive

this should be investigated as should various other eﬁectﬁansition

such as disorder in the junction strengths which will inevita- '

bly be present in a real system, vortex and domain-wall pin-

ning, etc. It is not very aesthetically satisfying that one must This work was supported by the IAE agency/ICTERG)
resort to an edge effect detectable by a voltage measuremeand by a joint NSF-CNPq grafE.G. and J.M.K. The au-

at finite current as there are limits to the sensitivity of this,thors thank H. Pastoriza and P. Martinoli for correspondence
especially because a typical experimental drfdg much  about their experimental results prior to publication. Some of
larger than those of this work so that the dissipation at theéhe computations were performed at the Theoretical Physics
edges will be much smaller than in our simulations. In fact,Computing Facility at Brown University.
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