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We present a new parameter estimation procedure for nonlinear systems. Such technique is based on the
synchronization between the model and the system whose unknown parameter is wanted. Synchronization is
accomplished by controlling the model to make it follow the system. We use geometric nonlinear control
techniques to design the control system. These techniques allow us to derive sufficient conditions for synchro-
nization and hence for proper parameter estimation. As an example, this procedure is used to estimate a
parameter of an example serving as a model.
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Since 1990f1,2g, chaos synchronization has been a sub-
ject of intense study and is now considered to be a funda-
mental mechanism behind a variety of behaviors in nature
f3g. As a consequence of the intense research effort, a mul-
tiplicity of applications was and is being realized in a variety
of areas, e.g., in opticsf4g, communicationf5g, and neural
networksf6g. In the majority of applications, we have the
scenario where a chaotic system, called the sender or master,
generates a signal which is sent over a channel to a receiver.
The receiversor slaved uses this signal to synchronize itself
to the master.

Behind this scenario, there is the assumption that the pa-
rameters in both sender and receiver systems are identical.
However, in a real situation, this assumption is unrealistic.
For example, two electronic components are never identical,
even if they came from the same assembly line. As a conse-
quence, parameters on different systems are unequal with
probability one. This reality has severe consequences in the
context of chaotic synchronization: progressive parameter
mismatch may successively imply a large burst of desyn-
chronizationsbubbling transitiond, blowout bifurcation, and
lag synchronizationf7g, among other phenomena.

In this work we devise a synchronization strategy that
allows us to estimate an unknown parameter of the master
system. Other authors have also used synchronization to es-
timate unknown parametersf8–10g. Their work, however,
does not provide sufficient conditions for a general coupling
between master and slave to yield synchronization and,
hence, a proper parameter estimation. Our approach, on the
other hand, provides a straightforward procedure that, given
a master system, will check if the strategy is applicable and,
if so, will design a coupling that insures synchronization.
Such improvement is possible because we base our strategy
on geometric controlf11,12g. Presently, our strategy can es-
timate a single unknown parameter of the sender, but this
could be easily extended to many parameters.

The main idea in our approach is to treat synchronization
as a control problemf13g. For a recent application of this

concept to chaotic systems with uncertainties seef14g. In our
approach, we conceive the receiver as a system to be con-
trolled. Its unknown parameter is considered as the control
input. The controller, which is designed based on the geo-
metric control theory, dynamically adjusts this unknown pa-
rameter to make the slave follow a desired trajectory. Since
synchronization is our goal, the desired trajectory is the one
generated by the master system. The controller then acts as
the coupling between the master and the slave systems. We
show that the control action, i.e., the unknown parameter,
equals the corresponding parameter of the master system,
once synchronization is achieved. Actually, using these de-
sign techniques we can establish sufficient conditions for
controllability, and hence for synchronizability and param-
eter recovery.

For concreteness, we consider two almost identical

n-dimensional systems, systemA sthe senderd: Ẋ=FsX ,pd
and systemB sthe receiverd: Ẏ=FsY,ud, whereX ,YPRn are
local coordinates for a smooth manifoldM, F is a smooth
function in its variables,p for systemA is a fixed parameter
value, andu for systemB is an unknown and externally
adjustable parameter. We consider that the two systems are
initialized with different initial conditions, and the signalX
is transmitted to the receiverssystemBd so that this signal is
available at all times at the receiver location. Our strategy is
depicted in Fig. 1.

As can be seen from this picture, the controller uses the
information provided by signalsX andY to instantly adjust
the systemB parameteru until this system is completely
synchronized to the systemA, i.e., Xstd=Ystd for t. ts. Ac-
tually, the parameteru is regarded as acontrol input for the
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FIG. 1. The diagram of the synchronization strategy. The slave
system is regarded as a system to becontrolled. The controller acts
on the parameterp in order to make the slave to follow the master
system.
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slave system. The controller has to correctly adjust this input
for the synchronization to occur.

We assume that both systems can be written in a smooth
affine form as follows:

systemAssenderd:Ẋ = GsXd + pHsXd s1d

and

systemBsreceiverd:Ẏ = GsYd + uHsYd, s2d

whereu is the control input. Let us define the synchroniza-
tion error Estd=Xstd−Ystd, and then the error dynamics is

Ė=GsXd−GsYd+pHsXd−uHsYd. Now, suppose that syn-

chronization is achieved. This implies thatEstd=Ėstd=0, for

t. ts. Thus,Ėstd at E=0 is given by

Ė = sp − udHsXd. s3d

With the restrictionĖ=0, i.e., both systems remain synchro-
nized, we conclude that eitherHsXd=0 for t. ts or u=p. We
may discard the former because otherwise it would imply
that our systems are independent of their parameters, which
contradicts our assumptions. Then, we must conclude that,
under these conditions, synchronization implies proper pa-
rameter estimation. So, in order to recover the unknown pa-
rameter, we must design a control system that synchronizes
the receiver to the sender.

Such control system must act on a nonlinear systemsthe
chaotic slaved, through a specific inputsthe unknown param-
eterd, following a reference signal that is not periodic nor has
negligible amplitudesthe master’s chaotic trajectoryd. More-
over, the tracking error must be as small as possible. These
are rather difficult requirements for a control system design
and traditional linear techniques cannot be used. Any control
design technique suitable to nonlinear systems could be used.
We chose geometric control theory because it allows us to
check if a nonlinear system is controllable and, if it is, pro-
vides a design method that will lead to a successful control-
ler. In other words, geometric control theory gives us neces-
sary and sufficient conditions for thecontrollability of a
nonlinear system, and, if the system is controllable, a proce-
dure to design a controller.

At this point, let us give some background on geometric
control theory. LetM be a smooth manifold of dimensionn
andsU ,wd=sU ,x1, . . . ,xnd be a local coordinate chart forM.
A smooth vector fieldG on M assigns to everyqPM a
tangent vectorGqPTqM. Given a smooth vector fieldG and
a function f :M→R, the functionGsfdsqd :M→R is called
the total derivative off along G, or theLie derivativeof f
along G and is denoted as LGf. If G is expressed in local
coordinates as the vectorfx1sqd ,x2sqd , . . . ,xnsqdgT, then we
have

LGfsqd = Gsfdsqd = o
i=1

n
]f

]xi
fx1,x2, . . . ,xngGifx1,x2, . . . ,xng

= = fGsqd. s4d

For G andH any two smooth vector fields onM, we define

a new vector field, denoted asfG,Hg, or adGH, called theLie
bracketof G andH by setting, in local coordinates,

fG,Hg = = HG − = GH, s5d

where=G is the Jacobian matrix ofG.
Our strategy can be divided in two steps. In the first one,

we need to find a transformation pair as follows,

Ỹ = FsYd s6d

and

ũ = CsY,ud, s7d

that transforms Eq.s2d to the following linear system:

ẏ̃i = ỹi+1, i = 1, . . . ,n − 1, ẏ̃n = ũ. s8d

According to the geometric control theoryf11,15g, this
transformation is always possible wherever there exists an
open regionV,M so that the following conditions hold for
all qPV:

• the set of vector fieldshH ,adGH , . . . ,adG
n−1Hj is linearly

independent, and
• the set of vector fieldshH ,adGH , . . . ,adG

n−2Hj is involu-
tive.

A set of vector fields isinvolutive if the Lie bracket of
every two of its elements can be expressed as a linear com-
bination of the vector fields in the set. If these two conditions
hold, the transformationss6d ands7d exist and can be calcu-
lated as follows:

FsYd = ffsYd LGfsYd ¯ LG
n−1fsYdgT, s9d

wherefs·d is a solution of the system of partial differential
equations

LHfsYd = 0,

LHLGfsYd = 0,

A

LHLG
n−2fsYd = 0,

LHLG
n−1fsYd Þ 0. s10d

Furthermore, the inverse input transformationu=C−1sY,ũd
is given by

C−1sY,ũd =
ũ − asYd

bsYd
, s11d

where

asYd = LG
n fsYd, s12d

and

bsYd = LHLG
n−1fsYd. s13d

In the second step, we apply a classical control strategy so
that the system follows a reference in the transformed space.

Suppose this reference,X̃, is such that
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X̃
˙

i = X̃i+1, i = 1, . . . ,n − 1, X̃
˙

n = X̃d, s14d

and define the error in the linear space asestd=X̃1−Ỹ1. Then,

the error dynamics is given byesndstd=X̃d− ũ. A linear state
feedback controller can then be used to stabilize this dynam-
ics in the origin. This controller is given by

ũ = X̃d − o
i=1

n

kie
si−1d, s15d

where theki are positive constants. This leads to the stable
error dynamics

esnd + o
i=1

n

kie
si−1d = 0 s16d

and the controller’s gainski may be chosen to give the de-
sired response. Controlled in this way, the slave system is
able to follow any reference in the form ofs14d restricted to
the regionV. Since synchronization is desired, we use the
master system as the reference. The transformations6d is
applied to the master systems1d yielding

X̃d = FsXd s17d

and X̃d=Ẋn. As this reference signal is a trajectory of the
master system transformed via a diffeomorphism, when the
error estd approaches zero the slave system will be synchro-
nized with the master system.

As an example, we apply these ideas to the Lorenz sys-
tem. The master system is taken as the usual equations

ẋ1 = ssy1 − x1d, ẏ1 = rx1 − y1 − x1z1, ż1 = − bz1 + x1y1,

s18d

and we suppose the parameterb is unknown. The slave sys-
tem is a copy ofs18d but with this parameter treated as an
input

ẋ2 = ssy2 − x2d, ẏ2 = rx2 − y2 − x2z2, ż2 = − uz2 + x2y2.

s19d

In order to design the controller, we need to check if the
systems19d is controllable. The system is put in the form of
s2d leading to

GsYd = fssy − xd, rx − y − xz, xygT s20d

and

HsYd = f0, 0, −zgT. s21d

Here the subscripts were dropped for clarity. As the first
condition, the vector fieldshH ,adGH ,adG

2 Hj must be linearly
independent. Computing the Lie bracket ofG andH leads to

fG,Hg = f0 − xz − xygT. s22d

Repeating the procedure we obtain

fG,fG,Hgg = 3 sxz

ss − 1dxz− syz− 2x2y

ss + 1dxy+ 2x2z− sy2 − rx24 . s23d

These vector fields are linearly independent ifsxzÞ0. The
second required condition is that the sethH ,adGHj must be
involutive. To check this we must writefH ,adGHg as a linear
combination ofH and adGH. The Lie bracket ofH and adGH
is given by

fH,adGHg = f0 xz − xygT. s24d

By defining c1sYd=2xy/z and c2sYd=−1, fH ,adGHg can be
written as

fH,adGHg = c1sYdH + c2sYdadGH . s25d

Therefore the sethH ,adGHj is involutive in the wholeR3.
This shows that the slave system given bys19d is control-
lable everywhere inR3 but in the planesxz=0.

The functionfsYd needed to compute the diffeomorphism
s9d is a solution to the following system of partial differential
equation

]f

]z
z= 0,

]f

]y
xz+

]f

]z
xy= 0,

−
]f

]x
sxz+

]f

]y
fss − 1dxz− syz− 2x2yg

+
]f

]z
fss + 1dxy+ 2x2z− sy2 − rx2g Þ 0. s26d

A simple solution to this system isfsYd=fx,0 ,0gT which
leads to the global diffeomorphism

Ỹ = FsYd = 3 x

ssy − xd
ssr + s2dx − ss + s2dy − sxz

4 . s27d

FIG. 2. The plot ofx in time for both master and slave systems.
All quantities are dimensionless.

BRIEF REPORTS PHYSICAL REVIEW E71, 047203s2005d

047203-3



This transformation is applied to the slave system giving

the transformed state coordinatesỸ, and to the master system

giving the referenceX̃. The value ofX̃d is obtained differen-
tiating the last row ofs27d which leads to

X̃d = ssr + s2dssy1 − x1d − ss + s2dsrx1 − y1 − x1z1d

− sfssy1 − x1dzz + x1s− bz1 + x1y1dg. s28d

The controller used is of the form ofs15d, with the gains
chosen as to give a fast nonoscillating response. The values
chosen werek0=8000,k1=1200, andk2=60.

The last step in the controller design is the inverse input
transformationC−1. This transformation relates the control
output in the linear spaceũ to its counterpart in the original
spaceu. The inverse transformation is given bys11d. To
compute it we need the functionsasYd andbsYd given by

asYd = fssr + s2d − szgssy − xd − ss + s2dsrx − y − xzd

− sx2y s29d

andbsYd=sxz, respectively. Figure 2 shows our results for a
Lorenz system withsr ,s ,bd= s60,10,83d, with the x state
variable as a function of time for both the master and slave

systems. In this figure and in those that follow, all quantities
plotted are dimensionless. A plane projection of both attrac-
tors is shown in Fig. 3. Synchronization is achieved as ex-
pected.

As a byproduct, the control actionu converges to the
value of the unknown parameterb. This result is shown in
Fig. 4

In summary, we presented a parameter estimation proce-
dure for nonlinear systems that is based on synchronization
and geometric control theory. Such theory allowed us to de-
rive sufficient conditions for synchronization and parameter
recovery. We used this technique to successfully estimate an
unknown parameter in Lorenz’s system.

The proposed method, however, still needs some im-
provements. First, any practical application involves noisy
data, and the method must be modified to deal with this
condition. Such modification is under conclusion and will be
published in a future paper. Second, the proposed strategy
needs the entire state vectorX as input to the controller. This
restricts the technique to applications where master’s state
vector can be fully measured. Hopefully this can be relaxed
in the future, maybe via the use of geometric control theory.
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