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We study the scaling behavior and critical dynamics of the resistive transition in Josephson-junction arrays,
atf=1/2 flux quantum per plaguette, by numerical simulation of an on-site dissipation model for the dynam-
ics. The results are compared with recent simulations using the resistively shunted-junction model. For both
models, we find that the resistivity scaling and critical dynamics of the phases are well described by the same
critical temperature as for the chir@lortex-lattice transition, with a power-law divergent correlation length.

The behavior is consistent with the single transition scenario, where phase and chiral variables order at the
same temperature, but with different dynamic exponerits phase coherence and chiral order.
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I. INTRODUCTION or arrays of proximity-effect junctions, local dissipation at
the sites of the array should also be allowed leading to a
There has been considerable interest, both experimentallypodel with on-site dissipation for the dynamics.

and theoretically, in phase transitions of two-dimensional In experimental investigations of JJA, the resistive transi-
Josephson-junction array3JA).1~*! Such arrays can be arti- tion is usually identified from the behavior of the current—
ficially fabricated as a lattice of superconducting grains convoltage (I-V) characteristics near the critical temperature.
nected by an insulator or a normal météland are also The divergent correlation length determines both the linear
closely related to superconducting wire netwofRExperi-  and nonlinear resistivity sufficiently close to the transition.
mentally, the resistive transition has been the one most exfo interpret the data and determine the underlying equilib-
tensively studied;*%-8while theoretically several studies of rium transition, the scaling theory of Fishet al#3 has been
XY models?*! which describe the ideal JJA, have beenwidely used. For JJA at zero magnetic field, which is isomor-
done. A significant understanding of these systems has aphic to the standar&XY model, the resistive transition is in
ready been achieved by comparing the results of experimentie Kosterlitz-Thoules$KT) universality class;®'4where
with the theoretically predicted equilibrium critical behavior, the correlation length diverges exponentially near the critical
with and without an applied magnetic field. However, to atemperature. Studies of the critical dynamical behavior using
large extent, dynamical critical behavior remains much lessonte Carlo(MC) dynamic$® and RSJ or on-site dissipation
understood, particularly in the presence of a magnetic fielddynamicst'2find a behavior consistent with the dynamical
where frustration effects may introduce additional elementheory of the KT transition. The exponent of the current—
tary excitations relevant for the static and dynamic criticalvoltage relationy—I?, at the transition, assuming the univer-
behavior. It is well known that while static critical phenom- sal valuea=z+1=3, corresponds to a dynamic exponent
ena depend on the spatial dimensionality as well as on the2 in the resistivity scaling theof¥.
symmetry of the order parameter, the dynamic universality However, in frustrated Josephson-junction arréy3JA),
class of the phase transition will depend upon additionatorresponding td=1/2 flux quantum per plagquette, besides
properties which do not affect the statics as, for examplethe phase variables, the vortex-lattice induced by the external
conservation laws for the order paraméfefhus, testing the field introduces an additional discretksing-like) order pa-
universality hypothesis of dynamical critical behavior re-rameter, the chirality® which measures the direction of local
quires the study of specific dynamical models. For JJA, theurrent circulation in the array. The ground state consists of a
physically relevant dynamical model for the phase dynamicginned commensurate vortex-lattice corresponding to an an-
cannot be unambiguously identifiett'2and should depend tiferromagnetic arrangement of chiralities and vortex-lattice
on the particular coupling mechanism between the supercomnelting corresponds to the chiral order-disorder transition.
ducting elements of the array. It is expected that, at least foAs a consequence, two distinct scenarios for the occurrence
an array of ideal tunnel junctions, the resistively shunted-of phase transitions as a function of temperature have been
junction (RSJ model of current flow between superconduct- proposed by Teitel and JayaprakdB&ef. 19: separated chi-
ing grains would be a more physical representation of theal and phase-coherence transitions or a single transition
system:3 This model assumes that energy dissipation occursvhere phase and chirality order at the same temperature. In
only through the junctions and imposes current conservatiothe former scenario, the phase transitions should be in the
at each site of the array. On the other hand, for wire network&T and Ising universality classes, respectively, while in the
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later scenario the critical behavior should be a superpositionontribution will remain if the transition is single and there-
of KT and lIsing critical behavior at the same critical tem- fore it can affect the helicity modulus behavior near the tran-
perature, if the coupling between phase and chiral variablesition.

are irrelevant at criticalitydecoupled single transitipnoth- In any case, independently of the scenario interpretation,
erwise critical behaviofcoupled single transitiorshould oc-  several numerical calculations using quite different methods
cur with phase coherence and chiral order showing criticahgre&®2324.3L.33yjth the earlier estimate of the chiral transi-
behavior different from the KT and Ising universality classes.tion temperatur¥ at T.,=0.455 within a 0.8% error bar. On
These possible scenarios are supported, for example, hbiie other hand, for the phase-coherence transition, it is clear
renormalization-group studies based on the Ginzburgthat it would be more satisfactorily if it could be determined
Landau expansion of the frustrat¥Y model(FXY)¥ which by methods which do no rely on assumptions of KT behav-
also shows that the universality class of these transitions caor.

be described by th&Y-Ising model*® It appears that the These different phase-transition scenarios have important
current predominant point of view is that the separated traneonsequences for the resistive behavior of the FJJA. Since
sition scenario is realized with a KT transition occurring be-the resistive transition corresponds to the onset of phase co-
low the chiral transition. Recently, this scenario has receivedherence, they imply quite distinct behavior. In the separated
further support from appealing arguments by Korshuifov, transition scenario or single but decoupled scenario, the re-
based on chiral domain wall fluctuations and vortex unbindsistive behavior should be described by the KT universality
ing, which provides a mechanism for the separation of thelass. On the other hand, in the single coupled scenario,
two transitions in this order. Also, there are significant nu-where the critical dynamics involve strongly coupled phase
merical evidences from equilibrium calculations which favorand chiral variables, the resistive behavior should be signifi-
this scenario. However, the coupled single transition scenarigantly different. In principle, such behavior can be detected
has also received some support from different calculations gtxperimentally. ) _
the chiral critical exponents and central charge from finite- Measurements of current-voltage curves in FJJA were fit-

size scaling which show results different from the pure Isingi€d assuming pure KT behavid?but either an unexpectedly

values, but several of these studies do not verify if the tranlOW value of the transition temperatuteompared with the-

sition temperature for phase-coherence coincides with tharetical expe(r:]tatioer/\_/as obtain%d_ inhone ﬁa%er t%?\/ll_v
chiral transition temperature. On the other hand, the numerﬁXponﬂentﬂ:’]itt e trart15|t|(|)tn was<3int egg;hgr' caselvore

cal evidence for the separated transitions scenario finds thé%iii?] gy’net?/v glrjlig%nw_evrg %guengutrc\)/ebselrgetter dlgsscL:iFl))eergobn; a
Fhe phase-coh_erence transifibis consistent W'th. KT behav_— power-law correlation length. However, very different values
ior but the critical exponents found for the chiral transition

SO . - of the critical exponentg, v were obtained in each case.
by finite-size scaling do not show the expected pure ISNg" g5 jier numerical studies of the-V characteristics for

behavior e}lccording to Ref. 23. However, |t has been fou.nq:JJA, obtained with RSJ dynamté$* or MC dynamics®

by O!ssoﬁ that the value of the thermal crlthal exponent is \yare performed for small system sizés< 16). In particular,
consistent with the pure Ising value depending on the temgg stydies with RSJ dynamics used free boundary conditions
perature region in which a fit is made. Therefore, the deviay impose a driving current. This leads to significant addi-
tions of the exponents from pure Ising values cannot be regional dissipation due to boundary effeésspecially in
garded as an unambiguous evidence for non-Ising criticamall system sizes. Other works have studied the short-time
behavior. The separated transition scenario also relies on thnamics of chirality?* and the nonequilibrium transitions at
assumption that the phase-coherence transition is pure Klarge currents’

and therefore uses some of the predicted behavior from the Recently?® we have studied the critical dynamics and re-
KT theory, like the helicity modulus jump or exponentially sistivity scaling in FJJA by numerical simulation of the RSJ
divergent correlation length, to locate this critical tempera-dynamics with periodidfluctuating twisi boundary condi-
ture. If the helicity modulus jump is actually larger than thetions including much large systems sizes. It was found that
universal value then the procedure of locating the criticalthe current—voltage scaling is consistent with the single-
temperature from the jumpcan only overestimate the criti- transition scenario. The scaling behavior is well described by
cal temperature. Although this assumption is consistent witka resistive transition occurring at a critical temperature cor-
a phase-coherence critical temperature below the chiral tramesponding to the chiral transition, with a power-law diver-
sition, such a procedure could result in an underestimate afent correlation length, but with two different dynamic ex-
the phase-coherence critical temperature if the transitions cgonents,z,,~1 andz;,~ 2, for phase and chiral variables,
incide or the chiral transition occurs below the phase-respectively. This result implies that, at the transition, the
coherence transition. In fact, it has been shown that if on@xponent of thé—V power-law,V—I?, is a=z,,+ 1~ 2 rather
enlarges the parameter space of the FXY mids} consid-  thana=3 as for the unfrustrated case. In view of the possible
ering a model where every other column in the square latticelependence of the dynamic behavior on the particular RSJ
has coupling constants which differ from the others by adynamics used in these simulations, it should also be of in-
constant ratig, the chiral transition occurs below the phase-terest to study the resistive behavior with an on-site dissipa-
coherence transitiGRif p is sufficiently different from 1. It tion model for the dynamics. Results for this dynamical
is then found that there is a singular contribution to the temmodel should be particularly relevant for frustrated wire
perature dependence of the helicity modulus near the chiraletwork$ or proximity-effect junctions.

transitior® determined by the chiral critical exponents. For  In this work we study the resistivity scaling and critical
the standard FXY model, obtained wher- 1, such singular dynamics of a frustrated Josephson-junction array, defined on
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square lattice, at=1/2 flux quantum per plaquette, by nu- A y=0. (5)
merical simulations of an on-site dissipation model for the ) » )
array dynamics. Using a dynamic scaling analysis, we findn this gauge, the boundary condition for the phases in a
that the resistivity behavior and critical dynamics are wellSyStem of size. XL is given by

described by the critical temperature corresponding to the f(n,+L,ny) = 6(n,n,)

chiral (vortex-lattice transition with a correlation length that oy Xy
diverges as a power law. Two dynamic exponegig;- 1.5
andz,,~ 2.5, are found for phase coherence andqéhiral order, (nny + L) = 6(n,ny) — 2mfln,. (6)

respectively. Consequently, at the transition, the exponent gfor f=1/2 andL even, the second condition is irrelevant, but

the current-voltage power-law/—I? is a=z,,+1~2.5 ot for general frustratiori. In the presence of an external

rather thara=3 as for the unfrustrated case. This is the samerrent I“, in the u direction, one has to add the term

behavior we have found recently for the RSJ métieut ~(fi/2¢)L21% a, in the Hamiltonian of Eq.(1), which

with different values for the dynamic exponenfZy,  couples the current with the global phase difference per row,
~0.91) and z;~2.1]. Including on-site dissipation in the | , " introduced by the fluctuating twist. Therefore, the

dynamical model could be a more realistic description Ofamiltonian of a frustrated square array with fluctuating
wire networks than the RSJ model. Indeed, resistivity scalingyist houndary conditions and an external current is

of experimental data on wire netwofkénd z~ 2, which is

consistent with our estimatg,, within the experimental er- _ PN
rors, and also shows that the resistivity scaling is well de- 't~ EJrE COL by = O = Ayt ) = 26" 2 1ty
scribed by a power-law correlation length as found in our H a

simulations. ()
We define the on-site dissipation dynamics by considering
Il. MODEL AND SIMULATION the local Langevin equations for the fluctuating varialdes
and a,,;
The Hamiltonian of a square two-dimensional array under g
a magnetic field is given by do, oH
— =Ty~ +n(), (8
dt 86,
H==E;2 o6, — 0 —A,), (1)
r
) day, _
where 6, is the superconducting phase of the grain at site dat _Fag +7,(0), (9)

=(n@a,na) with n,, n, integers, anda the lattice constant, a

andu=x, y with x=(a,0), y=(0,a), andE;=Iy%/2e the Jo- Wherel'y, I, are dissipation parameters, and the noise terms
sephson energy. The magnetic field introduces frustratioh@ve zero average and correlations

through the vector potential integral , ,
? b ? O 7(1) = 2€gTT6, 3t -1), (10

20 [TH#
A ”f A-dl, 2)
r

= (O 7 (t)) = 2KgTT o8, 8t =), (1D)

The dissipation constart, should be proportional th™2 in
order to be an intensive quantity. A convenient choice is

which satisfies

A,u X Ar,,u:Ar,x_An+y,x+Ar+x,y_Ar,y Fg
= 2af, 3 Fe=12

with f=Ha?/®,, whereH is the applied magnetic field and (in general it can b& =BT ,/L2, here we choosg=1 to be
®y=h/2e is the quantum of flux. The fully frustrated case consjstent with Ref. 12

corresponds to half quantum of flux per plaqueteel/2. pimensionless quantities are used with time in units of
The simulations are performed with the same f|UCtuat|ngT:28/hF9|0, currents in units ofl,, voltages in units of

twist” boundary conditions as used, for example, in Refs. 11(ﬁ/29)2p€|0 and temperature in units dfly/2eks. A total

39, and 40. This consists of considering periodic boundaryrrent| is imposed uniformly in the array in thedirection

conditions for the supercurrents in thedirection while add-  \yith current densityd=1/L, whereL is the system size and

ing a fluctuating twiskr, to the gauge invariant phase in the the average electric fiele is obtained from the voltag¥

w direction. In this case the gauge invariant phase differencgcross the system &= V/L=(#/2€)(day/dt), wherea,L is

is modified to the global phase difference or twist in tigedirection. With
all this considerations, the dimensionless equations of mo-
= - - + . X !
O = Oren™ b = Aty @) tion are then
For the vector potential we choose the Landau gauge 46
r
—=-A,- + 7,(1), 12
Ar,x:_277fnyy dt s Sr,,u 77r() ( )
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d_“& 1 The earlier assumption$)—(iii ) for the on-site dynamics
at FE St 10uy+ ), (13)  give a consistent interpretation of calculations of the current—
' voltage response and phase dynamics, but correspond to a
where the supercurrent is defined by model system rather than to a particular JJA available experi-
) mentally. In realistic JJA the normal currents in the junctions
Su=sinb =0 —A L+ @), can not be neglected since usudly<R,, and therefore the
and the discrete divergence operator is defined as RSJ model can be a good representation of the JIA. A pos-
sible realization of the dynamics of Eq8) and(9) could be
A,S,= > S~ S-uu- achieved experimentally if one adds on purpose a resistor in
=Xy parallel to the whole array such that it has a resistance

Ryioba<Rs, In which case normal currents will mainly go
throughRyn, and reduce the weight of the normal quasipar-
ticle currents of the junctior®.
(), (t')=2T6 /8t - 1), (14 A good candidate for the on-site dynamics is a supercon-
ducting wire network. In this case one has to take into ac-
T count the dynamics of the complex order parameter which is
(7,0 7,,(t"))= F&,W,&(t—t). (15  given by the time dependent Ginzburg-Landau equation
(TDGL) coupled to the electromagnetic field equatiéfrs?
The set of Eqs(8) and(9) describe the dynamics of JJA There are two dissipative mechanisms in this céiseia the
with “on-site dissipation” in contrast to the RSJ dynamicsnormal state resistivity, since the total current is the sum of
which only considers dissipation through the junctibh§he  the supercurrent and the normal current in each wire of the
on-site dissipation dynamical model has been studiedietwork this is the equivalent of the shunt resistance of the
previously:11124%or the unfrustratedf=0) case and com- RSJ model in a JJAand(ii) via the relaxation of the com-
pared with the RSJ dynamics. Their main difference is thaplex order parameter in the TDGL equations, which is local
while the on-site dynamics corresponds to a local dampindn naturé® and where its dominant contribution is deter-
the RSJ dynamics corresponds to a nonlocal damptad. mined byD, the normal state diffusion constant. After writ-
physical interpretation of the on-site dynamics for JJA ining the TDGL equations in a discrete lattice, and neglecting
terms of currents and voltages has also been discusséde fluctuations of the amplitude of the order parameter
previously®111240|ts main features are summarized in the (London limit), one obtain® that the on-site part in the dy-
following. (i) It takes into account normal current flow be- namics of the phase is provided By and would correspond
tween each superconducting node and the substrate, whié@ Ed.(8) with I'y;=167"D\?/ (P5aS), wherea is the network
leads to a current leakage through a resistance to the groufi@itice constant and the section of the wires. Therefore,
Ro- (i) It neglects the quasiparticle normal current of eachthere is no need to invoke a “leakage of normal current to the
junction, which is associated with a shunt resistaRgeThis ~ ground” in this case. The full dynamics of the superconduct-
means takingR,— , or actually assumingR;>R, for the  ing wire network is a mixture of both the “on-site” dynamics
array. The assumptiong) and (ii) lead to Eq.(8) for 4, and the “RSJ” dynamics. However, in the presence of an
which corresponds to the conservation of supercurrents an-site contribution, the resulting rate of change of the
each node plus a leakage of normal current to the substratehases at different sites, like E@), does not have a loga-
In this case we get rithmic nonlocal dependence at large separations as in the
B 5 pure RSJ modéf
I'y= (26/1)Ry. In any case, in the present work, we will take the purely

However, if one considers E(B) alone for the calculation of ©n-site dynamical equations as a model dynamics that corre-
current-voltage curves with open boundary conditions it isSPonds to a limit of the general dynamics of a JJA or a
found that an applied external current leads to dissipatiofuperconducting wire network where only local dissipation is
only at the boundaries were current is injectedtracteq, taken into account. The opposite limit for the dynamics is the
since normal current will flow directly from the firgtasy ~ Pure RSJ model that we have analyzed in Ref. 38.

row of junctions to the substrate througg.** Strictly peri- We integrate the dynamical equations with a second order
odic boundary conditions are not possible to be implementeRUnge-Kutta-Helfand-Greenside method with time sfep

in a consistent wayiii) In order to correctly model current- =0.01-0.0%, averaging over, typically, ftime steps after
voltage curves and to be able to implement fluctuating twist'Sing 5x 10° time steps for equilibration. The results were
periodic boundary conditions, one has to Hd a global ~averaged over 5-10 different initial configurations of the
normal current channel in parallel to the whole array, with aPhases and system sizes ranging from8 to L=180 were
“global resistance’Ryqq, SUCh that in the normal state the considered.

total resistance of the array will be given By, Then

total conservatlon_of (_:urrent leads to H§) which repre- 1. DYNAMIC SCALING THEORY

sents a parallel circuit of the average supercurrent in the

array and the global normal current. In the approach of Refs. Near a second-order phase transition, the diverging corre-
11, 12, and 4®Ry0na= Ry is assumed, and therefore this leadslation length¢ leads to critical slowing down characterized
to the choicel’,=(2e/#)?R,/L>. by relaxation timesr that also diverge approaching the tran-

Finally, the now dimensionless noise variablggt) have
correlations
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sition temperature. The dynamic scaling hypotH@sisserts F R ' T
that measurable quantities should scale with the diverging C L=180
correlation lengthé and the relaxation time« &, near the L nd
o : : o oRERZEE™ —O0— T=0.48
transition temperature, wheemeis the dynamical critical ex- L L DD-D-E'B—B' i
ponent. A general dynamic scaling theory for the resistivity 10 E nﬂggoo.oj@e g —O T=047 3
behavior near a superconducting transition has been provided P 0° AAA,V/O;% */ A T=0.46 3
by Fisher, Fisher, and Hu$é.According to this scaling [ AAAA/VVX’O"'X —V— T=0.455 1
theory, the nonlinear resistivifig/ J should satisfy the scaling 4 . —O—T=045
E v /
form 102 F ¢ / / —+— T=0.446 -
E X —X— T=0.44 ]
E_ . (4 [ ¢+ —%— T=0.43
Tj_g_gi ?g (16) C el L el NN
, , , 10 107
in two dimensions, where the and — correspond to the J

behavior above and below the transition, respectively. For a
transition in the KT universality class, the correlation length
should diverge exponentially ag«expb/|T/T,-1/*?),
above T.. Otherwise, for a usual continuous transition, a ) o .
power-law behavior is expecteds |T/T,~1/%, with an ex-  time correlation for chiralitiesC.(t) and phase variables
ponentr to be determined. Thus, a scaling plot according toCpr(t). We shall use normalized time correlation functions
Eq. (16) can be used to verify the dynamic scaling hypoth-defined as
teiilns. and the assumption of an underlying equilibrium transi co - w
The scaling form of Eq(16) does not take into account (A2 = (A)?
finite-size effects and so it is valid only in a range of tem- . - -
peratureT and current densitie3 where syuch effec?s are not Eor the. phase varlablesl, A:SZ.EiS"" _wrlere N
dominant. Finite-size effects are very important sufficiently‘[cos(a)'S'r(e)] and for the chlra_l varlabIeS\—X—E<ij>(0i
close to the transition when the correlation lengtteaches ~~6~Ajj)/2m, where the summation is taken over the el-
the system size. In particular, afl,, the correlation lengtlj ~ €mentary plaquette of the lattice and the gauge-invariant
will be cutoff by the system size in any finite system. From Phase difference is restricted to the interyatr, 7]. The
Eq. (16), the nonlinear resistivity &k, should then satisfy the relaxation timer can be obtained from the exponential decay
scaling form C(t)cexp(-t/7) at sufficiently long times. In general, the
time dependence of(t) can be expressed as a series of
TE - L—zg(£L>_ (17) exponential terms with the largest decay time corresponding
T to the critical relaxation time of the long time dynamfés.
From dynamic finite-size scaling, the relaxation time should
scale afT; as 7« L? from which thez can be estimated from
Mhe slope in a log log plot. An alternative procedure to esti-
matez from equilibrium dynamics is to explore the expected
R L7 (18) finite-size behavior of the time correlation functions at long
] ) o times. Since afl,. the relaxation time scales as<L? the
right at T.. This behavior is independent of the form of the {ime correlation function for different system sizes can be

correlation length divergence. The linear resistance can bgast into a scaling form in terms of the dimensionless ratio
obtained from the Kubo formula of equilibrium voltage fluc- ¢, z 55

tuations as

FIG. 1. Nonlinear resistivityg/J as a function of temperature
for system sized.=180.

(21)

It follows from Eq. (17) that the linear resistancB®.
=lim;_ E/J should decrease as a power-law of the syste
size

1 C(L,t) = C(t/L?) (22)

R =— | d{V(t)V(0 19 ~
- ZTJ (VOVO) (19 where C(x) is a scaling function. However, this assumes a
simple scaling form for the time correlation functions and is

without an imposing driving curren®_ can also be deter- only valid for sufficiently long times when a single exponen-
mined more accurately from the long-time fluctuations of the, y ylong 9 P

total phase difference across the syst#ft)=La, agd24l tial term describes the relaxation behavior.
o

1
- A6(t) - AG(0)]P), 20 IV. RESULTS AND SCALING ANALYSIS

Figure 1 shows the temperature dependence of the non-
valid for sufficiently long timed. linear resistivityE/J for the largest systems site=180 near
The critical dynamics leading to the resistivity scaling de-the chiral transition temperatur&,, estimated previously
scribed earlier can also be studied by the behavior of timérom equilibrium Monte Carlo simulatiotf, T,=0.455.
correlation functions. For the frustrated JJA, there are twdQualitatively, the linear resistané® =lim;_o E/J, tends to a
different types of time correlations of particular interest, thefinite value at high temperatures but extrapolates to very low
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FIG. 2. Linear resistanci_, obtained without current bias, as a
function of temperature and system size. Lines are just guide to the FIG. 3. Scaling plot of the nonlinear resistivity data for the
eyes. smallest current densities negg=Tg=0.455 with &oc [T/ T— 1|7

. . . QOpen symbols correspond to=128 and filled ones t =180.
values at lower temperatures, consistent with the existence of

a resistive transition in the range 049.<0.46. In the L .
double transition scenario, where the phase-coherence trap@Me data collapse and so finite size effects neglected in the

sition is expected to be in the KT universality class, theSCaling form of Eq.(16) are not dominant for the range of
estimate of the proposed KT critical temperature Tigr temperatures and current densities shown in the plot. Similar
=0.446, from Monte Carlo simulatiodwhich is close to scaling analysls assuming a KT correlatlon_ length and fixing
T, However, as it is clear from the behavior at the lowest!c @t the estimate offy; does not result in a good data

currents in Fig. 1, this estimate is below the resistive transi¢0!lapse. The same behavior was found using the RSJ

tion since the resistivity curves foF=T.=0.446 andT  dynamics®® From this scaling analysis, we estimate
=0.45> Ty tends to zero fod— 0, indicating that the sys- :0'9(1) and the Qynamlgal C”t'cal exppnent 1.33). The.
tem is still in the superconducting phase for these temperaStatic exponent is consistent with estimates of the chiral
tures. On the other hand, the resistivity curve Tox0.46 transition from equmbrlym Monte Carlo simulatiofisbut
>T,, clearly tends to finite resistivity fod— 0. This shows the accuracy is not sufficient to rule out the vaiwrel ex-
that the resistivity transition occurs &, or at a temperature Pected for the standard Ising transition. Our estimate isf

very close taT, rather than at the proposed estimatelgf. smaller than _the one obtained pre\(iously for the frustrated
Additional support for a resistivity transiton at,, XY model with MC vortex dynamic8 where z~2 was

=0.455 is provided by the behavior of the linear resistivity found. However, such MC simulation corresponds to a dif-
R, as a function of system size, shown in Fig. 2. For ferent dynamics and also only very small system sizéth
>0.455,R_extrapolates to a finite value consistent with theL=8—14 were analyzed. We now take into account finite-
behavior of the nonlinear resistivity fat—0 in Fig. 1. On  Size effects explicitly by studying the scaling behavior of the
the other hand, folf <0.455 it extrapolates to zero, indicat- linear resistivityR, nearT in Fig. 2. At T, the linear resis-
ing that the resistive transition temperature is compatibldVity should scale with system size according to Eg).
with the estimate of,=0.455. Since in this calculatiog, ~ N€ar T, it should also depend on temperature through the
is obtained without any current bias, from the equilibrium dimensionless variable/¢. If the correlation length diverges
dynamical fluctuations, according to E49), this result also  8S & power law then it should satisfy the finite-size scaling
verify that theT, inferred from the behavior of the nonlinear form

resistivity for the largest system size in Fig. 1 is not an arti- R LZ=f[(T/T. - YLY]. (23)
fact of finite current bias and in fact reflects the underlying - ¢
equilibrium transition behavior. In fact, as shown in Fig. 4 the linear resistivity data satisfy

Although the resistivity behavior of Figs. 1 and 2 alreadythe scaling form withT.=T,, and a valuez=1.52) consis-
suggest that the resistive transition temperature coincideent with the estimate from the nonlinear resistivity scaling.
with Tg, or it is much closer to this value than previous The earlier scaling analysis for the nonlinear resistivity at
estimates, we now proceed, as in any study of critical phelarge system sizes and linear resistivity at smaller system
nomena, to obtain the asymptotic equilibrium critical behav-sizes already confirm that the resistive transition temperature
ior in the thermodynamic limitL—c and J—0, from a  T.is very close tdl, with a dynamic exponert<2. How-
scaling theory. A scaling plot according to E@6) is shown ever, in the absence of a completely satisfactorily determina-
in Fig. 3 for the largest system sizes, in the temperaturdion of T from static critical behaviotd-21:24from now on,
range closest td., and smallest current densities, assumingwe will assumeT =T, and explore to which extent this give
the correlation lengthé has a power-law divergence with us consistent results for the dynamical critical behavior, in-
T.=T., and usingr andz as adjustable parameters so that thecluding finite-size effects. Another reason to assume the
best data collapse is obtained. This scaling plot shows thatalue of T, obtained from equilibrium simulations rather
the two largest system sizds=128 andL=180 give the than estimating from the dynamic scaling itself is that, in
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FIG. 4. Finite-size scaling plot of the linear resistance data near 10’

T,=Tey=0.455.

general, the most reliable way of studying critical dynamics
and determine the dynamic exponenis to use the known
value of T.. This is true not only for models wherg, is
known exactly as for the two-dimensional Ising m&ddlut
also for models wher&, is only known by numerical simu-
lations as for the three-dimensional Ising motfel.

An alternative estimate of can be obtained from the
nonlinear resistivity by studying the expected size depen-
dence afT.. As shown in Fig. 5, a finite size scaling accord-
ing to Eq.(17) gives the same dynamic exponent1.4(3),
within the estimated error bar. The same behavior was als
observed using the RSJ dynaniftbut with a smaller value
of z. Equilibrium calculations of the linear resistanBg at
Ten also give a consistent estimate. Figure 6 shows the finite
size behavior oR_ obtained from Eq(18). A power-law fit
gives z=1.41(5) which agrees with the other estimates and
suggests therefore that the valuezaforresponds to the un-
derlying equilibrium dynamical behavior. To show the reli-
ability of this method, it is also included in Fig. 6 the behav-
ior for the unfrustrated casé=0. In this case the resistive
transition is in the KT universality class and a dynamical
exponentz=2 is expected, independent of the dynamics. In-
deed, forf =0, the same power-law fit at the critical tempera-
ture T,=0.887 estimated from Monte Carlo simulatighs
givesz=1.965), in good agreement with previous resistivity
calculationd? for f=0 using smaller system sizes up lto

=16.

It should be noted that our earlier estimate of the dynamic 1.0
exponent is obtained by requiring thaft,, z, andv satisfy at
the same time the finite-size scaling forms of Ed3), (18),

|:||:I|:|I:| |

o< boOoXO
-l_l_l_l_l_l_

<><><><> ]

10°
JL/T

FIG. 5. Scaling plot of the nonlinear resistivig/J at T.=T.,

=0.455 for different system sizes

FIG. 6. Linear resistance as a function of system size at the
critical temperaturesl =T, for f=1/2 and T,=0.887 for f=0.
Power-law fits give estimates of the dynamic exporent

and(23), including small system sizes, as well as the scaling
form of Eq.(16) for the largest system sizes. Using only Eq.
(16) can lead to inaccurate estimateszads shown recently
in Ref. 53 for the unfrustrated case.
To further verify that the estimate afobtained from the
resistivity scaling does in fact reflect critical phase fluctua-
tions near the transition rather than just critical fluctuations
r the chiral order parameter, we have also performed equi-
librium calculations of the phase autocorrelation functions
Co(t) for the phase variables and.(t) for the chirality
variables. Figures 7 and 8 show the finite-size behavior of
the time correlations functions evaluated at the critical tem-
peratureT,, If this temperature corresponds to the critical
point for phase coherence and vortex-lattice disorder then the
relaxation times for both phase and chirality variables should
diverge with the system size as L% The relaxation timer,,
and, can be obtained from the exponential decag(f at
sufficiently long times. We take into account possible contri-
butions from short time behavior by fitting the time depen-
dence ofC,(t) andC(t) to a sum of two exponentials and
extract 7 from the largest decay time. Figure 9 shows the
finite-size behavior of the relaxation time at, for the
phases and chiralities. From a power-law fit we obw@jn

L=8 .
08 s e L=12 o
————————————— L=16
06 H VN Tl L=20 A
= L=24 i
o
04\ e e T -
0.2 e _
0.0 . e W P D T
0.0 20x10°  4.0x10°  6.0x10*  8.0x10°  1.0x10°

t

FIG. 7. Time correlation functio€(t) for the chiral variables
at T, for different system sizes.
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FIG. 8. Time correlation functioﬁ:ph(t) for the phase variables
at T, for different system sizes. FIG. 10. Finite-size scaling plot of the time correlation function
Cch(t)-

=1.811) from the phase relaxation tims,, which is indeed

consistent, within the estimated error bar, with the valug of correct values for the dynamic exponentusing approxi-
obtained from the resistivity scaling discussed earlier. Thénate analytical expressions for theV characteristics avail-
estimate from the chiral relaxation time in Fig. 9 is signifi- able in the literaturé. We should emphasize that our
cantly different,zy,=2.52). For an alternative estimate af ~@pproach for the resistivity scaling analysis described in the
we have also used the scaling of the correlation functiorPr€Vious section is quite different. Our estimate of the dy-
itself. The time correlation functions should satisfy the scal-"@miC €xponent is obtained by requiring thak,, z, and »

ing behavior of Eq(22). As shown in Figs. 10 and 1C(t) satisfy at the same time 'Fhe finite-size scall_ng forms of Egs.
andC,(t) indeed satisfy the expected finite-size behavior af1?); (18), and(23), including small system sizes, as well as
the critical temperature providing additional estimates of thdh€ scaling form of Eq(16) for the largest system sizes. It
dynamic exponents,,=1.92) and z,=2.62) which are s_hould also b_e_ considered th_at_ the possibility of an _equmb-
consistent, within the estimated error bar, with the valued'!™ KT transition forlel 2within the sgparated transitions
obtained from the relaxation time scaling. Finally, abdye scenario does not imply that the dynamics would be the same

the relaxation time should depend both on system size an thg KL cri1ynarr;|h05 and therelf.orbel for tr;et_er:strated case
temperature. If the correlation length diverges as a power lqgonSIdered nere there 1S no refiable analytical expressions

then and 7., should satisfy the finite-size scaling form availabl_e for theI—V characteristics_. The dynamics_ fcﬁr
Tph Ten fy 9 =1/2 will be different because besides vortex excitations,

L 2= f[(T/T, - D)L]. (24)  chiral domain walls also contribute to the nonlinear resistiv-

ty as shown in Ref. 33. Moreover, it has already been shown

In fact, the data collapse in Figs. 12 and 13 show that thi% A S L
L : e e or the f=0 case that, when finite-size scaling is taking into
scaling form is satisfied witfTc=Te, and the values ofy, account in the resistivity scaling theory of Fisteral,*® as

and 7, which are consistent with the above estimates. . ;
we also do in our approach, the correct dynamic exponent
V. DISCUSSION z=2 is obtained for the KT transition, as shown for example
in Ref. 12. This is also verified in the scaling analysis of our
data as shown in Fig. 6, where we find a dynamic exponent
consistent withz=2 for f=0, as expected.

Recently, Holzeret al53 showed that for the unfrustrated
case,f=0, the scaling behavior in E¢16) considered alone,
i.e., without taking into account finite-size effects, yields in-

10° 10° F T T T T T T T 3
T A 5 T
L O phase ] L ]
I A chiral ] - -
o | Q/A/ z,=25(2) oL _ 2,=19 |
E L=8 T ]
10* 3 s gpal E = [ e ]
T e ] e oo L=12
e BTz —18(1) ] E L16
3 - E -2
" ] 10°F o Le20 E
10° o S N S L=24
10’
L 103 1 | |
L . . . 2 4
FIG. 9. Finite-size behavior of the phase and chiral relaxation 0 0 t/ L2 0 60
times, 7, and 7y, respectively, at the critical temperatufg=Tgp,
Power-law fits give estimates of the dynamical exponeptsand FIG. 11. Finite-size scaling plot of the time correlation function
Zeh: Cph(t)
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R T T T T TABLE |. Dynamic exponents of the resistive chiral transition at
. Teh using the on-site dissipation modéIDGL) and resistively-
= - 2.55 - :
oA 2o = e shunted-junction mod¢RSJ. The superscript® andC correspond
10' b (Y a v=09 . to results obtained from the resistivity scaling and time-correlation
C O L-8 A% : function scaling, respectively.
f O L=12 ]
K A L=16 & 1 RSJ TDGL
L=20 A
S o Vo oo Zon 11(1)C, 0.9DR L8(1)°, LADR
Zeh 2.(1)° 2.52)¢
100 Ll 1 1 L1l
10" 10°

results from the competition of a chiral order parameter and
phase variables. Although earlier work for this problem con-
FIG. 12. Finite-size scaling plot for the relaxation timg, cluded for a spin-chirality decoupling pictut&more recent
numerical work have provided strong evidetidiat there is
The distinct values obtained fag, and z;, with the on-  a single transition at which both phase variables and chirali-
site dissipation model deserve some considerations. Similafes order.
behavior was also found by us using the RSJ dynaffics.  Although the single transition scenario provides a consis-
The final results for both models, obtained from the resistivtent interpretation of our data, it is worth emphasizing that
ity scaling and time-correlation function scaling analysis, arehe alternative separated transitions sces&riannot be
summarized in Table I. Although for the on-site model, theruled out. We believe, there are two possible explanations for
two methods give results faz,, which differ beyond the some of our findings within the later scenario, as discussed
estimated error bar, the values are significantly below théelow.
value obtained forg, Naively, if the two transitions happen It is possible that the KT transition is actually much closer
at the same temperature, one would expect that the same T, than estimated previously and so the transitions cannot
dynamic exponent should hold for the phase and chiral rebe resolved within the accuracy of our data. Our analysis of
laxation times. However, we should mention that differentthe resistivity behavior suggests that in this case it should
dynamic exponents for coupled order parameters have abccur abovel,~ 0.452. This value is already close or within
ready been found previously at multicritical points in mag-the range of the error bars reported for the chiral transition
netic systems? This suggests that a possible explanation forcritical temperature obtained, for example, by Monte Carlo
two dynamic exponents at the transition of the FJJA may relysimulations which gived,,=0.4552) (Ref. 19 or 0.4542)
on the existence of a multicritical point in the phase diagramRef. 23. It should be noted, however, that this only consid-
of the relevant effective Ginzburg-Landau free energy deers the critical temperatures alone and not the critical behav-
scribing the transition. A multicritical point is known to oc- jor. In the alternative decoupled single transition scenario,
cur in the coupledXY-Ising modet® which should describe  the critical behavior should be described by a superposition
the static critical behavior of the FJJA and this could be aof a pure KT and pure Ising transitions at the same critical
useful framework for investigations of the dynamical univer-temperature. However, this is also not consistent with our
sality class of FJJA. In the context of superconducting sysresults. Nevertheless, even if the transitions are so close that
tems, different dynamic exponents for the resistivity andtheir critical temperatures can not be resolved by any
chirality have also recently been found in the resistive tranmethod, in principle, it could still be possible to distinguish
sition of disordered superconducttrsdescribed by the these scenarios due to the mechanism discussed in Ref. 28 or
three-dimensionaXY spin glass model.56 Just as in the casedue to the effects of different corrections to scaling.
of the frustrated JJA, the phase transition inXYéspin glass A second possibility is that the dynamic scaling theory of
Fisheret al*3in its original form in Eq.(16) is not valid for
the present case and should be enlarged to include the inter-
play of two divergent length scales at nearby temperattires
O o AN vi ey a Vo009 1 which can lead to crossover effects at small length and time
A@ A ' scales. In fact, the underlying assumption in the resistivity

TT,-HL"

scaling theory is that there is a single divergent length scale,

5 g Lo12 v<> ] corresponding to the leading divergent contribution to finite
o A L6 ] correlation lengths, when approaching the critical tempera-
o V L-20 tu_re_of the resistive t.ransition. This would qertain!y b_e valid
O Looa within thg coupled smglg transition scenario, which is con-

sistent with our conclusions since in that case phase coher-

100 L e e N ence and chiral order develop at the same critical tempera-
10" 10° ture, with strongly coupled order parameters, and the

(-1 L equilibrium critical behavior should be described by a single

divergent length scale. Above the transition, in the disordered

FIG. 13. Finite-size scaling plot for the relaxation timg, phase, the chiral and phase correlation lengths diverge when
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approachingl; with a common leading divergent contribu- and critical dynamics are well described by the critical tem-
tion. Below the transition, where there is chiral order and aperature corresponding to the chifabrtex-lattice transition
Gaussian fixed line is expected for the phase variables, th&ith a correlation length that diverges as a power law. Two
chiral correlation length diverges when approachlagvith ~ dynamic exponentsz,,~1.5 andzy~2.5, are found for

the same leading divergent contribution while the phase coPhase coherence and chiral order, respectively. Consequently,
relation length remains infinite since the Gaussian fixed linét the transition, the exponent of the current-voltage power
corresponds to the absence of a length scale. However, W, V=17, is a=2z,,+1~2.5 rather thara=3 as for the un-

phase coherence and chiral order develop at different tenftustrated case. The same behavior has been found recently

peratures then the resistivity scaling can only hold suffifor the resistively shunted-junction moé&but with differ-

ciently close to the phase coherence transition otherwise et values for the Qynamic exponerig,~0.91) and z, .
scaling form of Eq.(16) should be enlarged to include the ~2.1]. One implication of these results for transport experi-

divergent chiral correlation length in addition to the phasements is that the usual method of locating the critical tem-

correlation length. This would lead to a scaling function perature from the value corresponding to a nonlinkay

a.(x.y) in Eq. (16) depending on two scaling variables gxponema:S, may lead to gsig_nificant underr—_:stimate. This
+ ’ is more severe for tunnel-junction arrays which should be

=Jér/ T andy =&/ cr, which makes the scaling analysis of petter described by the resistively shunted-junction métel,
the data very complicated specially when taking into accounfyhere we expeca~2 at the resistive transitiof. For wire
finite-size effects. This could explain, for example, why apetworks the on-site dissipation model should be more ap-
good scaling collapse like Fig. 5 is not obtained by assumingyropriate. Indeed, resistivity scaling of experimental data on
a resistive transition alt.= Ty, estimated by previous works. wire networks find z~ 2, which is consistent with our esti-
However, it would remain unclear to us in this case why themate ofz,, within errors. It also shows that the resistivity
linear and nonlinear resistivity scaling as well as the criticalscaling is well described by a power-law correlation length
dynamics including different temperatures and system sizeas found in our simulations. Further detailedv measure-

are so well described by a resistive transitiongt T, ments combined with magnetic properties, which could in
principle probe the chiral transition, are needed to test our
VI. CONCLUSIONS results.
We have studied the resistivity scaling and critical dynam- ACKNOWLEDGMENTS
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