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We study the scaling behavior and critical dynamics of the resistive transition in Josephson-junction arrays,
at f =1/2 flux quantum per plaquette, by numerical simulation of an on-site dissipation model for the dynam-
ics. The results are compared with recent simulations using the resistively shunted-junction model. For both
models, we find that the resistivity scaling and critical dynamics of the phases are well described by the same
critical temperature as for the chiralsvortex-latticed transition, with a power-law divergent correlation length.
The behavior is consistent with the single transition scenario, where phase and chiral variables order at the
same temperature, but with different dynamic exponentsz for phase coherence and chiral order.
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I. INTRODUCTION

There has been considerable interest, both experimentally
and theoretically, in phase transitions of two-dimensional
Josephson-junction arrayssJJAd.1–41 Such arrays can be arti-
ficially fabricated as a lattice of superconducting grains con-
nected by an insulator or a normal metal1–6 and are also
closely related to superconducting wire networks.7,8 Experi-
mentally, the resistive transition has been the one most ex-
tensively studied,2–4,6–8while theoretically several studies of
XY models,9–41 which describe the ideal JJA, have been
done. A significant understanding of these systems has al-
ready been achieved by comparing the results of experiments
with the theoretically predicted equilibrium critical behavior,
with and without an applied magnetic field. However, to a
large extent, dynamical critical behavior remains much less
understood, particularly in the presence of a magnetic field,
where frustration effects may introduce additional elemen-
tary excitations relevant for the static and dynamic critical
behavior. It is well known that while static critical phenom-
ena depend on the spatial dimensionality as well as on the
symmetry of the order parameter, the dynamic universality
class of the phase transition will depend upon additional
properties which do not affect the statics as, for example,
conservation laws for the order parameter.42 Thus, testing the
universality hypothesis of dynamical critical behavior re-
quires the study of specific dynamical models. For JJA, the
physically relevant dynamical model for the phase dynamics
cannot be unambiguously identified5,9–12 and should depend
on the particular coupling mechanism between the supercon-
ducting elements of the array. It is expected that, at least for
an array of ideal tunnel junctions, the resistively shunted-
junction sRSJd model of current flow between superconduct-
ing grains would be a more physical representation of the
system.13 This model assumes that energy dissipation occurs
only through the junctions and imposes current conservation
at each site of the array. On the other hand, for wire networks

or arrays of proximity-effect junctions, local dissipation at
the sites of the array should also be allowed leading to a
model with on-site dissipation for the dynamics.

In experimental investigations of JJA, the resistive transi-
tion is usually identified from the behavior of the current–
voltage sI –Vd characteristics near the critical temperature.
The divergent correlation length determines both the linear
and nonlinear resistivity sufficiently close to the transition.
To interpret the data and determine the underlying equilib-
rium transition, the scaling theory of Fisheret al.43 has been
widely used. For JJA at zero magnetic field, which is isomor-
phic to the standardXY model, the resistive transition is in
the Kosterlitz-ThoulesssKTd universality class,1,13,14 where
the correlation length diverges exponentially near the critical
temperature. Studies of the critical dynamical behavior using
Monte CarlosMCd dynamics15 and RSJ or on-site dissipation
dynamics,11,12 find a behavior consistent with the dynamical
theory of the KT transition. The exponent of the current–
voltage relation,V–Ia, at the transition, assuming the univer-
sal valuea=z+1=3, corresponds to a dynamic exponentz
=2 in the resistivity scaling theory.43

However, in frustrated Josephson-junction arrayssFJJAd,
corresponding tof =1/2 flux quantum per plaquette, besides
the phase variables, the vortex-lattice induced by the external
field introduces an additional discretesIsing-liked order pa-
rameter, the chirality,16 which measures the direction of local
current circulation in the array. The ground state consists of a
pinned commensurate vortex-lattice corresponding to an an-
tiferromagnetic arrangement of chiralities and vortex-lattice
melting corresponds to the chiral order-disorder transition.
As a consequence, two distinct scenarios for the occurrence
of phase transitions as a function of temperature have been
proposed by Teitel and JayaprakashsRef. 16d: separated chi-
ral and phase-coherence transitions or a single transition
where phase and chirality order at the same temperature. In
the former scenario, the phase transitions should be in the
KT and Ising universality classes, respectively, while in the
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later scenario the critical behavior should be a superposition
of KT and Ising critical behavior at the same critical tem-
perature, if the coupling between phase and chiral variables
are irrelevant at criticalitysdecoupled single transitiond, oth-
erwise critical behaviorscoupled single transitiond should oc-
cur with phase coherence and chiral order showing critical
behavior different from the KT and Ising universality classes.
These possible scenarios are supported, for example, by
renormalization-group studies based on the Ginzburg-
Landau expansion of the frustratedXY modelsFXYd17 which
also shows that the universality class of these transitions can
be described by theXY-Ising model.18 It appears that the
current predominant point of view is that the separated tran-
sition scenario is realized with a KT transition occurring be-
low the chiral transition. Recently, this scenario has received
further support from appealing arguments by Korshunov,28

based on chiral domain wall fluctuations and vortex unbind-
ing, which provides a mechanism for the separation of the
two transitions in this order. Also, there are significant nu-
merical evidences from equilibrium calculations which favor
this scenario. However, the coupled single transition scenario
has also received some support from different calculations of
the chiral critical exponents and central charge from finite-
size scaling which show results different from the pure Ising
values, but several of these studies do not verify if the tran-
sition temperature for phase-coherence coincides with the
chiral transition temperature. On the other hand, the numeri-
cal evidence for the separated transitions scenario finds that
the phase-coherence transition24 is consistent with KT behav-
ior but the critical exponents found for the chiral transition
by finite-size scaling do not show the expected pure Ising
behavior according to Ref. 23. However, it has been found
by Olsson24 that the value of the thermal critical exponent is
consistent with the pure Ising value depending on the tem-
perature region in which a fit is made. Therefore, the devia-
tions of the exponents from pure Ising values cannot be re-
garded as an unambiguous evidence for non-Ising critical
behavior. The separated transition scenario also relies on the
assumption that the phase-coherence transition is pure KT
and therefore uses some of the predicted behavior from the
KT theory, like the helicity modulus jump or exponentially
divergent correlation length, to locate this critical tempera-
ture. If the helicity modulus jump is actually larger than the
universal value then the procedure of locating the critical
temperature from the jump24 can only overestimate the criti-
cal temperature. Although this assumption is consistent with
a phase-coherence critical temperature below the chiral tran-
sition, such a procedure could result in an underestimate of
the phase-coherence critical temperature if the transitions co-
incide or the chiral transition occurs below the phase-
coherence transition. In fact, it has been shown that if one
enlarges the parameter space of the FXY model29 by consid-
ering a model where every other column in the square lattice
has coupling constants which differ from the others by a
constant ratior, the chiral transition occurs below the phase-
coherence transition30 if r is sufficiently different from 1. It
is then found that there is a singular contribution to the tem-
perature dependence of the helicity modulus near the chiral
transition29 determined by the chiral critical exponents. For
the standard FXY model, obtained whenr→1, such singular

contribution will remain if the transition is single and there-
fore it can affect the helicity modulus behavior near the tran-
sition.

In any case, independently of the scenario interpretation,
several numerical calculations using quite different methods
agree20,23,24,31,32with the earlier estimate of the chiral transi-
tion temperature19 at Tch=0.455 within a 0.8% error bar. On
the other hand, for the phase-coherence transition, it is clear
that it would be more satisfactorily if it could be determined
by methods which do no rely on assumptions of KT behav-
ior.

These different phase-transition scenarios have important
consequences for the resistive behavior of the FJJA. Since
the resistive transition corresponds to the onset of phase co-
herence, they imply quite distinct behavior. In the separated
transition scenario or single but decoupled scenario, the re-
sistive behavior should be described by the KT universality
class. On the other hand, in the single coupled scenario,
where the critical dynamics involve strongly coupled phase
and chiral variables, the resistive behavior should be signifi-
cantly different. In principle, such behavior can be detected
experimentally.

Measurements of current–voltage curves in FJJA were fit-
ted assuming pure KT behavior,2,3 but either an unexpectedly
low value of the transition temperaturescompared with the-
oretical expectationsd was obtained in one case2 or the I –V
exponent at the transition wasa,3 in the other case.3 More
recently, the current–voltage curves in JJA6 and in supercon-
ducting networks7,8 were found to be better described by a
power-law correlation length. However, very different values
of the critical exponentsz, n were obtained in each case.

Earlier numerical studies of theI –V characteristics for
FJJA, obtained with RSJ dynamics33,34 or MC dynamics,35

were performed for small system sizessLø16d. In particular,
the studies with RSJ dynamics used free boundary conditions
to impose a driving current. This leads to significant addi-
tional dissipation due to boundary effects,36 specially in
small system sizes. Other works have studied the short-time
dynamics of chirality,31 and the nonequilibrium transitions at
large currents.37

Recently,38 we have studied the critical dynamics and re-
sistivity scaling in FJJA by numerical simulation of the RSJ
dynamics with periodicsfluctuating twistd boundary condi-
tions including much large systems sizes. It was found that
the current–voltage scaling is consistent with the single-
transition scenario. The scaling behavior is well described by
a resistive transition occurring at a critical temperature cor-
responding to the chiral transition, with a power-law diver-
gent correlation length, but with two different dynamic ex-
ponents,zph,1 andzch,2, for phase and chiral variables,
respectively. This result implies that, at the transition, the
exponent of theI –V power-law,V–Ia, is a=zph+1<2 rather
thana=3 as for the unfrustrated case. In view of the possible
dependence of the dynamic behavior on the particular RSJ
dynamics used in these simulations, it should also be of in-
terest to study the resistive behavior with an on-site dissipa-
tion model for the dynamics. Results for this dynamical
model should be particularly relevant for frustrated wire
networks8 or proximity-effect junctions.

In this work we study the resistivity scaling and critical
dynamics of a frustrated Josephson-junction array, defined on
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square lattice, atf =1/2 flux quantum per plaquette, by nu-
merical simulations of an on-site dissipation model for the
array dynamics. Using a dynamic scaling analysis, we find
that the resistivity behavior and critical dynamics are well
described by the critical temperature corresponding to the
chiral svortex-latticed transition with a correlation length that
diverges as a power law. Two dynamic exponents,zph,1.5
andzch,2.5, are found for phase coherence and chiral order,
respectively. Consequently, at the transition, the exponent of
the current–voltage power-law,V–Ia, is a=zph+1<2.5
rather thana=3 as for the unfrustrated case. This is the same
behavior we have found recently for the RSJ model38 but
with different values for the dynamic exponentsfzph
,0.9s1d and zch,2.1g. Including on-site dissipation in the
dynamical model could be a more realistic description of
wire networks than the RSJ model. Indeed, resistivity scaling
of experimental data on wire networks8 find z,2, which is
consistent with our estimatezph within the experimental er-
rors, and also shows that the resistivity scaling is well de-
scribed by a power-law correlation length as found in our
simulations.

II. MODEL AND SIMULATION

The Hamiltonian of a square two-dimensional array under
a magnetic field is given by

H = − EJo
r ,m

cossur+m − ur − Ar ,md, s1d

whereur is the superconducting phase of the grain at siter
=snxa,nyad with nx, ny integers, anda the lattice constant,
andm=x, y with x=sa,0d, y=s0,ad, andEJ= I0" /2e the Jo-
sephson energy. The magnetic field introduces frustration
through the vector potential integral

Ar ,m =
2p

F0
E

r

r+m

A ·dl , s2d

which satisfies

Dm 3 Ar ,m = Ar ,x − An+y,x + Ar+x,y − Ar ,y

= 2pf , s3d

with f =Ha2/F0, whereH is the applied magnetic field and
F0=h/2e is the quantum of flux. The fully frustrated case
corresponds to half quantum of flux per plaquette,f =1/2.

The simulations are performed with the same “fluctuating
twist” boundary conditions as used, for example, in Refs. 11,
39, and 40. This consists of considering periodic boundary
conditions for the supercurrents in them direction while add-
ing a fluctuating twistam to the gauge invariant phase in the
m direction. In this case the gauge invariant phase difference
is modified to

ur ,m = ur+m − ur − Ar ,m + am. s4d

For the vector potential we choose the Landau gauge

Ar ,x = − 2pfny,

Ar ,y = 0. s5d

In this gauge, the boundary condition for the phases in a
system of sizeL3L is given by

usnx + L,nyd = usnx,nyd,

usnx,ny + Ld = usnx,nyd − 2pfLnx. s6d

For f =1/2 andL even, the second condition is irrelevant, but
not for general frustrationf. In the presence of an external
current Iext

m in the m direction, one has to add the term
−s" /2edL2Iext

m am in the Hamiltonian of Eq. s1d, which
couples the current with the global phase difference per row,
Lam, introduced by the fluctuating twist. Therefore, the
Hamiltonian of a frustrated square array with fluctuating
twist boundary conditions and an external current is

H = − EJo
r ,m

cossur+m − ur − Ar ,m + amd −
"

2e
L2o

m

Iext
m am.

s7d

We define the on-site dissipation dynamics by considering
the local Langevin equations for the fluctuating variablesur
andam:

dur

dt
= − Gu

dH
dur

+ hrstd, s8d

dam

dt
= − Ga

dH
dam

+ hmstd, s9d

whereGu, Ga are dissipation parameters, and the noise terms
have zero average and correlations

khrstdhr8st8dl = 2kBTGudr ,r8dst − t8d, s10d

khmstdhm8st8dl = 2kBTGadm,m8dst − t8d. s11d

The dissipation constantGa should be proportional toL−2 in
order to be an intensive quantity. A convenient choice is

Ga =
Gu

L2

sin general it can beGa=bGu /L2, here we chooseb=1 to be
consistent with Ref. 12d.

Dimensionless quantities are used with time in units of
t=2e/"GuI0, currents in units ofI0, voltages in units of
s" /2ed2GuI0 and temperature in units of"I0/2ekB. A total
currentI is imposed uniformly in the array in they direction
with current densityJ= I /L, whereL is the system size and
the average electric fieldE is obtained from the voltageV
across the system asE=V/L=s" /2edkday/dtl, whereayL is
the global phase difference or twist in they direction. With
all this considerations, the dimensionless equations of mo-
tion are then

dur

dt
= − Dm ·Sr ,m + hrstd, s12d
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dam

dt
= −

1

L2o
r

Sr ,m + Idm,y + hmstd, s13d

where the supercurrent is defined by

Sr ,m = sinsur+m − ur − Ar ,m + amd,

and the discrete divergence operator is defined as

Dm ·Sr ,m = o
m=x,y

Sr ,m − Sr−m,m.

Finally, the now dimensionless noise variableshrstd have
correlations

khrstdhr8st8dl = 2Tdr ,r8dst − td, s14d

khmstdhm8st8dl =
2T

L2 dm,m8dst − td. s15d

The set of Eqs.s8d and s9d describe the dynamics of JJA
with “on-site dissipation” in contrast to the RSJ dynamics
which only considers dissipation through the junctions.13 The
on-site dissipation dynamical model has been studied
previously9,11,12,40for the unfrustratedsf =0d case and com-
pared with the RSJ dynamics. Their main difference is that
while the on-site dynamics corresponds to a local damping
the RSJ dynamics corresponds to a nonlocal damping.9,13 A
physical interpretation of the on-site dynamics for JJA in
terms of currents and voltages has also been discussed
previously.9,11,12,40Its main features are summarized in the
following. sid It takes into account normal current flow be-
tween each superconducting node and the substrate, which
leads to a current leakage through a resistance to the ground
R0. sii d It neglects the quasiparticle normal current of each
junction, which is associated with a shunt resistanteRs. This
means takingRs→`, or actually assumingRs@R0 for the
array. The assumptionssid and sii d lead to Eq.s8d for ur ,
which corresponds to the conservation of supercurrents at
each node plus a leakage of normal current to the substrate.
In this case we get

Gu = s2e/"d2R0.

However, if one considers Eq.s8d alone for the calculation of
current–voltage curves with open boundary conditions it is
found that an applied external current leads to dissipation
only at the boundaries were current is injectedsextractedd,
since normal current will flow directly from the firstslastd
row of junctions to the substrate throughR0.

44 Strictly peri-
odic boundary conditions are not possible to be implemented
in a consistent way.siii d In order to correctly model current-
voltage curves and to be able to implement fluctuating twist
periodic boundary conditions, one has to add11,40 a global
normal current channel in parallel to the whole array, with a
“global resistance”Rglobal, such that in the normal state the
total resistance of the array will be given byRglobal. Then
total conservation of current leads to Eq.s9d which repre-
sents a parallel circuit of the average supercurrent in the
array and the global normal current. In the approach of Refs.
11, 12, and 40Rglobal=R0 is assumed, and therefore this leads
to the choiceGa=s2e/"d2R0/L2.

The earlier assumptionssid–siii d for the on-site dynamics
give a consistent interpretation of calculations of the current–
voltage response and phase dynamics, but correspond to a
model system rather than to a particular JJA available experi-
mentally. In realistic JJA the normal currents in the junctions
can not be neglected since usuallyRs!R0, and therefore the
RSJ model can be a good representation of the JJA. A pos-
sible realization of the dynamics of Eqs.s8d ands9d could be
achieved experimentally if one adds on purpose a resistor in
parallel to the whole array such that it has a resistance
Rglobal!Rs, in which case normal currents will mainly go
throughRglobal and reduce the weight of the normal quasipar-
ticle currents of the junctions.45

A good candidate for the on-site dynamics is a supercon-
ducting wire network. In this case one has to take into ac-
count the dynamics of the complex order parameter which is
given by the time dependent Ginzburg-Landau equation
sTDGLd coupled to the electromagnetic field equations.46–48

There are two dissipative mechanisms in this case:sid via the
normal state resistivity, since the total current is the sum of
the supercurrent and the normal current in each wire of the
network sthis is the equivalent of the shunt resistance of the
RSJ model in a JJAd, andsii d via the relaxation of the com-
plex order parameter in the TDGL equations, which is local
in nature48 and where its dominant contribution is deter-
mined byD, the normal state diffusion constant. After writ-
ing the TDGL equations in a discrete lattice, and neglecting
the fluctuations of the amplitude of the order parameter
sLondon limitd, one obtains49 that the on-site part in the dy-
namics of the phase is provided byD, and would correspond
to Eq.s8d with Gu=16p3Dl2/ sF0

2aSd, wherea is the network
lattice constant andS the section of the wires. Therefore,
there is no need to invoke a “leakage of normal current to the
ground” in this case. The full dynamics of the superconduct-
ing wire network is a mixture of both the “on-site” dynamics
and the “RSJ” dynamics. However, in the presence of an
on-site contribution, the resulting rate of change of the
phases at different sites, like Eq.s8d, does not have a loga-
rithmic nonlocal dependence at large separations as in the
pure RSJ model.13

In any case, in the present work, we will take the purely
on-site dynamical equations as a model dynamics that corre-
sponds to a limit of the general dynamics of a JJA or a
superconducting wire network where only local dissipation is
taken into account. The opposite limit for the dynamics is the
pure RSJ model that we have analyzed in Ref. 38.

We integrate the dynamical equations with a second order
Runge-Kutta-Helfand-Greenside method with time stepDt
=0.01–0.07t, averaging over, typically, 106 time steps after
using 53105 time steps for equilibration. The results were
averaged over 5–10 different initial configurations of the
phases and system sizes ranging fromL=8 to L=180 were
considered.

III. DYNAMIC SCALING THEORY

Near a second-order phase transition, the diverging corre-
lation lengthj leads to critical slowing down characterized
by relaxation timest that also diverge approaching the tran-
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sition temperature. The dynamic scaling hypothesis42 asserts
that measurable quantities should scale with the diverging
correlation lengthj and the relaxation timet~jz, near the
transition temperature, wherez is the dynamical critical ex-
ponent. A general dynamic scaling theory for the resistivity
behavior near a superconducting transition has been provided
by Fisher, Fisher, and Huse.43 According to this scaling
theory, the nonlinear resistivityE/J should satisfy the scaling
form

T
E

J
= j−zg±S J

T
jD s16d

in two dimensions, where the1 and 2 correspond to the
behavior above and below the transition, respectively. For a
transition in the KT universality class, the correlation length
should diverge exponentially asj~expsb/ uT/Tc−1u1/2d,
above Tc. Otherwise, for a usual continuous transition, a
power-law behavior is expected,j~ uT/Tc−1u−n, with an ex-
ponentn to be determined. Thus, a scaling plot according to
Eq. s16d can be used to verify the dynamic scaling hypoth-
esis and the assumption of an underlying equilibrium transi-
tion.

The scaling form of Eq.s16d does not take into account
finite-size effects and so it is valid only in a range of tem-
peratureT and current densitiesJ where such effects are not
dominant. Finite-size effects are very important sufficiently
close to the transition when the correlation lengthj reaches
the system sizeL. In particular, atTc, the correlation lengthj
will be cutoff by the system sizeL in any finite system. From
Eq. s16d, the nonlinear resistivity atTc should then satisfy the
scaling form

T
E

J
= L−zgS J

T
LD . s17d

It follows from Eq. s17d that the linear resistanceRL
=limJ→0 E/J should decrease as a power-law of the system
size

RL ~ L−z, s18d

right at Tc. This behavior is independent of the form of the
correlation length divergence. The linear resistance can be
obtained from the Kubo formula of equilibrium voltage fluc-
tuations as

RL =
1

2T
E dtkVstdVs0dl s19d

without an imposing driving current.RL can also be deter-
mined more accurately from the long-time fluctuations of the
total phase difference across the systemDustd=Lam as12,41

RL =
1

2Tt
kfDustd − Dus0dg2l, s20d

valid for sufficiently long timest.
The critical dynamics leading to the resistivity scaling de-

scribed earlier can also be studied by the behavior of time
correlation functions. For the frustrated JJA, there are two
different types of time correlations of particular interest, the

time correlation for chiralitiesCchstd and phase variables
Cphstd. We shall use normalized time correlation functions
defined as

Cstd =
kAstdAs0dl − kAl2

kA2l − kAl2 . s21d

For the phase variables, A=SW =SisWi, where sW
=fcossud ,sinsudg and for the chiral variablesA=x=Ski j lsui

−u j −Aijd /2p, where the summation is taken over the el-
ementary plaquette of the lattice and the gauge-invariant
phase difference is restricted to the intervalf−p ,pg. The
relaxation timet can be obtained from the exponential decay
Cstd~exps−t /td at sufficiently long times. In general, the
time dependence ofCstd can be expressed as a series of
exponential terms with the largest decay time corresponding
to the critical relaxation time of the long time dynamics.50

From dynamic finite-size scaling, the relaxation time should
scale atTc ast~Lz, from which thez can be estimated from
the slope in a log log plot. An alternative procedure to esti-
matez from equilibrium dynamics is to explore the expected
finite-size behavior of the time correlation functions at long
times. Since atTc the relaxation time scales ast~Lz, the
time correlation function for different system sizes can be
cast into a scaling form in terms of the dimensionless ratio
t /Lz as

CsL,td = C̃st/Lzd s22d

where C̃sxd is a scaling function. However, this assumes a
simple scaling form for the time correlation functions and is
only valid for sufficiently long times when a single exponen-
tial term describes the relaxation behavior.

IV. RESULTS AND SCALING ANALYSIS

Figure 1 shows the temperature dependence of the non-
linear resistivityE/J for the largest systems sizeL=180 near
the chiral transition temperatureTch, estimated previously
from equilibrium Monte Carlo simulation,18 Tch=0.455.
Qualitatively, the linear resistanceRL=limJ→0 E/J, tends to a
finite value at high temperatures but extrapolates to very low

FIG. 1. Nonlinear resistivityE/J as a function of temperature
for system sizeL=180.
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values at lower temperatures, consistent with the existence of
a resistive transition in the range 0.45,Tc,0.46. In the
double transition scenario, where the phase-coherence tran-
sition is expected to be in the KT universality class, the
estimate of the proposed KT critical temperature isTKT
=0.446, from Monte Carlo simulations,24 which is close to
Tch. However, as it is clear from the behavior at the lowest
currents in Fig. 1, this estimate is below the resistive transi-
tion since the resistivity curves forT=TKT=0.446 andT
=0.45.TKT tends to zero forJ→0, indicating that the sys-
tem is still in the superconducting phase for these tempera-
tures. On the other hand, the resistivity curve forT=0.46
.Tch clearly tends to finite resistivity forJ→0. This shows
that the resistivity transition occurs atTch or at a temperature
very close toTch rather than at the proposed estimate ofTKT.

Additional support for a resistivity transition atTch
=0.455 is provided by the behavior of the linear resistivity
RL as a function of system size, shown in Fig. 2. ForT
.0.455,RL extrapolates to a finite value consistent with the
behavior of the nonlinear resistivity forJ→0 in Fig. 1. On
the other hand, forTø0.455 it extrapolates to zero, indicat-
ing that the resistive transition temperature is compatible
with the estimate ofTch=0.455. Since in this calculationsRL
is obtained without any current bias, from the equilibrium
dynamical fluctuations, according to Eq.s19d, this result also
verify that theTc inferred from the behavior of the nonlinear
resistivity for the largest system size in Fig. 1 is not an arti-
fact of finite current bias and in fact reflects the underlying
equilibrium transition behavior.

Although the resistivity behavior of Figs. 1 and 2 already
suggest that the resistive transition temperature coincides
with Tch or it is much closer to this value than previous
estimates, we now proceed, as in any study of critical phe-
nomena, to obtain the asymptotic equilibrium critical behav-
ior in the thermodynamic limit,L→` and J→0, from a
scaling theory. A scaling plot according to Eq.s16d is shown
in Fig. 3 for the largest system sizes, in the temperature
range closest toTch and smallest current densities, assuming
the correlation lengthj has a power-law divergence with
Tc=Tch and usingn andz as adjustable parameters so that the
best data collapse is obtained. This scaling plot shows that
the two largest system sizesL=128 andL=180 give the

same data collapse and so finite size effects neglected in the
scaling form of Eq.s16d are not dominant for the range of
temperatures and current densities shown in the plot. Similar
scaling analysis assuming a KT correlation length and fixing
Tc at the estimate ofTKT does not result in a good data
collapse. The same behavior was found using the RSJ
dynamics.38 From this scaling analysis, we estimaten
=0.9s1d and the dynamical critical exponentz=1.3s3d. The
static exponentn is consistent with estimates of the chiral
transition from equilibrium Monte Carlo simulations18 but
the accuracy is not sufficient to rule out the valuen=1 ex-
pected for the standard Ising transition. Our estimate ofz is
smaller than the one obtained previously for the frustrated
XY model with MC vortex dynamics35 where z,2 was
found. However, such MC simulation corresponds to a dif-
ferent dynamics and also only very small system sizesswith
L=8–14d were analyzed. We now take into account finite-
size effects explicitly by studying the scaling behavior of the
linear resistivityRL nearTc in Fig. 2. At Tc, the linear resis-
tivity should scale with system size according to Eq.s18d.
Near Tc, it should also depend on temperature through the
dimensionless variableL /j. If the correlation length diverges
as a power law then it should satisfy the finite-size scaling
form

RLLz = ffsT/Tc − 1dL1/ng. s23d

In fact, as shown in Fig. 4 the linear resistivity data satisfy
the scaling form withTc=Tch and a valuez=1.5s2d consis-
tent with the estimate from the nonlinear resistivity scaling.

The earlier scaling analysis for the nonlinear resistivity at
large system sizes and linear resistivity at smaller system
sizes already confirm that the resistive transition temperature
Tc is very close toTch, with a dynamic exponentz,2. How-
ever, in the absence of a completely satisfactorily determina-
tion of Tc from static critical behavior,20,21,24 from now on,
we will assumeTc=Tch and explore to which extent this give
us consistent results for the dynamical critical behavior, in-
cluding finite-size effects. Another reason to assume the
value of Tc obtained from equilibrium simulations rather
than estimating from the dynamic scaling itself is that, in

FIG. 2. Linear resistanceRL, obtained without current bias, as a
function of temperature and system size. Lines are just guide to the
eyes.

FIG. 3. Scaling plot of the nonlinear resistivity data for the
smallest current densities nearTc=Tch=0.455 withj~ uT/Tc−1u−n.
Open symbols correspond toL=128 and filled ones toL=180.

E. GRANATO AND D. DOMÍNGUEZ PHYSICAL REVIEW B71, 094521s2005d

094521-6



general, the most reliable way of studying critical dynamics
and determine the dynamic exponentz is to use the known
value of Tc. This is true not only for models whereTc is
known exactly as for the two-dimensional Ising model51 but
also for models whereTc is only known by numerical simu-
lations as for the three-dimensional Ising model.50

An alternative estimate ofz can be obtained from the
nonlinear resistivity by studying the expected size depen-
dence atTc. As shown in Fig. 5, a finite size scaling accord-
ing to Eq.s17d gives the same dynamic exponentz=1.4s3d,
within the estimated error bar. The same behavior was also
observed using the RSJ dynamics38 but with a smaller value
of z. Equilibrium calculations of the linear resistanceRL at
Tch also give a consistent estimate. Figure 6 shows the finite
size behavior ofRL obtained from Eq.s18d. A power-law fit
gives z=1.41s5d which agrees with the other estimates and
suggests therefore that the value ofz corresponds to the un-
derlying equilibrium dynamical behavior. To show the reli-
ability of this method, it is also included in Fig. 6 the behav-
ior for the unfrustrated case,f =0. In this case the resistive
transition is in the KT universality class and a dynamical
exponentz=2 is expected, independent of the dynamics. In-
deed, forf =0, the same power-law fit at the critical tempera-
ture Tc=0.887 estimated from Monte Carlo simulations52

givesz=1.96s5d, in good agreement with previous resistivity
calculations12 for f =0 using smaller system sizes up toL
=16.

It should be noted that our earlier estimate of the dynamic
exponentz is obtained by requiring thatTc, z, andn satisfy at
the same time the finite-size scaling forms of Eqs.s17d, s18d,

ands23d, including small system sizes, as well as the scaling
form of Eq.s16d for the largest system sizes. Using only Eq.
s16d can lead to inaccurate estimates ofz as shown recently
in Ref. 53 for the unfrustrated case.

To further verify that the estimate ofz obtained from the
resistivity scaling does in fact reflect critical phase fluctua-
tions near the transition rather than just critical fluctuations
for the chiral order parameter, we have also performed equi-
librium calculations of the phase autocorrelation functions
Cphstd for the phase variables andCchstd for the chirality
variables. Figures 7 and 8 show the finite-size behavior of
the time correlations functions evaluated at the critical tem-
peratureTch. If this temperature corresponds to the critical
point for phase coherence and vortex-lattice disorder then the
relaxation times for both phase and chirality variables should
diverge with the system size ast~Lz. The relaxation timetph
andtch can be obtained from the exponential decay ofCstd at
sufficiently long times. We take into account possible contri-
butions from short time behavior by fitting the time depen-
dence ofCphstd andCchstd to a sum of two exponentials and
extract t from the largest decay time. Figure 9 shows the
finite-size behavior of the relaxation time atTch for the
phases and chiralities. From a power-law fit we obtainzph

FIG. 4. Finite-size scaling plot of the linear resistance data near
Tc=Tch=0.455.

FIG. 5. Scaling plot of the nonlinear resistivityE/J at Tc=Tch

=0.455 for different system sizesL.

FIG. 6. Linear resistance as a function of system size at the
critical temperaturesTc=Tch for f =1/2 and Tc=0.887 for f =0.
Power-law fits give estimates of the dynamic exponentz.

FIG. 7. Time correlation functionCchstd for the chiral variables
at Tch, for different system sizes.
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=1.8s1d from the phase relaxation timetph which is indeed
consistent, within the estimated error bar, with the value ofz
obtained from the resistivity scaling discussed earlier. The
estimate from the chiral relaxation time in Fig. 9 is signifi-
cantly different,zch=2.5s2d. For an alternative estimate ofz
we have also used the scaling of the correlation function
itself. The time correlation functions should satisfy the scal-
ing behavior of Eq.s22d. As shown in Figs. 10 and 11,Cphstd
andCchstd indeed satisfy the expected finite-size behavior at
the critical temperature providing additional estimates of the
dynamic exponentszph=1.9s2d and zch=2.6s2d which are
consistent, within the estimated error bar, with the values
obtained from the relaxation time scaling. Finally, aboveTc,
the relaxation time should depend both on system size and
temperature. If the correlation length diverges as a power law
thentph andtch should satisfy the finite-size scaling form

tL−z = ffsT/Tc − 1dL1/ng. s24d

In fact, the data collapse in Figs. 12 and 13 show that this
scaling form is satisfied withTc=Tch and the values oftph
andtch which are consistent with the above estimates.

V. DISCUSSION

Recently, Holzeret al.53 showed that for the unfrustrated
case,f =0, the scaling behavior in Eq.s16d considered alone,
i.e., without taking into account finite-size effects, yields in-

correct values for the dynamic exponentz, using approxi-
mate analytical expressions for theI –V characteristics avail-
able in the literature.1 We should emphasize that our
approach for the resistivity scaling analysis described in the
previous section is quite different. Our estimate of the dy-
namic exponentz is obtained by requiring thatTc, z, andn
satisfy at the same time the finite-size scaling forms of Eqs.
s17d, s18d, ands23d, including small system sizes, as well as
the scaling form of Eq.s16d for the largest system sizes. It
should also be considered that the possibility of an equilib-
rium KT transition forf =1/2 within the separated transitions
scenario does not imply that the dynamics would be the same
as the KT dynamics and therefore for the frustrated case
considered here there is no reliable analytical expressions
available for theI –V characteristics. The dynamics forf
=1/2 will be different because besides vortex excitations,
chiral domain walls also contribute to the nonlinear resistiv-
ity as shown in Ref. 33. Moreover, it has already been shown
for the f =0 case that, when finite-size scaling is taking into
account in the resistivity scaling theory of Fisheret al.,43 as
we also do in our approach, the correct dynamic exponent
z=2 is obtained for the KT transition, as shown for example
in Ref. 12. This is also verified in the scaling analysis of our
data as shown in Fig. 6, where we find a dynamic exponent
consistent withz=2 for f =0, as expected.

FIG. 11. Finite-size scaling plot of the time correlation function
Cphstd.

FIG. 8. Time correlation functionCphstd for the phase variables
at Tch, for different system sizes.

FIG. 9. Finite-size behavior of the phase and chiral relaxation
times,tph andtch, respectively, at the critical temperatureTc=Tch.
Power-law fits give estimates of the dynamical exponentszph and
zch.

FIG. 10. Finite-size scaling plot of the time correlation function
Cchstd.
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The distinct values obtained forzph and zch with the on-
site dissipation model deserve some considerations. Similar
behavior was also found by us using the RSJ dynamics.38

The final results for both models, obtained from the resistiv-
ity scaling and time-correlation function scaling analysis, are
summarized in Table I. Although for the on-site model, the
two methods give results forzph which differ beyond the
estimated error bar, the values are significantly below the
value obtained forzch. Naively, if the two transitions happen
at the same temperature, one would expect that the same
dynamic exponent should hold for the phase and chiral re-
laxation times. However, we should mention that different
dynamic exponents for coupled order parameters have al-
ready been found previously at multicritical points in mag-
netic systems.54 This suggests that a possible explanation for
two dynamic exponents at the transition of the FJJA may rely
on the existence of a multicritical point in the phase diagram
of the relevant effective Ginzburg-Landau free energy de-
scribing the transition. A multicritical point is known to oc-
cur in the coupledXY-Ising model18 which should describe
the static critical behavior of the FJJA and this could be a
useful framework for investigations of the dynamical univer-
sality class of FJJA. In the context of superconducting sys-
tems, different dynamic exponents for the resistivity and
chirality have also recently been found in the resistive tran-
sition of disordered superconductors55 described by the
three-dimensionalXY spin glass model.56 Just as in the case
of the frustrated JJA, the phase transition in theXY spin glass

results from the competition of a chiral order parameter and
phase variables. Although earlier work for this problem con-
cluded for a spin-chirality decoupling picture,56 more recent
numerical work have provided strong evidence57 that there is
a single transition at which both phase variables and chirali-
ties order.

Although the single transition scenario provides a consis-
tent interpretation of our data, it is worth emphasizing that
the alternative separated transitions scenario28 cannot be
ruled out. We believe, there are two possible explanations for
some of our findings within the later scenario, as discussed
below.

It is possible that the KT transition is actually much closer
to Tch than estimated previously and so the transitions cannot
be resolved within the accuracy of our data. Our analysis of
the resistivity behavior suggests that in this case it should
occur aboveTc,0.452. This value is already close or within
the range of the error bars reported for the chiral transition
critical temperature obtained, for example, by Monte Carlo
simulations which givesTch=0.455s2d sRef. 19d or 0.454s2d
sRef. 23d. It should be noted, however, that this only consid-
ers the critical temperatures alone and not the critical behav-
ior. In the alternative decoupled single transition scenario,
the critical behavior should be described by a superposition
of a pure KT and pure Ising transitions at the same critical
temperature. However, this is also not consistent with our
results. Nevertheless, even if the transitions are so close that
their critical temperatures can not be resolved by any
method, in principle, it could still be possible to distinguish
these scenarios due to the mechanism discussed in Ref. 28 or
due to the effects of different corrections to scaling.

A second possibility is that the dynamic scaling theory of
Fisheret al.43 in its original form in Eq.s16d is not valid for
the present case and should be enlarged to include the inter-
play of two divergent length scales at nearby temperatures24

which can lead to crossover effects at small length and time
scales. In fact, the underlying assumption in the resistivity
scaling theory is that there is a single divergent length scale,
corresponding to the leading divergent contribution to finite
correlation lengths, when approaching the critical tempera-
ture of the resistive transition. This would certainly be valid
within the coupled single transition scenario, which is con-
sistent with our conclusions since in that case phase coher-
ence and chiral order develop at the same critical tempera-
ture, with strongly coupled order parameters, and the
equilibrium critical behavior should be described by a single
divergent length scale. Above the transition, in the disordered
phase, the chiral and phase correlation lengths diverge when

TABLE I. Dynamic exponents of the resistive chiral transition at
Tch using the on-site dissipation modelsTDGLd and resistively-
shunted-junction modelsRSJd. The superscriptsR andC correspond
to results obtained from the resistivity scaling and time-correlation
function scaling, respectively.

RSJ TDGL

zph 1.1s1dC, 0.9s1dR 1.8s1dC, 1.4s1dR

zch 2.1s1dC 2.5s2dC

FIG. 12. Finite-size scaling plot for the relaxation timetch.

FIG. 13. Finite-size scaling plot for the relaxation timetph.
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approachingTc with a common leading divergent contribu-
tion. Below the transition, where there is chiral order and a
Gaussian fixed line is expected for the phase variables, the
chiral correlation length diverges when approachingTc with
the same leading divergent contribution while the phase cor-
relation length remains infinite since the Gaussian fixed line
corresponds to the absence of a length scale. However, if
phase coherence and chiral order develop at different tem-
peratures then the resistivity scaling can only hold suffi-
ciently close to the phase coherence transition otherwise the
scaling form of Eq.s16d should be enlarged to include the
divergent chiral correlation length in addition to the phase
correlation length. This would lead to a scaling function
g±sx,yd in Eq. s16d depending on two scaling variablesx
=JjKT/T andy=jch/jKT, which makes the scaling analysis of
the data very complicated specially when taking into account
finite-size effects. This could explain, for example, why a
good scaling collapse like Fig. 5 is not obtained by assuming
a resistive transition atTc=TKT, estimated by previous works.
However, it would remain unclear to us in this case why the
linear and nonlinear resistivity scaling as well as the critical
dynamics including different temperatures and system sizes
are so well described by a resistive transition atTc=Tch.

VI. CONCLUSIONS

We have studied the resistivity scaling and critical dynam-
ics of a frustrated Josephson-junction array, atf =1/2 flux
quantum per plaquette, by numerical simulations of an on-
site dissipation model for the array dynamics. Using a dy-
namic scaling analysis, we find that the resistivity behavior

and critical dynamics are well described by the critical tem-
perature corresponding to the chiralsvortex-latticed transition
with a correlation length that diverges as a power law. Two
dynamic exponents,zph,1.5 and zch,2.5, are found for
phase coherence and chiral order, respectively. Consequently,
at the transition, the exponent of the current–voltage power
law, V–Ia, is a=zph+1<2.5 rather thana=3 as for the un-
frustrated case. The same behavior has been found recently
for the resistively shunted-junction model38 but with differ-
ent values for the dynamic exponentsfzph,0.9s1d and zch
,2.1g. One implication of these results for transport experi-
ments is that the usual method of locating the critical tem-
perature from the value corresponding to a nonlinearI –V
exponenta=3, may lead to a significant underestimate. This
is more severe for tunnel-junction arrays which should be
better described by the resistively shunted-junction model,13

where we expecta,2 at the resistive transition.58 For wire
networks the on-site dissipation model should be more ap-
propriate. Indeed, resistivity scaling of experimental data on
wire networks8 find z,2, which is consistent with our esti-
mate ofzph within errors. It also shows that the resistivity
scaling is well described by a power-law correlation length
as found in our simulations. Further detailedI –V measure-
ments combined with magnetic properties, which could in
principle probe the chiral transition, are needed to test our
results.
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