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Critical behavior of a one-dimensional frustrated quantum XY model
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A one-dimensional quantum version of the frustrated XY model is introduced which can be physical-
ly realized as a ladder of Josephson junctions at half of a flux quantum per plaquette. From a fluctua-
tion effective action, the zero-temperature (superconductor-insulator) transition is predicted to be in
the universality class of the two-dimensional classical XY-Ising model. A Monte Carlo transfer matrix
is used to calculate critical exponents and central charge. A finite-size-scaling analysis of extensive
calculations on small system sizes supports the prediction. The same critical behavior has recently
been found for the two-dimensional classical version. Together, the results strongly support an XY-

Ising-like critical behavior for these systems.

The two-dimensional frustrated classical XY (2D
FCXY) model' has attracted much attention in the last
few years. Most of the studies have been mainly motivat-
ed by its relevance for the finite-temperature super-
conductor-normal transition in arrays of Josephson junc-
tions at half of a flux quantum per plaquette.>”!" Precise-
ly at the same value of field, but at sufficiently low tem-
peratures where capacitive effects dominate, the array un-
dergoes a superconductor-insulator transition'>'? as a
function of the charging energy. The critical behavior is
now described by a 2D frustrated quantum XY (FQXY)

model with a Hamiltonian '3
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The first term describes quantum fluctuations induced by
a finite charging energy of the superconducting grains lo-
cated at site r and the second term is the Josephson-
junction coupling between them. 6, represents the phase
of the superconducting order parameter.'* As a conse-
quence of the half flux quantum per plaquette constraint,
E, = * E, satisfy the Villain’s “odd rule” in which the
number of bonds with negative sign in any elementary
plaquette is odd. In a square lattice this can be satisfied,
for example, by ferromagnetic horizontal rows and alter-
nating ferromagnetic and antiferromagnetic columns of
bonds.

In this work we consider the simplest one-dimensional
version of the FQXY model (1) consisting just of a single
column of frustrated plaquettes as indicated in Fig. 1.
This will correspond to a periodic Josephson-junction
ladder at half flux quanta per plaquette.'>'® In the classi-
cal limit (E. =0), the ground state is similar to the two-
dimensional case.' ™ The difference is that now each site
has only three neighbors instead of four and will give rise
to slightly different phase configurations. In addition to a
global continuous U(1) symmetry, the ground state has a
discrete Z, symmetry associated with an antiferromagnet-
ic pattern of plaquette chiralities y, ==+ 1. The chiral
(Ising-like) order parameter is defined as a direct sum
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around each elementary plaquette as
Ap =(1/70)(Z')E,,'sin(0, - or') )
rr

where yo is a suitable normalization constant, and corre-
spond to the direction of circulating currents in the
Josephson-junction ladder. For small E,, there is a gap
for creation of kinks in the antiferromagnetic pattern of
xp and the ground state has long-range chiral order. At
some critical value of the ratio a =(E,/E.) ', chiral or-
der is destroyed by kink excitations, with the energy gap
vanishing as |a—a.|", which defines the correlation
length exponent v. At this critical value, the correlation
function decays as a power law (y,x,” =|p —p'| 7" with
an exponent 1. On the other hand, quasi-long-range order
in phase will also be destroyed for increasing E., due to
phase-slip (space-time vortices) processes.'”'®* However,
similar to the two-dimensional classical case,*° these exci-

FIG. 1. Schematic of the one-dimensional frustrated quan-
tum XY model. Thin (thick) lines denote E; (— E,) neighbor
couplings. In the classical limit, E. =0, the ground state is an
antiferromagnetic pattern of chiralities y, = * 1, as indicated.
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tations are strongly coupled since it can be shown that a
kink also induces fractional phase slips. Instead of
separate phase transitions, it is then also possible to have
just a single transition. A fully quantum-mechanical
analysis of these excitations would be of some interest and
may give some insight into the nature of the phase transi-
tion, but we will not pursue this any further here. Instead,
we will study this transition by numerical methods.

In a recent paper,'® an imaginary-time effective action
describing quantum fluctuations in a Josephson-junction
ladder at f=p/q flux quanta per plaquette was studied.
At =%, corresponding to the 1D FQXY model studied
here, it leads to two coupled XY models in two (space-
time) dimensions, with a coupling term of the form
cos[2(8, — 6,)]. This is expected to have a critical behav-
ior in the universality class of the 2D XY-Ising model
defined by the classical Hamiltonian™® (o= *+1)

BH = —(Zr) [4Q1 +0'r0'r')005(6’_9")+Co”o’"] : @

The phase diagram of this model consists of three
branches, in the ferromagnetic region, joining at C* = 0.
One of them (C < C*) corresponds to single transitions
with a simultaneous loss of XY and Ising order. Along
this line, the critical behavior is nonuniversal with
v==0.85 and 7 increasing from # to = 0.5 in a small por-
tion of the line. The central charge c is found to be in the
range 1.5 <c¢ <2. Further away from the branch point,
this line of single transitions becomes first order. The oth-
er two lines, in the region C > C*, corresponds to separate
XY and Ising transitions. The 1D FQXY model studied in
this paper is represented by a particular path in this model
and it would be of interest to find out to which transitions
it corresponds.

We have determined the critical exponents v and 7, as-
sociated with chiral order of the 1D FQXY model, from a
finite-size-scaling analysis of the kink energy gap, using a
Monte Carlo transfer matrix'*?° in the path-integral rep-
resentation of the model. From extensive numerical cal-
culations on small system sizes, L =6 to 14, we find
v=0.81(4) and n=0.47(4). We have also estimated the
central charge at the transition and found ¢=1.67(4).
These results are consistent with the corresponding values
along the line of single transitions in the XY-Ising model®
and support the above prediction. Recently, similar result
has also been found for the 2D FCXY model.®!0 So, the
critical behavior of both models is apparently described by
the same model. This is an interesting, and somewhat
unexpected possibility, as the 1D FQXY model is not just
a trivial Hamiltonian version of the transfer matrix?' of
the 2D FCXY model. They might, however, be related in
a more subtle way as this result suggests.

To study the critical behavior we employ an imagi-
nary-time path-integral formulation of the model.'”*?' For
this, the time axis 7 is discretized in slices Az. This maps
the 1D quantum problem onto a 2D classical statistical
mechanics problem. In this formulation, the ground-state
energy of the 1D quantum model of finite size L corre-
sponds to the reduced free energy per unit length of a clas-
sical model defined on an infinite strip along the t direc-
tion of width L. Following the standard procedure, after
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scaling the time slices appropriately in order to get an iso-
tropic model, we obtain a classical partition function
Z =tre ~ " with

=—aX lcos(8, ;=6 +1)+cos(0, ; — 6,4 )
T.J

—cos(p.;j—¢.j+1)tcos(p. ; =6, 41,)
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where, for convenience, we denoted by 6 and ¢ the phases
on the left and right columns in Fig. 1, and a=(E,/
E.)'” plays the role of an inverse temperature in the 2D
classical model.

The free energy of (3), defined on the infinite strip, can
be obtained from the largest eigenvalue Aq of the transfer
matrix as —Inio. A kink in the 1D quantum model corre-
sponds to a domain wall along the strip. The correspond-
ing energy gap can be obtained from the free-energy
differences of the infinite strip with and without a wall.
However, because of the continuous degree of freedom in
(3), diagonalization of the transfer matrix cannot be done
exactly. Recently, Nightingale and Blote'® have
developed a Monte Carlo transfer-matrix method which
can be used to obtain accurate estimates of the largest ei-
genvalue even for this case. The method is a stochastic
implementation of the well-known power method to ob-
tain the dominant eigenvalue of a matrix. Using helical
boundary conditions in order to get a sparse transfer ma-
trix, that is the same for every site addition, a sequency of
random walkers R;, 1 <i =<r, representing the config-
uration of a column in the infinity strip, is then introduced
with corresponding weights w;. The number of walkers r
is maintained within a few percent of a target value r¢ by
adjusting the weights properly. The probability density
for a transition process is defined from the matrix ele-
ments of the transfer matrix. A Monte Carlo step consists
of a complete sweep over all random walkers. The method
has been discussed in detail in Ref. 20. To apply the
method to our case, we rewrite the transfer matrix to add
a pair (0;,;,¢. ;) as a product of matrices which add these
variables successively. We performed extensively calcula-
tions using, typically, ro=15000 random walkers and
30000 Monte Carlo steps which correspond to 4.5%10%
attempts per (8,¢) pair.

Because of the antiferromagnetic pattern of g, strips
with an odd number of sites L will have a domain wall
along the infinity direction. To obtain the corresponding
interfacial free energy, we performed calculations of the
free energy per site f(a,L) of the strip as a function of L.
By numerically interpolating between successive odd and
even L, we determine AF(a,L)=L?Af(a,L), from the
free-energy differences at the same L. Results of these
calculations near the transition point a. for 6 <L <14,
are indicated in Fig. 2. From finite-size scaling one has
the relation

AF(a,L)=A(L""), )

where A4 is a scaling function and d=a—a,. For
sufficiently small | 8], it has a linear expansion

AF(a,L)=a+bsL"". (5)
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FIG. 2. Size dependence of AF=L2Af(a,L) for the kink en-
ergy gap.

Depending on the sign of &, it increases or decreases for
increasing L, from a finite value a at the transition, as in
Fig. 2. From this change of behavior we can determine a
critical value a. =1.042(6). The universal amplitude a is
related to the exponent 1 as?? a =nn, from which we esti-
mate 7=0.47(4) from the data in the figure. Sufficiently
close to a., where Eq. (5) is a good approximation, 1/v
can be obtained from the slope of a log-log plot of
S =0AF/da vs L without requiring a precise determina-
tion of a.. On the other hand, S can be obtained numeri-
cally from the slope of AF vs a. Assuming that the data in
Fig. 2, in the range 1.025 < a < 1.075, is in the linear re-
gime of Eq. (5) we obtain the estimate of S in Fig. 3.
Data for L <8 are clearly outside this regime. Using the
results for larger systems we obtain, from the slope of the
log-log plot, v=0.81(4).

One can also study the behavior of the helicity modulus.
This measures the response of the system to an imposed
phase twist. It vanishes in the disordered (incoherent)
and is finite in the order (coherent) phase. We calculated
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FIG. 3. S=0AF/da evaluated near a. from Fig. 2. The ex-
ponent 1/v is obtained from the slope of L > 8.

RAPID COMMUNICATIONS

CRITICAL BEHAVIOR OF A ONE-DIMENSIONAL . .. 2559

this quantity by determining the free-energy differences,
AF =L*Af, between strips with and without and addition-
al phase mismatch of x along the strip.?> The helicity
modulus is related to this quantity by y=2AF/z? for
large system sizes. The results are indicated in Fig. 4.
The behavior is similar to the kink energy in Fig. 2 and
quite different from what it would be expected if the tran-
sition was in the universality class of the 2D XY model,
where y is almost size independent in the ordered phase.?*
We have not attempted a finite-size-scaling analysis of
these data as the scaling parameters are not as obvious as
in Eq. (4). We note, however, that the helicity modulus,
evaluated at the critical point determined from Fig. 2, ap-
pears to be smaller than the universal jump 2/z expected
for a 2D XY model transition.

Finally, from conformal invariance, the central charge ¢
can be related to the amplitude of the singular part of the
free energy per site by?® f(a. L) =fo+nc/6L*% Using the
data for values of a closest to the estimated critical value
a., we obtain ¢ =1.67(4) from strips of L > 8.

The results for the critical exponents n and v differ
significantly from pure 2D Ising exponents and the finite-
size behavior of the helicity appears inconsistent with pure
2D XY model behavior. Moreover, the central charge is
large than ¢ =3, which would be expected if the transi-
tion was single, but decoupled. All these results point to
the single-transition scenario. In fact, they are consistent
with a point along the line of single transitions?® in the
XY-Ising model® and support the conclusions of Ref. 16.
Similar results have also been found for the 2D FCXY
model. From Monte Carlo simulations,'® one finds
v=0.85(3) and 7=0.31(3), and an estimate of the cen-
tral charge, from Monte Carlo transfer-matrix calcula-
tions,® gives ¢=1.66(4). The critical behavior of this
model is also expected to be described by the same XY-
Ising model and the results appear consistent with the line
of single transitions. This, together with the present re-
sult, provides further support to the XY-Ising model as a
correct description of the critical behavior in these sys-
tems. Also, in view of this overall agreement, one is led to
suspect that the 1D FQXY may actually be directly relat-
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FIG. 4. Size dependence of AF =L?Af(a,L) for the helicity.
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ed to the 2D FCXY model. We note, however, that the
quantum version is not just the Hamiltonian limit of the
classical one.

In conclusion, we have studied a one-dimensional quan-
tum version of the frustrated XY model. The model can
be physically realized as a ladder of Josephson junctions
at half flux quantum per plaquette, which undergoes a
zero-temperature superconductor-insulator transition as a
function of charging energy. The critical behavior, ex-
pected to be in the universality class of the XY-Ising mod-
el, was studied using a Monte Carlo transfer matrix ap-
plied to the path-integral representation. The critical ex-
ponents and central charge appear to be consistent with
the corresponding values for the XY-Ising model in the re-
gion of single transitions of the phase diagram. Similar
result was recently obtained for the two-dimensional frus-
trated classical XY model. The models are related by
their universality classes, but the one-dimensional quan-
tum version, apparently, is not the Hamiltonian limit of

the two-dimensional one. The result of this paper together
with the recent result for the two-dimensional classical
version of the frustrated XY model, provides further sup-
port to the relevance of the XY-Ising model for the critical
behavior in these systems.
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