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Quantum localization near the classical percolation threshold
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The effect of the fractal nature of a percolating cluster on the inverse participation number P,
which is a direct measure of the size of localization domains, is discussed. As a function of composi-
tion, P has a sharp jump at the classical percolation threshold, although the states are expected to
be localized. We argue that the magnitude of this jump can be related to the fractal dimension of

the percolation channel on a given lattice.

I. INTRODUCTION

In a calculation of the average inverse participation
number, P, on square and cubic lattices with random
bimodal distribution of atoms and vacancies (i.e., “infi-
nite” disorder, the vacant sites being inaccessible to the
spreading wave functions) Srivastava and Chaturvedi?
(hereafter referred to as SC) reported a sharp jump at
the classical percolation threshold, p.. The number P,
as calculated from the equation of motion method,? pro-
vides a measure of the inverse of the fraction of lattice
sites participating in a wave function and is expected
to be nonzero for p < pg, which marks the “quantum”
percolation threshold where the first extended state is
formed. The cause for the jump in P at p. was not a pri-
ori obvious and simple scaling considerations! indicated
that it might be caused by a sudden merger of a large
number of large clusters at p, to form the percolating
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FIG. 1. Inverse of average cluster size, P, =< s >~!, vs
concentration, p, of occupied sites ezcluding the percolating
channel. This was expected in Ref. 1, to approximate P and
also to exhibit a local maximum at p. similar to what was
found in the P vs p behavior (also shown in Fig. 2). The
present calculation of P, is for a square lattice of dimensions
500 x 500 and an additional averaging has been done over 10
configurations.

channel, leaving the dominant contribution to P to come
from smaller clusters.

We have performed a numerical test of the scaling hy-
pothesis of SC to determine whether the jump in P at
pc has the suggested classical origin. We find that the
classical P., the inverse of the average cluster size, does
not show the jump expected by SC at p. — it decreases
monotonically for increasing p, below p., and after a min-
imum at p. it begins to rise for p > p. without ever
coming down (see Fig. 1). A similar result is obtained
if P, is calculated as the average of the inverse of clus-
ter size as defined in Ref. 1. We suggest here that the
reported sharp jump! in P at p. is attributable to the
fractal nature of the percolating channel at p = p.. The
tortuous and ramified character of the percolating cluster
is highly favorable for the states to be strongly localized
on the cluster and, therefore, for large values of quantum
mechanical P at p = p. (the P in SC is in fact calcu-
lated quantum mechanically). Thus, we suggest that the
jump in P, although occurring at the classical percola-
tion threshold, has a quantum-mechanical origin in that
it arises as a result of the shrinking of the localization
domain at p = p. when the percolation channel assumes
a fractal nature; the simple calculation based on cluster-
size scaling, which counts only the number of sites in the
finite cluster, completely excludes the percolating cluster
whose structural details we suggest here are crucial and
are apparently responsible for the observed feature! in

II. SHORTCOMINGS OF THE CLASSICAL
ARGUMENT

It may be important to understand why the scaling
calculation of SC should have failed to explain the fea-
ture of P in question, before proposing an alternative
explanation.

Note that the calculation of P is strongly weighted in
favor of the energy at the center of the band.! Since these
states are expected to be the most spread out compared
with other energies in the band, it was suggested that
these states will overlap all the clusters and on each clus-
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ter their extent will be comparable to the cluster size.
So it was suggested that P would be an average of the
inverse cluster size. We realize that this is not quite cor-
rect. The wave functions corresponding to the band cen-
ter should overlap the largest clusters at a given value of
p with the highest probability because the energy-level
spacing on these clusters is the smallest. Consequently,
at the outset, one should expect P to decrease mono-
tonically with increasing p since the size of the largest
clusters grows continually as more and more atoms are
added to the system. The distribution function for the
finite cluster sizes and features such as having its weight
shifting to the larger clusters for p < p., and to smaller
clusters for p > p., etc., which were the basis of the SC
calculation, do not seem to be important in view of the
above argument.

If we do not restrict our consideration to the largest
clusters at a given p but rather include some other large
clusters also, for the sake of generality, then P versus p
should behave like < s >~! versus p with the average < >
taken from a probability distribution ns, where s repre-
sents the cluster size and n, is the number of s-clusters
per lattice site.® Note that unlike what was done by SC
in their calculation, we need not subtract out the perco-
lating channel in the above calculation of < s >~!. For
p > p. the energies around the band center will have the
maximum overlap on the percolating channel but because
of the quantum interference arising due to the reflections
from the infinitely high and torturous boundaries of the
channel the wave function will be localized only to a part
of it. Thus, although < s >—! will be zero for p > p,,
P will still be nonzero for p. < p < p,. In fact, even
for p < p., P will be larger than < s >~ for the same
reason.

1I1. JUMP IN P AT p.: QUANTUM NATURE

If the above understanding is correct, then the sharp
feature of P at p = p. reported by SC must arise be-
cause of a special property of the percolating channel
which the clusters at p < p. do not possess. This special
property evidently is the fractal nature of the percolating
cluster.® We suggest that the fractality of the percolating
cluster makes the localization stronger by restricting the
wave function to a lesser number of sites. The value of
P should, therefore, jump to a higher value as soon as
the above-described situation occurs and should then de-
crease steadily for p > p. as the gaps in the percolating
cluster are filled in, which also reduces its fractal charac-
ter. It turns out that, on the basis of this argument, the
magnitude of the jump in P at p = p. should be related
to a measure of the fractality of the percolating cluster,
which is its fractal dimension, dy. The dimensional re-
duction from d to dy is, in formal terms, the cause for
stronger localization at a given energy.

Suppose the states in a narrow energy range, AE,
around E = 0 spread over a volume RY at a concentra-
tion p_ , just below p.. The P at p = p; will be inversely
proportional to R? since this measures the number of
sites enclosed in that volume, assuming that the whole
volume is almost entirely filled with sites and that there
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are very few gaps inside the region R%. In addition, if
we assume that the length (or the radius) of localization
changes little as the concentration increases slightly to
p = p}, just above p., we note that now the region in-
side R% has many gaps at different length scales and the
actual mass (or the sites along which the wave function
can spread) is much less than what it was at p = p7;
the reduced mass is now proportional to R%/, where ds
is the fractal dimension of the percolating cluster. Thus,
the participation number changes from R4, had the per-
colation channel not been a fractal, to R%. So we can
write P| + ~ [’ﬁlpc-]df /4, from which we can estimate the
fractal dimension as

de = d ln'f)lpj )

Using the values of P from Fig. 2, taken from the
data of SC,! we find from Eq. (1) df = 1.58 for the
square lattice and dy = 2.20 for the cubic lattice. These
should be compared with the fractal dimensions for the
percolating clusters® df = 1.896 and dy = 2.53 for two-
and three-dimensional lattices, respectively.

The agreement between these values is to be consid-
ered reasonable since, first, there are finite-size effects to
be taken into account in the calculation of P and, second,
the estimate from Eq. (1) is at best a lower bound to the
true value of dy in view of the following. At p = p¥, the
fractal cluster inside the volume R% may have more sites
with reduced coordination than sites with full coordina-
tion. Consequently, there will be numerous reflections
from the extremely tortuous, infinitely high boundaries
of the cluster which will give rise to quantum interference
and result in very strongly localized states. The radius
of localization can reduce drastically below R, say, to a
small value r. This would mean that the effective mass
(i-e., the sites) over which the localized wave function is
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FIG. 2. P vs p for square and cubic lattices as taken from

the data of SC (Ref. 1). The straight lines joining the data
points are guides to the eyes, and the vertical arrows mark
the classical percolation threshold, p., for cubic and square
lattices.
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spread will actually decrease from R to_rdf as p changes
from p; to pf. So, instead of taking P| + o R™%, we
should take ’ﬁtpi o 79, which will increase the val-
ues of dy obtained from Eq. (1), thus improving the
agreement. A better agreement could also be obtained
by averaging Eq. (1) over many configurations. More re-
fined calculations of P and dy will be reported in a future
publication.

IV. CONCLUSION

In summary, we argue that the fractal nature of the
percolating channel should have a distinct effect on quan-
tities measuring the localization domain, such as the in-
verse participation number P discussed here, although
the states are still expected to be localized on the per-
colating channel. The reported! nonmonotonic behavior
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of P as a function of p which shows a sudden jump at
p = p. has been related to the fact that localization is
stronger (i.e., the wave function occupies fewer sites) in
the percolating channel because of its fractal character.
It is interesting to note that a refined P vs p calculation
can actually be used to determine the fractal dimension,
since the latter is the only additional factor at p = p.
that apparently affects the localization.
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