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Abstract. In a model drift wave system that is interesting
both in fluids and plasmas, we find that an embedded mov-
ing saddle point plays an important role at the onset of turbu-
lence. Here the saddle point is actually a saddle steady wave,
in its moving frame the wave system can be transformed into
a set of coupled oscillators whose motion is affected by the
saddle steady wave as if it is a potential. It is found that
a collision with the saddle point triggers a crisis, following
the collision another dynamic event occurs which involves
a transition in the phase state of the master oscillator. Only
after the latter event the spatial regularity is destroyed. The
phase dynamics before and after the transition is further in-
vestigated. It is found that in a spatially coherent state before
the transition the oscillators reach a functional phase syn-
chronization collectively with or without phase slips, after
the transition in the turbulent state an on-off imperfect syn-
chronization is established among the oscillators with long
wavelengths. When the synchronization is on, their ampli-
tudes grow up simultaneously, giving rise to a burst in the
total wave energy. A power law behavior is observed in the
correlation function between phases of the oscillators. Poten-
tial application of our results in prediction of energy bursts in
turbulence is discussed.

1 Introduction

Turbulence can be observed in systems of very different in
scales and properties, which is an important topic in a variety
of disciplines (Frisch, 1995). In the sun and other stars, flares
and electromagnetic emissions are observed, it has been sug-
gested that, e.g. solar flares are caused by nonlinear dynamics
of solar plasma turbulence (Boffetta et al., 1999). In our en-
vironment, e.g. in space, oceans and atmosphere, turbulence
is often encountered, which impact on human lives for thou-
sands of years. In biological systems turbulence may play an
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active role, e.g. brain dynamics is turbulent when it is awake
(Kandel et al., 2000).

In contrast to wide awareness of turbulence, people knew
little about its mechanism until recently when great progress
has been made in the investigation of nonlinear dynamics.
A great deal of experimental evidence has been found that
strengthens the confidence that turbulence can be understood
on the basis of nonlinear dynamics. Some scenarios to chaos,
e.g. period-doubling, Ruelle-Takens route as well as inter-
mittency, have found supports from experimental and theo-
retical investigations (Lichtenberg and Lieberman, 1983; In-
feld and Rowlands, 1990; Eckmann, 1981; Swinney, 1983;
Biskamp and He, 1985; Klinger et al., 1997). This progress
encourages scientists to further study turbulence in spatially
extended systems. In this area abundant phenomena, such
as various space-time patterns, solitons, weak and strong tur-
bulence are not yet fully understood and worthwhile to be
explored (Cross and Hohenberg, 1993; Bishop et al., 1983;
Chat́e and Manneville, 1987; He and Salat, 1989; Chian et
al., 2002). In this paper we will present some results of our
investigation on dynamics of nonlinear waves, the attention
will be focused on the questions as what causes a spatially
regular wave to transit to a spatiotemporal chaotic wave or
a turbulence. In our discussion effect of a saddle point and
phase dynamics will be emphasized.

What is a saddle point in a spatially extended system?
How did we realize that it may play an important role at
the onset of turbulence? Our conjecture on the role of sad-
dle point in turbulence arises from a very interesting phe-
nomenon in some experimental and numerical observations:
a link seems to exist between chaotic or turbulent waves and
hystereses (Nakatsuka et al., 1983; Sun et al., 1995; Chern
and I, 1991; Foss et al., 1996; Kim et al., 1997; He and
Salat, 1989). We have studied several nonlinear wave sys-
tems where the steady wave energies constitute hystereses
(He and Salat, 1989, 1988; Zhou and He, 1998), of which in
a driven/damped drift-wave system (see Eq. 1) we found very
turbulent wave solutions, in particular the regimes where tur-
bulent solutions are observed seem to have a relation with the
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regimes where hystereses exist (He and Salat, 1989). An-
other significant phenomenon is: when its wave energy is
in the negative tangential branch of an S-shaped hysteresis
a steady wave solution is unstable due to a saddle-node in-
stability. Such a saddle steady wave can not be realized, it
is a virtual wave embedded in certain realized waves, e.g. in
some stable solitary waves, or in periodic, chaotic and turbu-
lent waves. These phenomena lead to our conjecture that an
embedded saddle steady wave may play an important role at
the onset of turbulence.

In general, a steady wave solution is like a solitary wave,
which moves in a constant group velocity with an invariable
shape. If observed in the reference frame moving with this
group velocity, a steady wave solution is a fixed point in the
Fourier space. With variation of applied parameters such a
fixed point may lose its stability, just like what happens in
time-dependent systems. If the instability is of saddle type,
this steady wave solution is a saddle point. Therefore, in
a reference frame moving with its group velocity, a saddle
steady wave solution is an embedded saddle point, in another
word, in the lab frame it is a moving saddle point embedded
in the realized wave.

Indeed we have found convincing evidence in the
driven/damped drift-waves that such an embedded saddle
point plays a critical role at the onset of turbulence. We find
that a collision with the saddle point triggers a crisis. How-
ever, this collision does not directly destroy the spatial coher-
ence. Then a further question is: how the spatial coherence
is destroyed? To answer this question the motion of different
spatial scales has to be studied. To this end we transform the
wave system to a set of coupled oscillators moving in a po-
tential of the saddle steady wave solution, and find that sub-
sequently to the collision there occurs another critical event
during which the phase of the master oscillator experiences
a trapped-free transition. It is this event that plays a key role
in the destruction of spatial coherence. These results will be
given in Sect. 2. In the following sections we investigate the
dynamics of the oscillators, especially of their phases. We
find that, in spatially regular wave before the transition per-
fect functional relations are formed between the mode phases
(ref. Sect. 3), in a turbulent wave after the transition the os-
cillators show much stronger tendency to establish a phase
synchronization (PS), however, due to the embedded saddle
point they are not easy to reach a perfect PS, instead, an on-
off imperfect PS is established among the oscillators (ref.
Sect. 4). At “on” stages of the synchronization amplitudes
of the oscillators of different scales grow up almost simulta-
neously, inducing bursts in the total wave energy. This re-
sult presents an explanation for the dynamic cause of energy
bursts in the turbulent motion. Finally Sect. 5 is a conclusion
and discussion.

2 Crisis-induced transition to spatiotemporal chaos

In He(1998) we found a crisis-induced transition from a spa-
tially regular to spatiotemporally chaotic wave in the follow-

ing model equation,

∂φ

∂t
+ a

∂3φ

∂t∂x2
+ c

∂φ

∂x
+ f φ

∂φ

∂x
= −γφ − ε sin(x − �t).(1)

Without drivingε and dampingγ the system describes shal-
low water wave in fluids (Dodd et al., 1982; Benjamin et al.,
1972) and drift wave in magnetized plasmas (Horton, 1990),
so Eq. (1) has practical applications.

A steady wave solution of Eq. (1) has a form ofφ0(x−�t),
which is a fixed point in the reference frameξ=x−�t , τ=t .
Hereφ0(ξ) obeys a steady equation,

∂φ0

∂τ
= 0. (2)

By expanding φ0(ξ)=
∑

k Ak cos(kξ+θk) (here and in
the following k=1, 2, · · · , N→∞) and with appropriate
guessed values one can work out its mode amplitudes and
phases,{Ak, θk}, thenφ0(ξ) is obtained. Its wave energy,
E0≡E(φ=φ0), is a constant, here

E(t) =
1

2π

∫ 2π

0

1

2
[φ2(t) − aφ2

x(t)]dx. (3)

It has been found that for given� in certain regimes steady
wave energyE0 as a function ofε forms an S-hysteresis.
Stability analysis shows that when its energy locates in the
negative tangential branch of a hysteresis a steady wave so-
lution φ0 is unstable due to a saddle-node instability, such a
saddle steady wave is denoted asφ∗

0(ξ) in the following, in
the (ξ , τ ) frame it is a saddle point in the Fourier space. In
the following we will see that this saddle point plays a critical
role in the transition to turbulence. On the other hand, if its
wave energy locates in the lower branch of a S-hysteresis a
steady wave solutionφ0(x−�t) can be stable, or it may lose
the stability through a Hopf bifurcation (He , 2004).

To study the complicated dynamic behaviors we have used
the pseudospectral method to solve Eq. (1) in periodic bound-
ary condition,φ(x+2π)=φ(x). In the chosen parameter
regimes 26 to 29 spatial grids are tested, the results are in
agreement with each other. Among others, we found that for
a given� in certain regime there exists a criticalε=εc, be-
fore which the wave is spatially regular although it can be
erratic in time, but after which spatial regularity of the wave
is destroyed, the wave looks very turbulent, in particular it
bears some characteristic feature of fully-developed turbu-
lence, e.g. a power law spatial spectrum. For�=0.65 the
critical transition pointεc≈0.20. Figure1 shows the typical
space-time contour plot of (a) spatially regular wave where
one can still see a wave structure and (b) spatiotemporally
chaotic wave where the wave is broken.

For a givenε>εc a sudden enlargement of the attractor can
be seen in the transient state. It is along an unstable orbit of
the saddle steady waveφ∗

0(x−�t) that the realized trajec-
tory is led to the spatiotemporal chaotic attractor (He, 1998),
similar to what happens in a type of crisis in time-dependent
systems (Ott, 1993). We also find that the transition is trig-
gered by a “saddle pattern resonance”, that is, a crisis occurs
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Fig. 1. Space-time contour plot ofφ(x, t) for (a) spatially regular wave before the transition withε=0.19,(b) spatiotemporally chaotic wave
after the transition withε=0.22;�=0.65.

when the realized waveφ(x, t) evolves to about the same
shape of saddle steady waveφ∗

0(x−�t) (He, 2000). Fig-
ure2 shows a contour plot of12(x, t) for �=0.65, ε=0.22,
here1(x, t)≡|φ(x, t)−φ∗

0(x−�t)| is the space-time differ-
ence between the realized wave and saddle steady wave. In
this example whent<∼30 the realized waveφ(x, t) is spa-
tially regular, whent>∼50 it transits to a state of extreme
irregularity both in time and in space. In the plot one can

see that just before the transition there appears a zone with
almost white color, indicating that at this time interval the
discrepancy between waveforms ofφ(x) andφ∗

0(x) becomes
very small. Indeed a ‘pattern resonance’ occurs att=t∗≈39
as indicated by an arrow in the plot. Figure3 depicts the
waveforms ofφ(x, t∗) andφ∗

0(x−�t∗) at the critical time
t∗, one can see that the former almost coincides with the lat-
ter. Normallyφ∗

0(x−�t) is virtual, because of its instability
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Fig. 2. Contour plot of space-time distance between the realized
wave and the saddle steady wave,12(x, t)≡|φ(x, t)−φ∗

0(x−�t)|2,
�=0.65,ε=0.22.

this solution exists only theoretically; however, just att≈t∗

the saddle steady waveφ∗

0(x−�t∗) appears approximately in
reality, in this case a disturbance to it would grow along its
unstable orbit, a crisis then sets in which finally leads to the
spatiotemporal chaotic attractor.

Since a saddle steady wave is a saddle point in the (ξ , τ )
frame, we anticipate that a collision with the saddle point can
be observed at onset of the crisis(Ott, 1993). With this con-
sideration at first we project the orbit onto a Poincaré section,
the one that was used inHe(1998), unfortunately in this rep-
resentation we failed to see such a collision, an apparent gap
always shows up between the realized orbit and the saddle
point at the onset of crisis. Later on, we realized the reason
why the collision can not be manifested in a Poincaré section:
although at the critical timet∗ the realized waveφ(x, t∗)

evolves to a shape very similar to that of the virtual wave
φ∗

0(x−�t∗), the two waveforms are never exactly the same
(see Fig.3), in particular the discrepancy between their high
k modes can be apparent. In fact, a representation in which
the collision can be observed should be in accordance with
what happens at the onset of crisis, that is, in accordance with
the phenomenon of “pattern resonance”. With this in mind
we choose a representation∂φ(ξ=0, τ )/∂ξ vs.φ(ξ=0, τ ) in
which such a collision can be fairly well demonstrated (He
and Chian, 2004).

Instead of pseudospectral method applied to obtain Figs.1,
2 and 3, for demonstrating the collision and other mecha-
nisms we prefer to use a different approach. Since in (ξ , τ )
frame a steady wave solutionφ0(ξ) is a fixed point, it allows
us to setφ(ξ, τ )=φ0(ξ)+δφ (ξ , τ ), then from Eq. (1) the ac-
tive part of the wave,δφ (ξ , τ ), is governed by the following
equation,

∂

∂τ
[1 + a

∂2

∂ξ2
]δφ − �

∂

∂ξ
[1 + a

∂2

∂ξ2
]δφ + c

∂

∂ξ
δφ

+γ δφ + f
∂

∂ξ
[φ0(ξ)δφ] + f δφ

∂

∂ξ
δφ = 0 . (4)

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

3π/2π/2 π 2π0

φ,
 φ

0

ξ

Fig. 3. Waveforms of the realized waveφ(x, t∗) (solid line) and the
virtual saddle steady waveφ∗

0(x−�t∗) (dashed line) at the critical
time of ‘pattern resonance’,t∗≈39.0, the same case as in Fig.2.

Substituting the expansion ofφ0(ξ) as well as δφ (ξ ,
τ)=

∑
k bk(τ ) cos[kξ+αk(τ )] into Eq. (4) we obtain a set of

ordinary differential equations for the modes{bk(τ ), αk(τ )}

of δφ(ξ, τ ):

dbk

dτ
= −

γ

1 − ak2
bk +

f k

2(1 − ak2)

×{

∑
i+j=k

[Aibj sin(θi + αj − αk) + bibj sin(αi + αj − αk)/2]

+

∑
i−j=k

[Aibj sin(θi − αj − αk) + bibj sin(αi − αj − αk)/2]∑
j−i=k

[Aibj sin(−θi + αj − αk) + bibj sin(−αi + αj − αk)/2]},

dαk

dτ
= −k[

c

1 − ak2
− �] −

f k

2(1 − ak2)bk

×{

∑
i+j=k

[Aibj cos(θi + αj − αk) + bibj cos(αi + αj − αk)/2]

+

∑
i−j=k

[Aibj cos(θi − αj − αk) + bibj cos(αi − αj − αk)/2]

+

∑
j−i=k

[Aibj cos(−θi + αj − αk) + bibj cos(−αi + αj − αk)/2]}. (5)

Owing to the last term in the left hand side of Eq. (4), modes
bk(τ ) andαk(τ ) of different wavenumberk are coupled with
each other; besides, their motion is also affected by the
steady wave solutionφ0(ξ) as if the latter is a potential well.
Therefore, with Eqs. (5) we have transformed the nonlinear
wave Eq. (1) into a set of coupled oscillators{bk(τ ), αk(τ )}

in a potentialφ0(ξ). After the modes ofφ0(ξ), i.e. {Ak, θk},
are obtained, temporal variations of{bk(τ ), αk(τ )} and hence
δφ (ξ , τ ) can be worked out. Sinceφ0(ξ) is a solitary wave-
like structure which has few discrete lines in its spectrum, the
active partδφ (ξ , τ ) is actually responsible for the abundant
wave patterns observed in this system. In the following we
use a saddle steady waveφ∗

0(ξ) as the potential and calcu-
late variations of the correspondingδφ (ξ , τ ). Sinceφ∗

0(ξ)
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Fig. 4. Asymptotic attractor ofφ(ξ, τ ) (solid line) and saddle point ofφ∗
0(ξ) (bullet) in phase space∂φ(0, τ )/∂ξ vs.φ(0, τ ) for �=0.65

with (a) ε=0.18, (b) 0.19, (c) 0.2009 before the crisis and(d) 0.201 after the crisis.

changes very little when crossing critical parameterεc, the
dramatic changes in the dynamics whenε>εc should be at-
tributed to the active partδφ(ξ, τ ).

Now let us draw the orbit in phase plot∂φ(0, τ )/∂ξ vs.
φ(0, τ ), here

φ(ξ, τ ) =

N∑
k=1

{Ak cos(kξ+θk)+bk(τ ) cos(kξ+αk(τ )]},

∂φ(ξ, τ )/∂ξ=−

N∑
k=1

k{Ak sin(kξ+θk)+bk(τ ) sin(kξ+αk(τ )]},

and {Ak, θk} and {bk(τ ), αk(τ )} are solved from the mode
equations of Eq. (2) and Eqs. (5), respectively. The trunca-
tion numberN depends on the parameter regime. Specifi-
cally, since in the present regime the unstable orbit of saddle
point is dominant by itsk=2 component,N should be suf-
ficiently larger than 2 for demonstrating the crisis. We have
tested 13−38 modes, the results are qualitatively the same, in
particular in all the test runs collision with the saddle point
can be well displayed.

For a given� one can see the collision whenε is varied.
Figure 4 shows the asymptotic attractors for�=0.65 with
Fig. 4a–cε=0.18, 0.19, 0.2009<εc, Fig. 4d ε=0.201>εc,

respectively. In the plot a saddle steady waveφ∗

0(ξ) is a (sad-
dle) fixed point (denoted by a bullet) depending only on the
applied parameters. In Fig. 4a–c withε approaching toεc the
attractor and the saddle point are getting closer and closer.
At the critical parameterεc the attractor touches the saddle
point. As soon asε crosses overεc in Fig. 4d the asymp-
totic attractor is greatly enlarged with the saddle point being
overlapped by it. In this enlarged attractor∂φ(0, τ )/∂ξ as
a function ofφ(0, τ ) changes with time violently, indicating
that the spatial coherence has lost and the motion is very tur-
bulent. This plot shows evidently that a collision with the
saddle point is responsible for the dynamic transition from
the spatially regular wave to spatiotemporal chaos in the pa-
rameter space.

For a fixedε>εc one can also see a transient collision with
the saddle point. Figure5 depicts phase plot∂φ(0, τ )/∂ξ vs.
φ(0, τ ) for a transient period of transiting from the spatially
regular wave to spatiotemporal chaos for�=0.65, ε=0.22.
The initial distributionφ(ξ, τ=0) is chosen adjacent to the
saddle steady waveφ∗

0(ξ), to avoid confusion the first few
steps of the orbit have been omitted. One can see that the
orbit makes increasingly larger smooth circles and finally a
collision with the saddle point occurs. After the collision the
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saddle point (bullet) and a turning point (triangle) of ejecting to the
spatiotemporal chaotic attractor.

orbit continues to move in a smooth orbit for one circle, only
when it gets nearer to the saddle point again, the orbit sud-
denly changes its orientation and turns to the spatiotemporal
chaotic attractor.

In this representation the collision can be seen clearly,
however, it does not mean that at the collision the orbit
reaches precisely the position where the saddle point is. At
the moment of collision the waveform ofφ(ξ, τ ) almost co-
incides with that ofφ∗

0(ξ) but the former is not exactly the
same as the latter, just like what happens in Fig.3. That is,
transition to turbulence is induced by an approximate colli-
sion instead of an exact one. This result seems reasonable,
for otherwise an infinitely small disturbance could halt the
transition, that should not be the case in practical situations.

A surprising phenomenon in Fig.5 is that the collision
does not directly destroy the spatial coherence, in all the test
runs one can see a remarkable turning point just about one
circle after the collision as marked in Fig.5 by a triangle, at
which the orbit seems to be dragged by an unknown force to
deviate from the smooth spatially regular attractor and turn
to the spatiotemporal chaotic one, indicating that there must
be an important event taking place here.

To understand what happens at the turning point we in-
voke Eqs. (5) again, but now we need the knowledge on the
modes ofδφ(ξ, τ ). Our investigation shows that the master
oscillator, i.e. ofk=1, plays a critical role in this respect. For
the same case of Fig.5, we plotb1(τ ) vs. α1(τ ) in Fig. 6,
in which the triangle corresponds exactly to the same criti-
cal moment at the turning point in Fig.5. One can see that
corresponding to the cyclic motion in Fig.5, in Fig. 6 b1(τ )

vs. α1(τ ) makes vibrations like a nonlinear pendulum with
α1(τ ) confined in a range much less than 2π . Right at the
critical moment of the turning point in Fig.5, the orbitb1(τ )

vs. α1(τ ) moves to the top of a hump in Fig.6, after which
α1(τ ) no longer simply vibrates, instead it may cross over

0.00

0.04

0.08

0.12

π/20−π/2−π−3π/2

b 1( τ
)

α
1
(τ)

Fig. 6. Motion of the master modeb1(τ ) vs.α1(τ ), the same tran-
sient period as in Fig.5. The triangles in Figs.5 and6 correspond
to the same moment.

2π as well. The latter fact can be seen more clearly in Fig.7
for temporal evolutions of Fig. 7ab1(τ ) and Fig. 7bα1(τ ).
The arrows in Figs. 7a and b correspond to the critical times
for the two dynamic events, i.e. the collision and the turn-
ing point, respectively. One can see in Fig.7b that after the
second eventα1(τ ) can make vibrating as well as whirling
motion (here mod(2π) has been taken), in contrast, before
the second eventα1(τ ) vibrates within a small range. In the
inset we plotα1(τ ) without taking mod(2π), one can see that
after the second eventα1(τ ) steps down continuously.

The above results convince us that there are two critical
dynamic events involved in the crisis-induced transition to
the spatiotemporal chaos: the first one is a collision with
the saddle point which triggers the crisis, the subsequent one
is a state transition ofk=1 mode phase, that is, its motion
changes from a purely nonlinear vibration to a combined
motion of whirling and vibrating, it is the latter event that
directly spoils the spatial coherence and leads to the spa-
tiotemporal chaos. In the calculations with different initial
conditions we always observed the similar turning point and
hump as the ones in Figs.5 and6, respectively, in particular
the tops of the humps correspond to the same value ofα1, i.e.
α∗

1≈−1.54 (with 3.9% relative error in 20 test runs), suggest-
ing that at this place there might be a saddle with a separatrix
dividing the vibration and vibration-whirling regimes ofα1,
probably the second event is caused by a collision with this
saddle.

3 Functional relations between the modes in spatially
regular wave before transition

In the last section we transformed nonlinear wave Eq. (1)
into a set of coupled oscillators{bk(τ ), αk(τ )} moving in a
potentialφ0(ξ), this transformation has greatly simplified the
analysis for the nonlinear dynamics of our spatially extended
system. Variations of waveforms observed in the system can
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orbit ejected to the spatiotemporally chaotic attractor (the second
critical event), respectively. The inset showsα1(τ ) without taking
mod(2π).

therefore be considered as the results of self-organization of
the oscillators.

As is well known coupled nonlinear oscillators may adjust
themselves to a PS under certain conditions, i.e. their phase
difference|4βmn(τ )|≡|βm(τ )−βn(τ ) | is constrained in a fi-
nite range (Fujisaka and Yamada, 1983; Pecora and Carroll,
1990; Rosenblum et al., 1996, 1997; Boccaletti et al., 2002).
If asymptotically4βmn is zero, the oscillators reach a com-
plete PS; more generallyβm(t) may show a functional PS
with βn(t), i.e. while4βmn(τ ) is small, a functional relation
βm(t)=F [βn(t)] is hold. In addition, a PS can be perfect or
imperfect, for example, it is found that in coupled Lorenz os-
cillators, although the phase difference looks very erratic it
can be confined in a finite range less than 2π for a long time,
and occasionally a phase slip may occur (Zaks et al., 1999).

Now let us compare the behaviors before and after the tran-
sition in our system in terms of PS. In the present section
the spatially regular states forε<εc will be discussed. In
our case the simplest spatial regular wave is a stable steady
wave. From Eq. (5) with a saddle steady waveφ∗

0(ξ) as the
potential, in certain parameter regimes we can find nontrivial
constant solutions of{bk(τ→∞), αk(τ→∞)} correspond-
ing to a stable steady waveφ0(ξ), in which asymptotic phase
difference4αkk′(τ→∞)≡αk(τ )−α

k
′ (τ )|τ→∞ between any

two oscillators is constant.
With variation of parameters4αkk′(τ ) can no longer

hold as constants, however, the oscillators are still
able to adjust themselves to perfect functional PS. For
�=0.65, ε=0.12 Fig. 8 depicts Fig. 8a energy of the os-
cillators, δE(τ)=

∑
k(1−ak2)[Akbk cos(θk−αk)/2+b2

k/4],
Figs. 8b–d phase difference4α1k(τ ) for k=2, 3, 4, respec-
tively. One can see that all the4α1k(τ ) are confined within
a finite range less than 2π . For the same parameters in Fig.9
we plotαk(τ ) vs.α1(τ ) with Figs. 9a–c fork=2, 3, 4, respec-
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Fig. 8. Temporal evolution of(a) δE(τ), (b)–(d) 4α1k(τ ) for
k=2, 3, 4, respectively,�=0.65, ε=0.12<εc.

tively, they all show smooth curves, indicating that the oscil-
lators have established a perfect functional PS collectively.
As a result of the functional PS,δE varies periodically as
can be seen in Fig.8a.

With increasingε the functional PS curves in the phase
plot αk(τ ) vs. α1(τ ) become more and more compli-
cated, and phase slips may occur in some oscillators. For
�=0.65, ε=0.19. Figure10 showsαk(τ ) with Fig. 10ak=1
(black), 2 (red), 4 (green) and Fig. 10bk=1 (black), 3 (pink).
In the calculation mod(2π) is taken only whenτ<3000.
One can see that in Fig. 10a, roughly speaking, bothk=2, 4
modes are synchronized withk=1 mode, occasionallyk=4
mode experiences a phase slip but it is soon locked back to
the domain ofα1(τ ) again; on the other hand, in Fig. 10b
α3(τ ) is no longer locked to the domain ofα1(τ ), which in-
creases with time, in contrast to constant average ofα1(τ ).
However, if taking mod(2π) for α3(τ ) or α4(τ ), respectively,
one would find that functional relations of their motion with
that of the other modes still remain. Figure11 shows the
phase plotαk(τ ) vs.α1(τ ) (k=2, 3, 4 in Figs. 11a–c, respec-
tively) for the same case as in Fig.10 but with the mod(2π)

taken, in all the plots we obtain smooth curves, that is, they
have perfect functional relations. In the inset of Fig.10b we
show M α13(τ )≡α1(τ )−α3(τ ), one can see that the phase
slip of α3(τ ) relative toα1(τ ) occurs nearly in every char-
acteristic period, nevertheless the staircase-like behavior of
M α13(τ ) suggests thatα3(τ ) also reaches a kind of func-
tional PS withα1(τ ).

As ε increases further, temporal variation of the wave be-
comes more and more erratic, and the functional relations
amongαk ’s also become very complicated; when near the
critical pointεc, the functional relations may disappear inter-
mittently, which induces a temporal loss of the spatial regu-
larity. These phenomena are not in the scope of the present
paper. Regardless of these problems, from the above results
we can say that for producing a smooth waveform the mode
phases are not necessary to be locked within a small range,
with phase slips in some modes the oscillators in potential
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Fig. 9. αk(τ ) vs.α1(τ ) for the same case as in Fig.8, (a)–(c)are fork=2, 3, 4, respectively.
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φ∗

0(ξ) can still adjust their relative relations in a perfect func-
tional way, producing a wave that is erratic in time while
maintaining the spatial coherence.

4 On-off imperfect phase synchronization in spatiotem-
poral chaos

The wave state after the transition is extremely irregular both
in time and in space. It is remarkable that even in such turbu-
lent waves one can observe PS. However, now the synchro-
nization is characterized by its imperfection (He and Chian,
2003). Just like in coupled Lorenz oscillators (Zaks et al.,
1999), a turbulent wave in our system has an embedded sad-
dle point, which has a characteristic time scale unbounded
from above, the oscillators are not easy to adjust to a perfect
PS.

Figure12 is an example with�=0.65, ε=0.22>εc, where
Fig. 12a is the temporal evolution ofδE(τ), Figs. 12b–d
are phase differences4α1k(τ ) for k=2, 3, 4, respectively.
One can see that inδE(τ) there are many sharp spikes,
corresponding to each sharp spike in Fig.12a, all the phase
differences4α1k in Figs. 12b–d are varying erratically in
a very small range; in contrast, between two sharp spikes
δE(τ) oscillates in a lower level and4α1k can become very
large, even surpassing 2π , (in Figs. 12b–d mod(2π) has been
taken). That is, in this turbulent wave the phasesαk(τ ) can
adjust to imperfect PS intermittently. We name this behavior
as an on-off collective imperfect PS (He and Chian, 2003).

The correspondence between the spikes inδE(τ) and im-
perfect PS inαk(τ ) is significant, which suggests that bursts
in the wave energy are induced by the imperfect PS “on”. To
further confirm this point, let us observe the motion of the
mode amplitudes{bk(τ )}. An individual bk(τ ) looks very
chaotic, however, if putting different mode amplitudes to-
gether one would find that synchronization may also exist
among them. Figure13 is for the same parameters as in
Fig. 12, with Fig. 13aδE(τ), Fig. 13bαk(τ ) for k=1, 2 and
Fig. 13cbk(τ ) for k=1, 2, 3, respectively. In the plot one can
see that, while the phases{αk} adjust to a synchronization
the amplitudes{bk} reach maximum about simultaneously,
due to effective building up of the mode energies, a burst ap-
pears inδE(τ), respectively in “on” stages of imperfect PS.
This phenomenon is very different from that of spatially reg-
ular state before the transition. For a spatially regular wave,
a PS among the oscillators is perfect (see Figs.9 and11);
besides, due to the functional relation between them, nor-
mally the peaks ofδE(τ) do not show correspondence to
small4α

kk
′ (τ ), and{bk(τ )} do not reach maximum simul-

taneously, therefore the mode energies can not be effectively
added up. From this comparison we believe that such a tur-
bulence with on-off collective imperfect PS is possibly a state
where the total wave energy can be most effectively built
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Fig. 11.αk(τ ) vs.α1(τ ) for the same case as in Fig.10, (a)–(c)are fork=2, 3, 4, respectively, mod(2π) has been taken.

up by its mode energies of different scales, although only in
short periods of time. In the “on” stages a best cooperation
is realized between the oscillators.

In Fig. 14 we plot temporal variation of4α23(τ ) with-
out taking mod(2π), some plateaus can be seen in the curve,
which correspond to the “on” stages of collective imper-
fect PS; between two plateaus|4α23| increases very quickly,
which are the “off” stages of the PS. Because of the multi-
dimensions of our system, the plateaus are not as flat as in the
coupled Lorenz oscillators (Zaks et al., 1999), and usually in
our case the oscillators take a longer time to adjust to a new
plateau again.

As we have seen in Sect. 2, both before and after the crisis
the system has a saddle point, so the different PS behaviors in
the spatially regular wave and spatiotemporal chaos can not
be explained only by the existence of saddle point. Notice
that owing to the second dynamic event thek=1 oscillator
experiences a trapped-free transition, delocalization of this
master mode is also crucial for these different behaviors. Be-
fore the transition the motion of{bk, αk} is strongly governed
by the potentialφ∗

0(ξ), a functional relation is then formed
between the modes; after the transition, thek=1 mode –
which slaves the other modes – can be free from the poten-
tial, in the meantime the amplitudes{bk} grow greatly, in this
case the potential has less influence and so the oscillators
have a stronger tendency to adjust by themselves, as a result
an on-off collective imperfect PS is established.

In the “on” stages of collective imperfect PS4α
kk

′ is near
0 or π , this fact allows us to define a correlation function
between the phases ofN oscillators

CN
α (τ ) =

N∏
k=1

|cosαk(τ )| .

Figure15shows (a) the wave energyδE(τ), (b) 〈C4
α(τ )〉, (c)

〈C5
α(τ )〉, here〈〉 denotes time-average in a characteristic pe-

riod. In the plot correspondence between the sharp spikes
of δE(τ) and that of〈CN

α (τ )〉 is obvious, in particular in (b)
〈C4

α(τ )〉 shows strong spikes whenever there appears a burst
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Fig. 12. Temporal evolution of(a) δE(τ), (b)–(d) 4α1k(τ ) for
k=2, 3, 4, respectively,�=0.65, ε=0.22>εc. One can see that
whenever imperfect PS occurs a strong burst appears inδE(τ).

in δE(τ). In (c) the spikes of〈C5
α(τ )〉 are still apparent, but

is not as prominent as in〈C4
α(τ )〉. If more and more modes

are included the spikes in〈CN
α (τ )〉 is gradually smeared out.

It is likely that the best synchronization occurs among a few
long wavelength modes. Apart from those strong spikes there
are also smaller peaks in〈CN

α (τ )〉, the correspondence be-
tween the peaks of〈CN

α (τ )〉 and that ofδE(τ) is also clear.
These results indicate that in the turbulent state after the cri-
sis, an instant wave energy significantly depends on the rela-
tive phase status of the oscillators, in particular when the os-
cillators adjust to a collective imperfect PS the total energy
displays a strong burst.

We expect that the statistics ofCN
α (τ ) can reflect that of

δE(τ) to certain extent. Based on this consideration we cal-
culate probability of interspikes ofCN

α (τ ). Figure16 is an
example of probability functionP(τL) obtained fromC4

α(τ ),
here interspikesτL are determined by a threshold 0.01. One
can find a very good power lawP∼τ−α

L as fitted by the
straight line.
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5 Conclusion and discussion

To investigate nonlinear dynamics of the drift-wave system,
we transform the nonlinear wave into a set of coupled oscil-
lators in the potential of a steady wave solution. These oscil-
lators contribute the active part of the wave. In particular the
motion of oscillators in the potential of a saddle steady wave
is studied, the latter is a saddle point in its moving frame. It is
shown that a collision with the saddle point (or equivalently a
“pattern resonance” with the embedded saddle steady wave)
triggers a crisis, which then induces a subsequent event that
destroys the spatial regularity of the wave.

The phase dynamics is investigated for the states before
and after the crisis-induced transition. We find that in the
very turbulent state after the transition the oscillators have
a strong tendency of adjusting to PS, as a result an on-off
imperfect PS can be established. As a comparison in the spa-
tially regular states before the transition, perfect functional
PS among the oscillators are observed with or without phase
slips. The different behaviors of mode phases can be under-
stood if taking into account the effect of the saddle steady
wave potentialφ∗

0(ξ), which strongly governs the motion of
the oscillators before the transition but has less influence af-
ter it. In the latter case the master mode can be free of the
potential, the orbits of oscillators are no longer restricted by
a simple functional relation, instead they have more opportu-
nities to adjust their amplitudes and phases, consequently a
special on-off collective imperfect PS is formed.

The transformation of nonlinear wave Eq. (1) into Eq. (4)
is mathematically strict, besides, when obtaining the coupled
oscillators Eqs. (5) we did not make further assumption for
the wave solutions except for the periodicity. The dynamic
phenomena observed in Eq. (5) with appropriate truncation
are in agreement with that of Eq. (1). One can therefore be-
lieve that the phase dynamics obtained in Eq. (5) reveals the
physical process in nonlinear wave Eq. (1).

When dealing with turbulence, usually a random-phase as-
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Fig. 14. Temporal evolution ofM α23(τ ) for � = 0.65, ε = 0.22
without taking mod(2π).

sumption is adopted in statistical investigations. However,
our results indicate that the mode phases are not really ran-
dom even in a very turbulent state. In our case phases{αk}

are of the oscillators, which are obtained after transforming
to the moving frame and subtracting the saddle steady wave.
Nevertheless, it is evident now that different spatial scales
in a turbulence are not statistically uncorrelated, on the con-
trary, they may intermittently show very strong correlations
both in their amplitudes and phases, the instant correlations
can be even stronger than in spatially regular waves. That is
why energy bursts show up in the turbulent waves rather than
in spatially regular ones. In the real world similar energy
bursts can be seen in many turbulent systems, e.g. swells in
ocean, flares in the sun, sharp spikes in brain electric signals
..., can these bursts also be attributed to mode energy build-
ing up in “on” stages of the PS? If this is proved to be true,
on-off collective imperfect PS may provide a potential ap-
plication in predicting occurrence of energy bursts in these
systems. For instance, solar flares are considered as a re-
sult of nonlinear solar turbulent plasmas, furthermore, they
display the same statistics as that ofCN

α , e.g. probability dis-
tribution of interspikes of the flares also follows a power law
(Boffetta et al., 1999). If on-off collective imperfect PS is
shown to be the mechanism of solar turbulence, in principle
solar flares should be predictable. However, to this end we
may need the knowledge of, e.g. the embedded saddle steady
wave, with which one is able to transform the system to the
moving frame and work out the motion of oscillators that
constitute the active part of the turbulent wave. Obviously
for practical application we still face many difficulties.

The study carried out in this paper has important applica-
tion in geosciences. The earth-oceans-space system is dom-
inated by turbulence where nonlinear processes govern the
complex behaviors of the system (Chian and the WISER
team, 2003; Chian et al., 2003b). The relevant investigations
indicated that PS can occur in these systems. For example,
Hada et al. used a method based on surrogate data tech-
nique and fractal analysis to evaluate the phase coherence
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of magnetohydrodynamic turbulence in the earth´s foreshock
region, and showed that the correlation of wave phases exists
which provides an evidence of nonlinear wave interactions
(Hada et al., 2003). Koga and Hada applied the wavelet anal-
ysis to show that although the magnetohydrodynamic turbu-
lence in the Earth´s foreshock region is consisted of waves
of a wide frequency range, only frequencies lower than the
ion gyrofrequency are responsible for generating the phase
coherence (Koga and Hada, 2003). Schulz et al. suggest
that phase synchronization of different climate cycles can ex-
plain glacial-interglacial contrast in ocean climate variability
(Schulz et al., 2004). The space observation ofHada et al.
(2003) andKoga and Hada(2003) and the ocean model of
Schulz et al.(2004) are in agreement with our theoretical re-
sults that in general PS plays an important role in nonlinear
wave systems. In particular, our result on the on-off collec-
tive imperfect PS may help for further investigation on syn-
chronization of different spatial scales in very turbulent sys-
tems.
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