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ABSTRACT

This paper considers the problem of low thrust optimal maneuvers to insert a
satellite in a constellation. The main idea is to assume that a satellite constellation is
given, with all the keplerian elements of the satellite members having known values.
Then, it is necessary to maneuver a new satellite from a parking orbit to its position in
the constellation. The control available to perform this maneuver is the application of a
low thrust to the satellite and the objective is to perform this maneuver with mimmum
fuel consumption.

1 - INTRODUCTION

From the analysis of the alternatives available to perform the orbital maneuvers
required (Prado, 1989; Prado and Rios-Neto, 1993) the Sub-optimal parametrization is
selected to be implemented and used to simulate the maneuvers. The reason for this
choice is the simple implementation, in terms of hardware for the satellite, togheter with
the fact that the results are very close to the optimal approach, as shown in the
references cited above.

The spacecraft is supposed to be in Keplerian motion controlled only by the
thrusts, whenever they are active. This means that there are two types of motion:

1) A Keplerian orbit, that is an orbit obtained by assuming that the Earth's gravity
(assumed to be a point of mass) is the only force acting on the spacecraft. This motion
occurs when the thrusts are not firing;

ii) The motion governed by two forces: the Earth’s gravity field (also assumed to be a
point of mass}) and the force delivered by the thrusts. This motion occurs during the time
the thrusts are finng.

The thrusts are assumed to have the following characteristics:

i) Fixed magnitude: The force generated by them is always of constant magnitude
during the maneuver. The value of this constant is a free parameter {(an input for the
algorithm developed here), that can be high or low;

ii) Constant Ejection Velocity: Meaning that the velocity of the gases ejected from the
thrusts 1s constant;

iii) Constrained angular motion: This means that the direction of the force given by the
thrusts can be modified during the transfer. This direction can be specified by the angles
o and B, called pitch (the angle between the direction of the thrust and the perpendicular
to the line Earth-spacecraft) and yaw (the angle with the orbital plane), respectively.
The motion of those angles are constrained (constant, linear variations, forbidden
regions for firing the thrusts, etc.);
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iv) Operation in on-off mode: It means that intermediate states are not allowed. The
thrusts are either at zero or maximum level all the time.

The solution is given in terms of the constants that specify the control to be
applied and the fuel consumed. Several numbers of "thrusting arcs” (arcs with the
thrusts active) can be used for each maneuver.

Instead of time, the "range angle” (the angle between the radius vector of the
spacecraft and an arbitrary reference line in the orbital plane) is used as the independent
variable.

2 - DEFINITION OF THE PROBLEM

The basic problem discussed in this paper is the problem of orbit transfer
maneuvers to include a satellite in a constellation. The objective of this problem is to
modify the orbit of a given spacecraft, from an initial parking orbit to a specific position
in a final orbit. In the case considered in this paper, an initial and a final orbit around
the Earth is completely specified. The problem is to find how to transfer the spacecraft
between the first of those two orbits to a specific position in a final orbit, in such way
that the fuel consumed is minimum. There is no time restriction involved here and the
spacecraft can leave from any point in the initial orbit. The maneuver is performed with
the use of an engine that is able to deliver a thrust with constant magnitude and linearly
variable direction. The mechanism, time and fuel consumption to change the direction
of the thrust is not considered in this paper.

3 -FORMULATION OF THE OPTIMAL CONTROL PROBLEM

This is a typical optimal control problem, and it is formulated as follows:

Objective Function: M,

where M, is the final mass of the vehicle and it has to be maximized with respect
to the control u(.);

Subject to:  Equations of motion, constraints in the state (initial and final
orbit) and control (limits in the angles of "pitch” and "yaw", forbidden region of
thrusting and others);

And given:  All parameters (gravitational force field, initial values of the
satellite and others).

The equantions of motion are (Biggs, 1978):

dX]f’dS = f| = SiX[F[ (1)
dX,/ds = f; = Si{[(Ga+1)cos(s)+X3]F | +vFasin(s)} 2)
dXs/ds = f3 = Si{[{Ga+1)sin(s)+X3]F (-vFicos(s)}

(3)
dXa/ds = f5 = SivF(1-X /(X W) 4
dXs/ds = f5 = Siv(1-X4)my/'X &)
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dX¢/ds=fs = - SiF3[Xscos(s)+Xssin(s)]/2 (6)

dXy/ds = f; = SiF3[Xecos(s)-Xosin(s)]/2 M
dXy/ds = fs = SiF3[Xscos(s)+ Xesin(s)]/2 (8)
dXs/ds = fy = SiF3[X7sin(s)-Xscos(s))/2 9)
where:

Ga =1+ Xstos(s) + Xssin(s) (10)
Si = (p X;*Y[Ga*mg(1-Xa)] )
F, = Fcos(a)cos(B) (12)
F, = Fsin(a) cos(B) (13)
F, = Fsin(B) (14)

and F is the magnitude of the thrust, W is the velocity of the gases when leaving the
engine, v is the true anomaly of the spacecraft.

In those equations the state was transformed from the Keplerian elements (a =
semi-major axis, e = eccentricity, i = inclination, Q = argument of the ascending node,
o = argument of periapsis, v = true anomaly of the spacecraft), in the variables X;, to
avoid singularities, by the relations:

X\ = [a(1-e"yp]" (15)
X, = ecos(-§) (16)
X = esin(@-) (17)
X4 = (Fuel consumed)/my (18)
Xs=t=time (19)
X = cos(i/2)cos((Q2+$)/2) (20)
X7 = sin(i/2)cos((C2-$)/2) 2D
X3 = sin(i/2)sin((Q-$)/2) (22)
X = cos(1/2)sin{(Q+6)/2) : 23)
b=V o - (24)
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and s is the range angle of the spacecrafl.

The number of state variables defined above is greater than the minimum
required to describe the system, which implies that they are not independent and
relations between than exist, like: X2 +XZ + X2 + X2 =1. This system is also subject

to the constraints in state and some of the the Keplerian elements of the initial and the
final orbit. All the parameters (gravitational force field, initial values of the satellite,
etc...) are assumed to be known,

4 - SUBOPTIMAL METHOD

In this approach (Prado, 1989; Biggs, 1978), a linear parametrization is used as
an approximation for the control law (angles of pitch (A) and yaw (B)):

a=ag+a'*(s-sg) (25)
B=PBo+P *(s-s5) (26)

where g, By, o', B’ are parameters to be found, s is the instantaneous range angle and
sg is the range angle when the motor is turned-on.

These equations are the mathematical representation of the "a priori” hypothesis
that o and B vary linearly with the "range angle” s. This is done to explore the
possibility of having a model easy to implement in terms of hardware development.

Considering these assumptions, there is a set of six variables to be optimized
(start and end of thrusting and the parameters ctp, By, o', B") for each "buming arc” in
the maneuver. Note that this number of arcs is given "a priori" and it is not an "output”
of the algorithm. This is the control available to maneuver the satellite.

By using parametric optimization, this problem is reduced to one of nonlinear
programming, which can be solved by several standard methods.

5-NUMERICAL METHOD

To solve the nonlinear programming problem, the gradient projection method
was used (Bazarra & Sheetty, 1979; Luemberger, 1973).

It means that at the end of the numerical integration, in each iteration, two steps
are taken:

i) Force the system to satisfy the constraints by updating the control function according

to:
"

Uy, =t~ Vi [VEVF] ' 7
where f is the vector formed by the active constraints;

ii} After the constraints are satisfied, try to minimize the fuel consumed. This is done by
making a step given by:
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u,,=u-+ EH (28)

where:
—_ 29
““Viwd @
d= v [vive e lvi) (30)

+

where I is the identity matrix, d is the search direction, J is the function to be minimized
(fuel consumed) and v is a parameter determined by a trial and error technique. The
possible singularities in equations (27) to (30) are avoided by choosing the error
margins for tolerance in convergence large enough.

This procedure continues until luM —u,| <¢ in both equations (27) and (28),

where ¢ is a specified tolerance.
6 - SIMULATIONS

To validate the algorith developed, a transfer maneuver is simulated. It is
assumed that the satellite start its motion in a parking orbit. This orbit has the following
data:

Semi-major axis of 7000 km, eccentricity of 0.00, inclination of 5 degrees, ascending
node of 35 degrees, mean anomaly of 90 degrees.

From this orbit, the satellite has to go to a final orbit, that has the following
orbital elements:

Semi-major axis of 26560 km, eccentricity of 0.0131, inclination of 55 degrees,
ascending node of 90 degrees, argument of perigee of 180 degrees, mean anomaly of
270 degrees.

It is also assumed that the initial mass of the satellite is 500 kg and the thrust
level to perform the maneuver is 20.0 N,

The results are shown in Table 1 for three different situations: a maneuver with
two, four and eight thrusting arcs. For each maneuver the table shows, for every
thrusting arc, sg(deg), the range angle of the instant the the engine is turned on; se(deg),
the range angle of the instant the the engine is tumed off; oty (deg) the initial value for
the pitch angle; Bg (deg) the initial value for the yaw angle; a' the value of the
derivative of the pitch angle with respect to the range angle; ' the value of the

derivative of the yaw angle with respect to the range angle; the fuel consumed by the
maneuver.
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Table 1
Maneuvers with 2, 4 and 8 "thrusting arcs"

Arc s(deg) Sa(deg) olg(deg) Bgldeg) o B Fuel-kg
1 12.9 17321 9.6 60.4 0.018 0.300
1950.3 37204 7.0 49.6 -0.210 -0.040 54.25

1 23.1 8532 0.76 55.9 0.027 0.058 o
2 10034 1843.2 11.2 41.5 -0.024 0199 | -
3 2033.2 29031 13.9 315 -0.008 0.321 —
4 30734 3983.2 8.2 40.8 -0.122 0.163 52.13
1 43.4 443.9 1.7 48.8 0.001 -0.043 e
2 613.3 1063.2 4.7 56.2 -0.121 0.100 .
3 1153.8 1573.8 34 49.6 -0.009 0,660
4 1713.2 21339 4.3 60.2 -0.127 00% | -
5 23253 27734 5.0 55.0 -0.010 -0.086 | -
6 29435 3363.3 4.7 4.9 0.121 0090 | -
7 3473.8 3503.8 33 39.8 -0.009 -0.463 —
g 4093.4 4513.6 2.8 55.2 -0.138 -0.099 50.03

In a second set of simulations the same maneuvers were performed with the
additional constraints that the control angles must be fixed (a’ = B’= 0); and, in a third
set, the constraint ap = 0 was added (only Bp is a free parameter for the control law).
The objective is to know how much more fuel is required to compensate a more simple
implementation of the control device and to satisfy the constraints of keeping some
equipment (antennas, for example) pointed toward Earth. Table 2 shows the comparison
in fuel expenditure for all cases studied.

Table 2
Fuel expenditure (kg) for all maneuvers simulated
Method 2 arcs 4 arcs 8 arcs
Suboptimal 54.25 52.13 50.03
Suboptimal (¢.'='=0) 55.23 53.17 51.17
Suboptimal(o\‘.'=[3'=(ln=0) 56.78 54.65 52.34

8 - CONCLUSIONS

Suboptimal control was explored to generate an algorithm to obtain solutions for
the minimum fuel maneuvers required to insert a satellite in a constellation.

The method have a good numerical behavior. Process time (CPU) is short
(around one minute, in a IBM-PC computer) for simple maneuvers, but when several
constraints and/or "thrusting arcs” are present the process time can be larger (around 15
niinutes in some cases).

The simulations show that an increase in the number of "thrusting arcs” reduce
the fuel consumed, a reduction of the order of 5% to 10%.
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They also show that the additional restrictions added to the problem generate an
increase in the fuel consumed, in the order of 2% to 4%.
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