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A model of a Josephson-junction ladder in a perpendicular magnetic field with fo=p/q flux

quanta per plaquette is considered.

It is shown that the topological features of the zero-

temperature phase diagram, as a function of charging energy and small deviations f— fo from

commensurability of the vortex lattice, are strongly dependent on gq.

In addition to a super-

conductor-insulator transition, a commensurate-incommensurate transition is also possible within
the superconducting phase for ¢ = 2. For ¢ > 3, an intermediate incommensurate phase occurs

for f— fo.

Arrays of Josephson junctions can currently be fabri-
cated in any desired geometry in one and two dimensions
with well-controlled parameters. A Josephson-junction
ladder provides the simplest one-dimension version of an
array in a magnetic field. The latter system has attracted
much attention in the recent years due to the possibility of
different transitions as a function of the magnetic field,
temperature, disorder, quantum fluctuations, and dissipa-
tion.'”> The behavior is strongly dependent on a dimen-
sionless parameter f=®/®,, the magnetic flux through
an elementary cell in units of the flux quantum &,
=hc/2e. Finite-temperature effects destroy phase coher-
ence in a ladder since the system is one dimensional but
one expects the zero-temperature phase diagram to show
similarly interesting possible phase transitions. In this
work we concentrate on the effects of quantum fluctua-
tions and the magnetic field. We show that as a result of
the competition between the periodicity of the vortex lat-
tice introduced by the external field and the underlying
pinning potential provided by the ladder, different phase
transitions are possible as a function of the charging ener-
gy of the grains and the fields. For f=p/q (p and q are
relative primes) the resulting phase diagrams are strongly
dependent on q.

We consider a periodic Josephson-junction ladder as in-
dicated in Fig. 1. With each site r we associate a phase 6,
and charge 2en, representing a superconducting grain
which is coupled to its neighbors by Josephson couplings.
n, and 6, are conjugate variables satisfying the commuta-
tion relation [0,n]=i. The interaction Hamiltonian is

FIG. 1. Periodic Josephson-junction ladder. Josephson-
junctions are indicated by crosses and superconducting grains by
solid circles. ® is the magnetic flux through an elementary cell.
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given by a self-charging model**

2
H=- % 2 [T{;T ] — & Emcos(6, — 6-—A,), (1)
where the first term is the electrostatic energy of a grain
(2¢)?n%/2C, C is the capacitance, and E. =(2¢)%/C, while
the second term is the Josephson coupling energy.
A= Qr/dg) f," Adr and A is the vector potential due to
the external field B and the gauge-invariant sum around a
plaquette X A, =2nf with f=®/®,. Since the Hamil-
tonian is periodic under f— f+n (n integer), f=0 is
equivalent to f=p/q with g=1.

Kardar®® has shown the connection of this system with
a discrete quantum sine-Gordon chain. As the magnetic
field is increased from zero, a transition into a vortex state
can occur where the magnetic flux first penetrates the
ladder. This transition can be viewed as a commensu-
rate-incommensurate transition described by the sine-
Gordon Hamiltonian.”® In the commensurate state the
phases in different branches of the ladder are locked to
each other while in the vortex state exponentially interact-
ing kinks (vortices) appear that unlock the phases. In-
clusion of charging effects leads to a normal phase in the
vicinity of this transition and a direct commensurate-
incommensurate transition is not possible. In the vortex
state, however, the vortex lattice can become commensu-
rate with the ladder at rational values of the flux quanta
per plaquette fo=p/q. The behavior of this commensu-
rate phases as a function of small deviations from com-
mensurability f— f¢ and charging energy has not been in-
vestigated so far and is studied in this work. We show
that the topological features of the phase diagram for ra-
tional values are strongly dependent on g and are sketched
in Fig. 2. In addition to a superconductor-insulator tran-
sition, direct commensurate-incommensurate transitions
are also possible within the superconducting phase for
g=2 and for ¢g=3 an intermediate incommensurate
phase appears when f— f,. The case ¢ =1 corresponds
to the result first obtained by Kardar® where vortices are
absent in the commensurate phase.

The analysis which leads to the above conclusions is
based on an effective free energy describing fluctuations
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from the commensurate state which can be derived from
the model of Eq. (1). We start from a path-integral rep-
resentation and introduce an auxiliary field £(r,7) cou-
pling linearly to e”*">? via a Hubbard-Stratonovich trans-
formation.’ This yields a partition function Z=2Z, f D&
xexpl — S (&)1 with an effective Euclidean action

S= i fdtZC*(r,r)J"'ﬁ(r,f)

—<exp [% fd‘r; [;J,,'é,']*eio’+c.c.

where the expectation value is taken with respect to

)o, @)

So=

2
1 9
3. ;fdt[at B(r,‘r)] 3)
and J,,=E, exp(—iA, ). For convenience we have set
h=1and c=1.

Now we choose a particular gauge in which A is paral-
lel to the ladder taking opposite values in the upper and
lower branches such that A, =—zf(x,—x,) and
A =nf(x, — x,), respectively, along these directions and
A,»=0 in the vertical direction. Denoting by &, and &,
the values of £(r,7) in the lower and upper branches and
performing a cumulant expansion in the second term of
Eq. (2) we obtain

S-Zfdw[% T &l ) [J(q) —Ez—ﬁ(k)]
q9 a, c

+Z’:Zfdr"§2u2,,|§.,(r,r)|2" ,

where  Jy (k) =2E cos(k +nf); Jan(k)=2E,cos(k
—zf) and J,=J, =E,. To obtain (4) we have neglect-
ed the space and time dependence of the higher-order cu-
mulants leading to u2,.

Following the standard procedure,’ an effective free en-
ergy describing fluctuations from the commensurate state
can now be obtained by expanding about the most fluc-
tuating modes for each field. Assuming a commensurate
state at fo=p/q, these occur at k; = —xfo and k, =nfo,
|

ég(k,w)+
B
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FIG. 2. Qualitative zero-temperature phase diagrams as a
function of charging energy E. and small deviations f — fo from
a commensurate field fo=p/q. C, IC, and N denote commensu-
rate, incommensurate, and normal phases. For ¢ =3, the inter-
mediate phase at f— fo may vanish when finite fugacities are
considered. For g=1 vortices are absent in the C phase (Ref.
6).
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f
respectively, for & and &, where J,;(k) and J,,(k) reach
a maximum. Note, however, that &, acts as an external
field for &, via the off-diagonal coupling J; and vice versa
so we must also consider in addition ki =xfo and k;
= —nxfo. When g>1 these wave vectors are not
equivalent and must be retained in the expansion. Denot-
ing by ¥,,¥| and ¥,,¥; the corresponding modes and
neglecting for the momentum space and time fluctuations
we get F = [dx [dtf[¥, ¥, ¥{,¥;] where

f= %r(l\mz+lwzlz)+%(lwf|2+l\p5l2) —2h[Re(¥{*¥,) +Re(WFws) ] +u (|9, |4+ |w, |4+ |wi|*+|wi]*)

+auy(| | 2| Wi 24 ¥ | 23] 2) + 2u Re(¥F W) 94+ 2u,, Re (Y5 ¥5) 9, (5)

where we have considered the terms coupling the ampli-
tudes only up to fourth order and retained the lowest-
order term coupling the phases. This coupling arises from
the u,, term in (4) since the Fourier components
w*(k;),¥(k}) are restricted as usual by X/ = k;
—Zf—lki"OmOd(Zﬂ'). If k,""ltfo, k,-'- —Itf(), the
lowest n satisfying this restriction is n=¢g. Minimizing
with respect to ¥{,¥5 and substituting back into Eq. (5)

J
2
F-fdxfdr{;—KXH—(%o.ﬂsf] +

2
9,5
O 6, n&f]

+%K,[

f

yields an effective free energy only in terms of ¥, ¥, with
renormalized coupling constants and a coupling between
the phases of the form Re(¥{,¥,)9. Since in two dimen-
sions amplitude fluctuations are irrelevant to the critical
behavior, after allowing a small deviation of the external
field 6f =f — fo, we finally obtain an effective free energy
in the form

9
dr O

2 2
+ [%92] ]—wcosq(el—ez)}, 6)
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where 6,0, are the phases of ¥,¥; and K=K,K
=~ E,/E. and w are effective couplings. As the coupling
constant w arises from higher-order terms it is a rapidly
decreasing function of g. The precise relation of these
couplings to the original ones is of no concern here since,
as will be shown, the topology of the phase diagram is in-
dependent of them but depends strongly on g. Note that
0,0, now measure phase deviations of each order parame-
ter from the commensurate phase and should not be
identified with the phases of the superconducting grains in
Eq. (1).

When 8 =0, Eq. (6) is in the form of a Gaussian ap-
proximation of coupled classical XY models which has
been studied prev1ousl w1th E. playing the role of an
effective temperature When the vortices in 68,0, are
included different behav1or occurs as a function of g. If
g=1 a single XY-model-like transition occurs as E, in-
creases separating a commensurate (superconducting)
phase with long-range order in 6, — 6, and algebraic order
in 6,0,, from a disordered (insulating) phase where
correlations decay exponentially. For ¢ =2, the nature of
the transition is still unknown but a recent study indicates
it could be either nonuniversal or first order if it is a single
transition.'? Interestingly enough, the same effective free
energy with g=2 is also believed to describe the finite-
temperature transition in a two-dimensional array of junc-
tions precisely at the same external field.'"'* For
g > /8, an intermediate (incommensurate) phase is possi-
ble with algebraic order in all correlations and, therefore,
superconducting.

To investigate the effect of &f, we follow Kardar® and
perform a change of variables in (6) ¢=80,—0;
y =6, + 6, which leads to

F=fax [ar {%

2
9
+3—Kr{5?¢ + i K,

2

]

+
Frad RS Frid

K
Ox

2
¢—27r8f] —wcosq¢J .

@)

which now have decoupled into a Gaussian in y and a
sine-Gordon in ¢ which describes the commensurate-
incommensurate transition. For small §f the phase
difference ¢ is zero and the vortex lattice is commensurate
with the ladder. Above a critical value §f. =~ +w kinks
appear separating commensurate domains and the lattice
is incommensurate. The stable region decreases with in-
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creasing charging energy E. and vanishes at a critical
value. Expressing the correlation functions of the original
variables in terms of y and ¢ gives (expl—i (6, —6p)])
=r ~" where n=(ng+nsg)/4 and ng=1/n/K;K. is the
correlation function exponent of the Gaussian part and
nsg of the sine-Gordon part. For nsg, we can use the
known results of the sine-Gordon model:>® nsg=0 for
8f < 8f.(Kx,K.);nsg=1/n~/K.K. in the incommensurate
phase and right at the commensurate-incommensurate
transition nsg=2/q% when &f— 0, nsg— 4/q% at
KK, =q?*/4. Guided by the 8f=0 case discussed
above, we require n < 5 in order for the ordered phase to
be stable against vortex-pair unbinding in the phases 6,
and 6, which will result in exponentially decaying correla-
tion functions. For different values of g this leads to the
phase diagrams indicated in Fig. 2. Note that we have
used the limit of very weak vortex fugacity which amounts
to take the values of ng and nsg in the absence of these
excitations. Allowing finite fugacity can shrink to zero the
intermediate phase at f— fo for g =3, as a more careful
renormalization-group analysis indicates.'© However, this
should persist for g = 4.

In conclusion, we have studied the phase diagram of a
periodic Josephson-junction ladder in a perpendicular
magnetic field. The topology of the phase diagram is
shown to be strongly dependent on g for fo=p/q, display-
ing direct vortex commensurate-incommensurate transi-
tions in addition to superconductor-insulator transitions.
For g > 3, an intermediate incommensurate phase is also
possible when f— fo. In this work we have been mainly
concerned with the global features of the phase diagram
and have not studied the critical behavior in detail. Al-
though the analysis carried out here is only strictly valid
at zero temperature, we expect similar algebraic decrease
of resistance in temperature R = T* as found in chains of
Josephson junctions.!> the exponent A may attain univer-
sal values at the transitions. Also anomalous behavior is
expected in the amplitude of the §-function singularity in
the frequency-dependent conductivity. Understanding
these effects is important for experiments in the system as
they may provide a signature of the transitions. Certainly,
more work along these lines is necessary to provide more
quantitative information on these effects.
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