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A simple model for weak quenched disorder in Josephson-junction arrays is considered and the effects of
two kinds of disorder on the resistive behavior of the array is determined. For the case of random pla-
quette areas, the lower envelope of resistance increases quadratically with the magnetic field and no super-
conducting phase exists, whereas positional disorder leads to a reentrant phase at low temperatures in finite
field and a critical value of the field above which there is no superconducting phase. The consequences of
these results for experiments reported recently are also presented.

Experiments on two-dimensional arrays of Josephson
junctions,!"2 proximity-coupled grains,>-3 and superconduct-
ing wires® in a transverse magnetic field have stimulated a
great deal of theoretical interest’-!2 recently. They provide
an interesting model system in which the resistive transition
can be studied without the high degree of randomness and
inhomogeneity inherent in granular films. Novel periodic
behavior of the resistance of the array as a function of the
magnetic field has also been observed. These systems have
been studied in the context of uniformly frustrated XY
models where the frustration defined by f = Ha?/®, is the
number of flux quanta ®¢=hc/2e per plaquette of area a’
introduced by the external field. These models explain the
main features of the experimental data, in particular the
basic periodicity in f and also the subsidiary minima at ra-
tional values'? of f observed experimentally.

There are, however, certain features of the experiments
which have not been explained. The frustrated XY model
used predicts that the resistance minima at integer values of
the flux should be zero at low temperatures (except for fi-
nite size effects which are assumed small in this paper) and
should remain zero until the applied field reaches its critical
value, at which the superconducting grains or wires making
up the array go normal. However, all experiments seem to
disagree with this in two respects except at H =0. First, the
resistance minima never reach zero except at zero field and
also oscillate with a rather long period. Second, the resis-
tance minima start rising monotonically and cross over into
a more or less linear increase at fields well below the critical
value for the loss of superconductivity in the individual
grains or wires. This Rapid Communication addresses the
second point where the rise in the lower envelope of the
resistance is ascribed to randomness in the array. Although
a regular array minimizes the effects of disorder, some are
inevitably present and one should include these effects.
Weak disorder is irrelevant to the critical behavior of the XY
model which corresponds to the zero field case and is also
expected to be irrelevant in finite field provided the disorder
does not couple to the field. However, the types of ran-
domness we envisage here are (a) variations in the area of
the superconducting elements of the array which is presum-
ably least serious in the IBM arrays!? consisting of junctions
connected by niobium wires, and most serious in the arrays
of superconducting squares studied by Refs. 3 and 4, and
(b) randomness in the positions of the nodes or supercon-
ducting grains of the array which will always be present.
The first leads to uncorrelated variations in the area of each
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plaquette, provided the penetration depth in the grain is
small compared to the grain size and hence to random vari-
ations in the flux per plaquette, and the second to highly
correlated variations in the flux per plaquette.

In this paper we present a simple model of a Josephson-
junction array in a perpendicular magnetic field with disor-
der, and map the model into a Coulomb gas of fractional
charges perturbed by a quenched distribution of random
charges in the uncorrelated random area situation and, in
the random-position case, a random distribution of dipoles.
Here we are interested only in the effects of disorder on the
lower envelope of resistance as a function of the average
number of flux quanta per plaquette which corresponds to
integer f. In this case the model reduces to a Coulomb gas
of integer charges perturbed by the random distribution of
charges or dipoles. This latter case has been studied in
another context by Rubinstein, Shraiman, and Nelson,!?
and the results of their analysis leads to a reentrant phase at
low temperature for values of the magnetic field less than
some disorder-dependent critical value. For larger fields
and higher temperatures there is no superconducting phase.
In the random-plaquette-area situation there is no supercon-
ducting phase for any finite field, but there is a remnant of
it provided the disorder is small enough.

Consider a Josephson-junction array in a transverse mag-
netic field described by the Hamiltonian

H=_JE, cos(6,—6,—4 ) , )
(rr’)
where J is the Josephson coupling for a single junction. 6,
is the phase of the superconducting order parameter
o=y, le'’ at the sites r of a square lattice, and

2= .
A= %f’ A-dl

are constrained to 3¢ A4 .=2mnf. Here 3z means a discrete
curl around a plaquette with dual site R. Standard duality
transformations lead to a Coulomb gas representation of the
partition function given by

Z = 2 exp —211’21( 2 (MR"fR)G(R—RI)(MRI—fR:) ,
Mg} R=R'

2)

where Mg =0, +1, +2 ..., K=J/kgT, and G(R —R') is

the lattice Green’s function associated with the dual sites R.
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Consider first the random plaquette area case. We as-
sume that the areas are randomly distributed (Gaussian)
about some mean ad so that the distribution for the f is
given by

P (fr)exexp —‘i‘l‘j‘);%{(fk‘fo)z , 3)
where A? is the variance of the area distribution. This prob-
lem has already been investigated in Ref. 11, in a particular
gauge. Here we give a simple gauge-invariant argument. If
we consider only resistance minima where f, is an integer,
we can shift Mg — Mg + fo so that we have the problem of
a set of integer charges in a background of random charges
with mean zero. Now we consider a test charge in a region
of size L in which there will be fluctuations of random
charge 8f = HAL/®,. So when this region is chosen of
size larger than ¢ = ®o/HA, the test charge will be swamped
and charges separated by distances larger than ¢ will be un-
bound.!® We can now identify ¢ as the correlation length!®
of the free vortices contributing to the resistance of the ar-
ray. Using standard arguments, the resistance is given by
R(H)ax ngc £ so R (H)« H? and the resistance will oscil-
late with a period corresponding to one flux quantum per
mean area and the lower envelope will rise quadratically for
small H. We have been unable to locate any published ex-
perimental data which may test this prediction.!” We expect
this to be valid for arrays of lead squares since there is
bound to be randomness in the individual square size and
provided the transverse penetration depth (on the order of a
few angstroms for the grain is less than the grain size on the
order of a few micrometers). Of course this effect will al-
ways be present, but to a smaller degree even when the
penetration depth is comparable with the grain size, because
there is a tendency for the field to be excluded via a partial
Meissner effect and there will be more flux going through a
large rather than a small area between the grains. In this ar-
gument we have ignored the fact that in arrays of squares or
disks the junction size is quite large and 7.(H) will itself
decrease as H? in a nonrandom array. Consequently, at any
fixed temperature, one expects an increase of the resislance]
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at sufficiently large H. The arguments presented here are
low-temperature ones and lead one to expect quadratic in-
crease in the resistance even at temperatures well below the
critical temperature of the corresponding pure system.

In the limit where the grain size is small relative to the
areas between grains or a network of superconducting wires
of constant or very small cross section interspersed with
weak links, the only other source of randomness is in the
positions of the nodes of the network. For example, sup-
pose that a superconducting wire separating two areas is dis-
placed from its ideal position, increasing one area and de-
creasing the other. This intuitively leads to two equal and
opposite neighboring charges in the equivalent Coulomb
gas, or to a quenched distribution of random dipoles. The
same will happen for a displacement of the nodes of the ar-
ray.

We now introduce positional disorder which consists in al-
lowing displacements of the sites from their average position
r by an amount u, with a probability distribution

1

P(u,)xexp|— LY 4)

In practical systems this kind of disorder will also induce
disorder in the couplings between nodes J", but this can be

shown to be irrelevant for small disorder by use of the repli-
ca trick.!* We do not consider granular superconductors be-
cause the disorder is very large and presumably dominates
the behavior. We now take the continuum limit of the lat-
tice model in order to evaluate the change of the.area of the
plaquette. In this limit we do not distinguish between a lat-
tice point r in the original lattice and a lattice point R in the
dual lattice, and we obtain S = Sy+ S,V -ug, where Sy is
the area of the plaquette in the undisplaced lattice. This
gives

S=HS/®g=fo+ foVg -ugr

Consistent with the linear approximation for the change in
the area we then obtain from (2)

Z=3 exp|-2mK 3 (Mg~ f0)G (R =R (M, fo) — 4m*K 3, i’al}-vk-uRG(R—R’)(MR,—fo)] : ©)
R(

(Mp) R*=R'

A partial integration in the last term finally gives

(Mg} R=R’

IR—R'|?

Z=3 exp|nk 3, (MR—fo)ln—IB—;R—"(MR,—fo)Hnyz (Mg = fo)* +27Kfo3, ia';—uk-—(ﬂlwk,—fo)] , (6
R R’

. . 2 .
where y is the vortex fugacity y =e™ " X/2 and the vortices

satisfy the neutrality condition 3,z (Mg — fo) =0.

This derivation was rather sloppy but a more careful
derivation taking into account the differences between the
original and dual lattices gives the same result to linear or-
der in the displacements. Higher-order terms in fact can be
shown to make no difference to the final result.

This can be viewed as a fractional Coulomb gas perturbed
by a random distribution of dipoles pg=< ug. As in the uni-
formly frustrated case one would be very much interested in
the behavior for rational f,, but here we concentrate only
on the case where fo is an integer. In this case shifting
Mgy — Mg + fo, we obtain a Coulomb gas of integer charges

f

perturbed by a random distribution of dipoles. This prob-
lem has been previously studied in Ref. 13 in another con-
text so we merely state the relevant results. The recursion
relations for fy,= integer are

dK (1) _

_432 12’
7 m K%y (])

(@
dd(l’) =2- 7K (D) +4m3 20K (D21 (1) |,
where lengths have been rescaled by a factor e¢. Note that

fo and A appear in the combination fyA, which can be re-
garded as an effective measure of the disorder which in-
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creases linearly with applied field. For a given sample A is
fixed and the degree of disorder is varied by changing fo.
These recursion relations have been analyzed in detail in
Ref. 13 and lead to the phase diagram of Fig. 1. For suffi-
ciently small f; there is the usual resistive transition at a
temperature T, = T (fo). In contrast with the pure model
one also finds a reentrant unbinding transition at a lower
temperature T~ (fy). These temperatures are determined

by the intersection of the curve of initial values y = e~ KN
with the phase boundary of the renormalization-group flows
determined by (7) which separates the two regions where y
is relevant and irrelevant. The low-temperature transition
can be understood as an unbinding of vortex pairs by the
random dipole background because of an insufficient ther-
mal vortex density to screen this. At higher temperatures,
although the fugacity is relevant for y =0, at larger length
scales the density becomes sufficiently large to screen the
random background, and the fugacity eventually scales to
zero. The high-temperature transition is the usual thermal
unbinding of vortices and the temperature range of the su-
perconducting phase decreases as the degree of disorder foA
increases.!3

In the superconducting phase there is pha_sae cqoherence in

e —ie ,

the sense that the correlation function (e ' ") decays
algebraically to zero as |r—r'|~7“/4) Note that since we
are only considering integer fo, this correlation function is
in fact gauge invariant since j;_A",-dl=2vr>< integer for
any path I' along links. The exponent 7 approaches the
value

2 (fA) = [1+(1=32mA2f3) V2] + 27A2f}

at the two phase boundaries Ti(Afo). In the normal
phase, there is the usual exponential decay. As f, ap-
proaches the critical value fyr = (327)~Y21/A, T* and T~
merge at M and the superconducting phase shrinks to zero.

For fo > fir the system is always unstable to vortices.i /2
. . . cir-r.%|-1
Near T3, £ diverges exponentially like ¢ < e ¢ ,
where C is a constant for constant f, and at constant T like
Clrg=£,(DI712
e

E= The renormalized spin-wave stiffness
constant approaches
1
Kp=———[1-(1-327A2 12
R 871-2A2f§[ ( ™ f&) ]

on the boundaries of the superconducting phase. Thus, in
contrast with the pure systems, the superfluid density jump
is not universal but depends on f.

These results have direct experimental consequences. For
f 2 f. the density of free vortices where Mg = fo 1 is ap-
proximately n,== 5‘2 and so the resistance increases very
slowly. Note that only these excitations from the ground
state will contribute to the dissipation of the supercurrent.
More important, we have shown that the resistance in-
creases exponentially slowly at constant temperature as fy is
increased beyond f.. At higher fields, one expects that this
will crossover to the usual flux-flow resistance R (H)« H.

A
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f

—
>
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FIG. 1. Qualitative phase diagram as a function of the tempera-
ture T and average number of flux quanta per plaquette f. In the
case we are considering here f is an integer.

This seems to be in qualitative agreement with the experi-
ments performed by Webb, Voss, Grinstein, and Horn.?
They observe a sample-dependent critical value of the field
above which the lower envelope of the resistance begins to
rise very slowly and becomes linear for larger fields. This
picture is, however, complicated by oscillations in the lower
envelope of resistance which are outside this simple model.
We believe that these oscillations can be explained by a
more careful analysis of the array used in these experiments
in which there are in fact two different areas which can lead
to oscillations of two different periods. The fact that the
critical field is also associated with the development of a
minimum in the resistance may be attributed to a coin-
cidence, but discussion of this is deferred to later publica-
tion. The reentrant transition predicted for random posi-
tional disorder has not been observed experimentally, but
this will not be an easy effect to observe. This reentrant
phase predicted here is a separate issue to that predicted to
be due to charging effects.!’

In summary, we consider a simple model for weak
quenched disorder in Josephson-junction arrays and discuss
the effects of the two kinds of disorder that we believe to be
of relevance. For the case of random areas we predict that
R (H)x= H? and no superconducting phase, whereas posi-
tional disorder leads to a reentrant phase at low tempera-
tures in finite field and a critical field above which there is
no superconducting phase. We discuss the consequences of
the results for experiments and suggest this may be respon-
sible for some of the effects reported recently.
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