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Using geometric control and chaotic synchronization to estimate an unknown model parameter
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We present a new parameter estimation procedure for nonlinear systems. Such technique is based on the
synchronization between the model and the system whose unknown parameter is wanted. Synchronization is
accomplished by controlling the model to make it follow the system. We use geometric nonlinear control
techniques to design the control system. These techniques allow us to derive sufficient conditions for synchro-
nization and hence for proper parameter estimation. As an example, this procedure is used to estimate a
parameter of an example serving as a model.
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Since 1990 1,2], chaos synchronization has been a sub-concept to chaotic systems with uncertainties[4€é In our
ject of intense study and is now considered to be a fundaapproach, we conceive the receiver as a system to be con-
mental mechanism behind a variety of behaviors in naturerolled. Its unknown parameter is considered as the control
[3]. As a consequence of the intense research effort, a muinput. The controller, which is designed based on the geo-
tiplicity of applications was and is being realized in a variety metric control theory, dynamically adjusts this unknown pa-
of areas, e.g., in opticgl], communicatior{5], and neural yameter to make the slave follow a desired trajectory. Since
networks[6]. In the majority of applications, we have the gynchronization is our goal, the desired trajectory is the one
scenario where a chaotic system, called the sender or mastghnerated by the master system. The controller then acts as
generates a signal which is sent over a channel to a receivgpo coupling between the master and the slave systems. We
The receiver(or slave uses this signal to synchronize itself show that the control action, i.e., the unknown parameter,
to g:h?gzsttﬁirs. scenario, there is the assumption that the p equals the corresponding parameter of the master system,
rameters in both sender and receiver systems are identica nce synchronlzatlon IS ach|eve_d. Actugl_ly, using t_h_ese de-
However, in a real situation, this assumption is unrealistic>'9" techn!ques we can establish suf.f|C|e_n.t conditions for
For example, two electronic components are never identicaﬁontm”ab'“ty' and hence for synchronizability and param-
even if they came from the same assembly line. As a consé:(€" '€COVery. _ R
quence, parameters on different systems are unequal with FO' concreteness, we consider two almost identical
probability one. This reality has severe consequences in thedimensional systems, systef (the sendgr X=F(X,p)
context of chaotic synchronization: progressive parametesind systenB (the receiver. Y=F(Y,u), whereX,Y € R" are
mismatch may successively imply a large burst of desyntocal coordinates for a smooth manifol, F is a smooth
chronization(bubbling transitiofy blowout bifurcation, and  function in its variablesp for systemA is a fixed parameter
lag synchronization7], among other phenomena. value, andu for systemB is an unknown and externally

In this work we devise a synchronization strategy thatadjustable parameter. We consider that the two systems are
allows us to estimate an unknown parameter of the mastehitialized with different initial conditions, and the sign
system. Other authors have also used synchronization to € transmitted to the receivésystemB) so that this signal is
timate unknown parametef$-10]. Their work, however, available at all times at the receiver location. Our strategy is
does not provide sufficient conditions for a general couplingdepicted in Fig. 1.
between master and slave to yield synchronization and, As can be seen from this picture, the controller uses the
hence, a proper parameter estimation. Our approach, on theformation provided by signalX andY to instantly adjust
other hand, provides a straightforward procedure that, givethe systemB parameteru until this system is completely
a master system, will check if the strategy is applicable andgynchronized to the syster i.e., X(t)=Y(t) for t>t.. Ac-
if so, will design a coupling that insures synchronization.tyally, the parameten is regarded as eontrol inputfor the
Such improvement is possible because we base our strategy
on geometric contrdl11,12. Presently, our strategy can es- System A X Controllerl_* .| System B
timate a single unknown parameter of the sender, but this -
could be easily extended to many parameters.

The main idea in our approach is to treat synchronization Y
as a control probleni13]. For a recent application of this

Y

FIG. 1. The diagram of the synchronization strategy. The slave
system is regarded as a system tacbatrolled The controller acts
*Electronic address: ubiratan@lac.inpe.br on the parametep in order to make the slave to follow the master
"Electronic address: elbert@lac.inpe.br system.
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slave system. The controller has to correctly adjust this inpué new vector field, denoted g6 ,H], or ad;H, called thelie
for the synchronization to occur. bracketof G andH by setting, in local coordinates,
We assume that both systems can be written in a smooth
[G,H]= VHG - VGH,

affine form as follows:
whereVG is the Jacobian matrix db.

(5

systemA(sende:X = G(X) + pH(X) 1) Our strategy can be divided in two steps. In the first one,
and we need to find a transformation pair as follows,
systemB(receivey:Y = G(Y) + uH(Y), 2) Y=0(Y) (6)
whereu is the control input. Let us define the synchroniza-and
t'ion error E(t)=X(t)-Y(t), and then the error dynamics is T=w(Y,u), 7)
E=G(X)-G(Y)+pH(X)—uH(Y). Now, that - . .
(_ ) ) (_) P _( )-u (_ )_ O_W suppose that syn that transforms Eq2) to the following linear system:
chronization is achieved. This implies tHatt) =E(t)=0, for _ _
t>t.. Thus,E(t) atE=0 is given by Vi=Vis, i=1,...0h-1, y,=0. (8)

According to the geometric control theofit1,15, this
transformation is always possible wherever there exists an
open region() C M so that the following conditions hold for

E=(p-wH(X). 3

With the restrictionE=0, i.e., both systems remain synchro- _

nized, we conclude that either(X)=0 fort>t oru=p. We &l a€ _ I

may discard the former because otherwise it would imply * the set of vector fieldgH ,adH, ... ,.ad"H} is linearly

that our systems are independent of their parameters, whidRdependent, and o

contradicts our assumptions. Then, we must conclude that, * the set of vector field$H ,actH, ..., adf *H} is involu-

under these conditions, synchronization implies proper pallVe: _ N o _

rameter estimation. So, in order to recover the unknown pa- A Set of vector fields isnvolutive if the Lie bracket of

rameter, we must design a control system that synchronize®/€ry two of its elements can be expressed as a linear com-

the receiver to the sender. bination of the vector fields in the set. If these two conditions
Such control system must act on a nonlinear syste@ hold, the transformation) and(7) exist and can be calcu-

chaotic slavi through a specific inputhe unknown param- lated as follows:

etel){ f_ollowmg a reference S|gn:';ll that is not perlod|c nor has DY) =[H(Y) Lgd(Y) -+ Lg-l N7, (9)

negligible amplitudgthe master’s chaotic trajectoryMore-

over, the tracking error must be as small as possible. Thesghere ¢(-) is a solution of the system of partial differential

are rather difficult requirements for a control system desigrequations

and traditional linear techniques cannot be used. Any control

design technique suitable to nonlinear systems could be used.

We chose geometric control theory because it allows us to

check if a nonlinear system is controllable and, if it is, pro-

vides a design method that will lead to a successful control-

ler. In other words, geometric control theory gives us neces-

sary and sufficient conditions for theontrollability of a

nonlinear system, and, if the system is controllable, a proce-

dure to design a controller.

Lue(Y) =0,

LuLgo(Y) =0,

LuLg%¢(Y) =0,

At this point, let us give some background on geometric LHLg'lqﬁ(Y) # 0. (10
control theory. LetM be a smooth manifold of dimensian . . . 1y
and(U,¢)=(U,x,, ... x,) be a local coordinate chart fod. _Furt_hermore, the inverse input transformatien¥=(Y,U)
A smooth vector fieldG on M assigns to evergeM a IS 9iven by
tangent vectoG, e TM. Given a smooth vector fiel& and —alY

. a€ la ) . 1y~ _ U= a(Y)

a functionf:M — R, the functionG(f)(q):M —R is called Y, 0) 5Y) (11
the total derivative off along G, or thelLie derivativeof f
along G and is denoted asdf. If G is expressed in local where
coordinates as the vectpx;(q),x»(q), ... X T, then we

n and

d
LGf(q) = G(f)(q) = El a_xi[xlyxzy e ,Xn]Gi[Xl,Xz, e 1Xn:| B(Y) = LHLg_l(ﬁ(Y) . (13)
1=
- V1G(q). @) In the second step, we apply a classical control strategy so

For G andH any two smooth vector fields ov, we define

that the system follows a reference in the transformed space.
Suppose this referenck, is such that
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Xi:Xi+1! |=11 ---1n_1! S’(n:’;(d’ (14)

and define the error in the linear spacaeéts;:;(l—%. Then,
the error dynamics is given bg™(t)=X,-T. A linear state

feedback controller can then be used to stabilize this dynam-

ics in the origin. This controller is given by

n
T=Xq- > ke, (15)
i=1

where thek; are positive constants. This leads to the stable

error dynamics

n

e(n) + 2 kie(i_l) =0
i=1

(16)

and the controller’s gaink; may be chosen to give the de-

sired response. Controlled in this way, the slave system is

able to follow any reference in the form ¢f4) restricted to

the region(). Since synchronization is desired, we use the

master system as the reference. The transformgtpris
applied to the master systefh) yielding
X4=D(X) (17)

and ;(d:Xn. As this reference signal is a trajectory of the
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FIG. 2. The plot ofx in time for both master and slave systems.
All quantities are dimensionless.

oXz
(o= 1)xz- oyz— 2x%y
(o + D)xy+ 2x°z— ay? - rx?

[G[GH]]= (23)

These vector fields are linearly independensiiz# 0. The
second required condition is that the $#lt,adsH} must be
involutive. To check this we must wriféd ,ad;H] as a linear
combination oiH and a¢gH. The Lie bracket oH and a¢H
is given by

master system transformed via a diffeomorphism, when the

error e(t) approaches zero the slave system will be synchro-

nized with the master system.
As an example, we apply these ideas to the Lorenz sy
tem. The master system is taken as the usual equations

2= —bz +xy1,
(18)

X1=o(y1— X)), Y1=MX—Y1— X7,

and we suppose the paramelbeis unknown. The slave sys-
tem is a copy of(18) but with this parameter treated as an
input

.22 == UZZ + X2y2.
(19

Xo=0(Y2= %), Yo2=IXp— Yo~ XoZp,

S_

[H,adsH]=[0 xz — xy]". (24)

By defining c;(Y)=2xy/z andc,(Y)=-1, [H,ad;H] can be
written as

[H,adsH]=c;(Y)H +cy(Y)adsH. (25)

Therefore the sefH,ad;H} is involutive in the wholeR3.
This shows that the slave system given (i) is control-
lable everywhere iR but in the planesz=0.

The functiong(Y) needed to compute the diffeomorphism
(9) is a solution to the following system of partial differential
equation

d¢p

—z=0,
0z

In order to design the controller, we need to check if the

system(19) is controllable. The system is put in the form of
(2) leading to

G(Y) =[a(y=X), rx—y=xz, xy]" (20)
and

H(Y)=[0, 0, —Z]". (21

Here the subscripts were dropped for clarity. As the firs

condition, the vector field&H ,ad;H ,ac%H} must be linearly
independent. Computing the Lie bracket®@fandH leads to
[G,H]=[0 —xz —xy]". (22)

Repeating the procedure we obtain

9¢
3y

_9% e 22

P E[(O" 1)xz- oyz— 2x%]

i

xz+—xy=0,
/4 y

]
+ ﬁ—qzb[(tf+ Dxy+2x°z—ay*-rx?] # 0. (26)

tA simple solution to this system ig(Y)=[x,0,0]" which

leads to the global diffeomorphism
X

oly = x)
(of + 0))x— (o + d?)y - oXZ

Y=d(Y) = (27)
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FIG. 3. The projections in the plan of master's and slave's FIG. 4. The control actiom plotted against time showing con-
attractors. All quantities are dimensionless. vergence to the value df (£). All quantities are dimensionless.

systems. In this figure and in those that follow, all quantities

This transformation is applied to the slave system giving : ; "
L plotted are dimensionless. A plane projection of both attrac-
the transformed state coordinatésand to the master system tors js shown in Fig. 3. Synchronization is achieved as ex-

giving the referencX. The value of>~(d is obtained differen- pected.

tiating the last row 0f27) which leads to As a byproduct, the control action converges to the
5 value of the unknown parametér This result is shown in
Xg= (ot + 0% a(y1 = X)) = (0 + 0?)(rXg — Y1~ X124 Fig. 4 o
In summary, we presented a parameter estimation proce-
ooy = X)Z+ (= bz +Xpyy)]. (28) " qure for nonlinear systems that is based on synchronization

The controller used is of the form ¢15), with the gains and geometric control theory. Such theory allowed us to de-
chosen as to give a fast nonoscillating response. The valuélye sufficient conditions for synchronization and parameter
chosen werék,=8000,k; =1200, anck,=60. recovery. We used this technique to successfully estimate an

The last step in the controller design is the inverse inputinknown parameter in Lorenz's system.
transformation® 1. This transformation relates the control ~ The proposed method, however, still needs some im-
output in the linear spadéto its counterpart in the original Provements. First, any practical application involves noisy
spaceu. The inverse transformation is given t(yl) To data, and the method must be modified to deal with this
compute it we need the functiorgY) and 5(Y) given by condition. Such modification is under conclusion and will be

published in a future paper. Second, the proposed strategy
a(Y)=[(or + 0% — ozZ]o(y - x) — (0 + d?)(rx -y — x2) needs the entire state vectéras input to the controller. This
5 restricts the technique to applications where master’s state
T oxy (29) vector can be fully measured. Hopefully this can be relaxed

and B(Y) = oxz, respectively. Figure 2 shows our results for ain the future, maybe via the use of geometric control theory.

Lorenz system with(r,o,b)=(60,102), with the x state The authors would like to acknowledge the support of
variable as a function of time for both the master and slaveFAPESP.
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