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Field-induced superconductor-to-insulator transition in Josephson-junction ladders
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The superconductor-to-insulator transition is studied in a self-charging model for a ladder of Josephson
junctions in the presence of an external magnetic field. Path integral Monte Carlo simulations of the equivalent
(1+1)-dimensional classical model are used to study the phase diagram and critical behavior. In addition to a
superconducting (vortex-free) phase, a vortex phase can also occur for an increasing magnetic field and small
charging energy. It is found that an intervening insulating phase separates the superconducting from the vortex
phases. Surprisingly, a finite-size scaling analysis shows that the field-induced superconducting-to-insulator
transition is in the KT universality class, even though the external field breaks time-reversal symmetry.
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Superconductor-to-insulator transitions in Josephson junc-
tion arrays have attracted considerable interest.' Such ar-
rays can currently be fabricated in any desired geometry both
in one and two dimensions* with well-controlled param-
eters. When charging effects due to the small capacitance of
the grains or junctions dominate, strong quantum fluctuations
of the phase of the superconducting order parameter may
drive the system into an insulating phase at zero temperature,
leading to a superconductor-to-insulator transition as a func-
tion of charging energy or an external magnetic field. In two
dimensions, the universality class of these transitions have
already been investigated in detail numerically,® both in re-
lation to experiments®* and theoretical predictions.”” Nev-
ertheless, there are also remarkable quantum phase transition
scenarios'” that can take place in a Josephson-junction ladder
in a magnetic field as in Fig. 1 which have not been investi-
gated experimentally or numerically. Interestingly, a
Josephson-junction ladder provides the simplest one-
dimensional version of the array allowing the study of com-
mensurability effects due to the flux lattice'®'® or charge
frustration,'* in the presence of quantum fluctuations.

An important aspect of the Josephson-junction ladder in
Fig. 1 is the approximate relation to the quantum sine-
Gordon model,' as first shown by Kardar.!® For an increas-
ing magnetic field, there is a transition from a (vortex-free)
superconducting phase to a vortex phase, where flux pen-
etrates the ladder, in the absence of quantum fluctuations.
This transition is the analog of the commensurate-
incommensurate transition'® described by the sine-Gordon
model. For small fields, the phases in different branches of
the ladder are locked to each other while in the vortex state
exponentially interacting kinks (vortices) appear that unlock
the phases leading to a one-dimensional vortex lattice. The
inclusion of quantum fluctuations due to charging effects
leads to the interesting prediction that an insulating phase
should occur in the vicinity of this transition and therefore a
direct transition from the (vortex-free) superconducting
phase to the vortex lattice phase is not possible, even for
small charging energies. So far, this remarkable collective
effect resulting from small capacitances in the ladder has not
been observed experimentally, or even numerically. The
quantum critical behavior is also of great interest. While at
the zero field the superconductor-to-insulator transition is in
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the Kosterlitz-Thouless universality class,'"!7 the field-
induced superconductor-to-insulator transition could be, in
principle, in a different universality class, since the magnetic
field breaks the time reversal symmetry and the
commensurate-incommensurate transition in the sine-Gordon
model is in a distinct universality class.'>

In this work, we use path integral Monte Carlo (MC)
simulations of the equivalent (1+1)-dimensional classical
model to study the phase diagram and critical behavior of the
Josephson-junction ladder. The exchange MC method (paral-
lel tempering)'® is used to determine more accurately the
scaling behavior. It is found that an intervening insulating
phase separates the superconducting from the vortex phases,
as shown in Fig. 2, in agreement with Kardar’s prediction.'?
Thus, for an increasing field a single transition to an insulator
occurs for charging energies in the range gz<g<g, while
for lower charging energies the superconductor-to-insulator
transition is followed by a transition into a vortex phase.
Surprisingly, a finite-size scaling analysis shows that the
field-induced superconducting-to-insulator transition ac is in
the KT universality class.

We consider a periodic Josephson-junction ladder, as in-
dicated in Fig. 1, where charging effects are dominated by
the capacitance to the ground of each grain,'” and described
by the Hamiltonian'®

FIG. 1. A schematic representation of a periodic Josephson-
junction ladder. Superconducting grains (squares) with charging en-
ergy E, are coupled to the nearest neighbors by intra- (E,) and
interchain (E,) Josephson couplings (crosses). The frustration f cor-
responds to the magnetic flux through the elementary cell, f
=®/®Py, in units of the flux quantum Py,
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FIG. 2. Phase diagram of the ladder obtained from path integral
MC simulations showing the (vortex-free) superconducting phase
(S), the insulating phase (I), and the vortex phase (V), as a function
of frustration f and ratio of charging to Josephson energy g
=(E./E,)""* for E,/E,=2. The critical field f, at g=0 was obtained
separately, by considering the ground state of the ladder in the ab-
sence of quantum fluctuations (E,=0). The lines are just guides to
the eye.
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The first term in Eq. (1) describes quantum fluctuations in-
duced by the charging energy E.=4¢?/C of a non-neutral
superconducting grain located at site r, where e is the elec-
tronic charge and C is the effective capacitance to the ground
of the grain, while the second term is the usual Josephson-
junction coupling between nearest-neighbor grains described
by phase variables 6,. The effect of the applied magnetic
field appears through the bond variables A,.

=Qm/dy) [ :,Adr, where A is the vector potential due to the
external magnetic field B and the gauge-invariant sum
around an elementary cell of the ladder is given by X,
=2xf, with f=® /P defining the frustration parameter. It is
sufficient to consider f in the range [0, 0.5].

In order to study the effects of the magnetic field on the
superconductor-to-insulator transition and the critical behav-
ior, it is convenient to use an imaginary-time path-integral
formulation of the model.? In this formulation, the one-
dimensional (1D) quantum problem of Eq. (1) maps into a
2D classical statistical mechanics problem with the extra di-
mension corresponding to the imaginary-time direction. The
time axis 7 can be discretized in slices A7 and the ground
state energy of the quantum model corresponds to the re-
duced free energy of the classical model, per unit length in
the imaginary time direction. After rescaling the time slices
appropriately in order to get space-time isotropic couplings,
the resulting classical partition function is given by Z
=Tr{9}e‘H, where the reduced classical Hamiltonian can be
defined as

1
H=— —2 cos(0, ;= 0.1 )
8 T.j

+cos(0; ;= 0., ;) +cos(0,;— 0, — 7f)

’
+1,j

E
+cos(0, ;= 0., + mf) + EX cos(b,;—6,) . (2)
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In Eq. (2), # and @’ denote the phases in the upper and lower
branches in Fig. 1, j and 7 label the spatial and time direc-
tions, respectively, and the ratio of the charging energy to the
Josephson coupling g=(E,/E,)"? plays the role of an effec-
tive temperature in the 2D classical model. The equation (2)
corresponds to a gauge choice where the vector potential A is
parallel to the ladder, with opposite values in the upper and
lower branches.

We carry out MC simulations using the 2D classical
Hamiltonian in Eq. (2) regarding g as a temperaturelike pa-
rameter and employing the standard Metropolis’ algorithm to
generate  the equilibrium  distribution. Near the
superconductor-to-insulator transition, we use the exchange
MC method (parallel tempering)'® to determine more accu-
rately the scaling behavior of various physical quantities. In
fact, this method is known to reduce significantly the critical
slowing down near the transition. In this method, many rep-
licas of the system with different couplings g in a range
above and below the critical point are simulated simulta-
neously and the corresponding configurations are allowed to
be exchanged with a probability distribution satisfying de-
tailed balance. Simulations are performed in system sizes
with equal spatial and time linear length L. This choice of the
aspect ratio of the system assumes implicitly that the dy-
namic critical exponent z characterizing the superconductor-
to-insulator transition is close to z~ 1. In general, a quantum
phase transition is characterized by intrinsic anisotropic scal-
ing with different diverging correlation lengths & and & in
the spatial and time directions,? respectively, related by the
dynamic exponent z as &, &. Our choice is justified by the
analysis discussed below, showing that the scaling behavior
is in fact consistent with z=1.

To locate the superconductor-to-insulator transition as a
function of the charging energy and magnetic field, we have
performed MC calculations of the helicity modulus (phase
stiffness), p and p,, in the spatial and time directions. In the
superconducting phase these quantities should be finite, re-
flecting the existence of phase coherence, while in the insu-
lating phase they should vanish in the thermodynamic limit.
Figure 3(a) shows the behavior of the helicity modulus as a
function of frustration for a fixed value of g, below the criti-
cal value corresponding to f=1/2 frustration in Fig. 2, gp
~0.96. The helicity modulus remains finite at small fields
and at fields close to f=1/2, where a superconducting phase
is expected,12 but at intermediate fields reach small values
that decreases with increasing system sizes. Figure 3(b) also
shows the behavior of the energy fluctuation (the specific
heat of the classical model) C as a function of frustration
showing two peaks near the two critical fields defining the
region where the helicity modulus reach small values. The
behavior in Figs. 3(a) and 3(b) indicate that there are two
superconducting-to-insulator transitions for increasing f with
an intervening insulating phase corresponding to vanishing
phase stiffness for large system sizes L. Performing the same
calculations for different couplings g, we have constructed
the phase diagram in Fig. 2 for E,/E,=2 showing three dif-
ferent phases separated by the transition lines AC and BC
with the insulating phase extending between the supercon-
ducting vortex-free phase S and vortex phase V for g<<gp.
The critical field f,. at g=0 was obtained separately, by con-
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FIG. 3. Phase stiffness in spatial p and imaginary time p, direc-
tions (a) and energy fluctuation C=({H%)—(H)?)/L?* of the equiva-
lent classical model [Eq. (2)], as a function of frustration f, for a
constant value of the ratio g=0.9. The double peaks in C indicate
two transitions for increasing f with an intervening insulating phase
corresponding to vanishing phase stiffness.

sidering the ground state of the ladder in the absence of
quantum fluctuations (E,=0). Using simulated annealing to
obtain the ground state, f. was determined as the value of f
where flux first penetrates the ladder for increasing f. Note
that, due to the long runs required to reach proper equilibra-
tion, the lowest nonzero value of g accessible within the
present MC calculations 1is g~%g3. Therefore, this result
does not rule out the possibility that the two transitions lines
in Fig. 2 merge at a lower value of g into a single line ending
at f., in which case a direct transition from S to V phases is
possible for sufficiently small g. We have performed addi-
tional calculations with various ratios E,/E, and found that
the insulating phase is more clearly visible for E,/JE.> 1.5,
while at lower values, the transition lines AC and BC are
difficult to resolve at low values of g.

The intervening insulating phase between the supercon-
ducting phase at low fields and vortex phase at higher fields
was predicted analytically in an earlier work by Kardar!®
using an approximate relation of the Hamiltonian of Eq. (1)
with Gaussian and sine-Gordon models describing fluctua-
tions of the phase variables ¢=(6'+6)/2 and ¢=(60"-0)/2,
respectively, where 6" and € denote the phases in the upper
and lower branches of the ladder in Fig. 1. This approxima-
tion allows one to calculate the power-law correlation func-
tions for 6 and €', C(r)o 1/r", describing the superconduct-
ing and vortex phases, using the exact results for the sine-
Gordon model.!> However, the assumed Gaussian
approximation leaves out space-time vortices that are respon-
sible for the insulating phase, where the correlation function
decays exponentially. The insulating phase was then studied
by adding the effects of space-time vortices “by hand”
through the usual KT criterion #<<1/4 to determine the
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bound of stability of the power-law correlated phase. The
results showed that the insulating phase expected for large g
extends all the way to g=0 at f... The phase diagram in Fig.
2 is consistent with this prediction, but as mentioned previ-
ously a direct transition between S and V phases at suffi-
ciently small g cannot be ruled out within the present calcu-
lations.

Although a KT-like stability criterion was used in Kard-
ar’s work!? to determine approximately the location of the
transitions to the insulating phase in the phase diagram, the
nature of the transition cannot be determined by such an
argument because it is based in decoupled Gaussian and
sine-Gordon models. Like in a similar analysis employing
the KT criterion for the sine-Gordon model,'® applied to ad-
sorbed layers, which also predict an intervening disordered
phase near the commensurate-incommensurate transition for
low-order commensurate phases, the universality class of the
commensurate to disordered phase has to be determined by
other methods based on symmetry considerations, mapping
to a solvable model or numerical simulations.

The universality class of the field-induced super-
conductor-to-insulator transition along the line AC in Fig. 2
is of particular interest. At zero magnetic field (f=0) the
transition as a function of charging energy is in the KT uni-
versality class'"!7 while at nonzero magnetic fields, in prin-
ciple, a different universality class is possible since the mag-
netic field breaks the time-reversal symmetry. In addition, the
relation of the ladder model of Eq. (1) with the quantum
sine-Gordon chain'” also suggests the possibility of a univer-
sality class different from the KT transition at zero field since
the superconductor-to-insulator transition in the ladder is
driven by the commensurate-incommensurate transition in
the sine-Gordon model, which is in a distinct universality
class.!>1® In order to study the critical behavior of the tran-
sition line AC in detail we have investigated the finite-size
behavior of the phase correlation lengths & and &, in addition
to the helicity modulus p and p, near the transition line AC.
The correlation lengths &(L) and é/L) in the finite-size sys-
tem can be obtained from a second moment calculation using
the correlation function as?

&L)= [S(0)/S(k) — 112, 3)

2 sin(k/2)

where S(k) is given by the Fourier transform

S(k) = 2 <ei(5’r__,'—97,j+x >eik"' (4)

The wave vector k=2m/L is the smallest value allowed in
the finite system. Similar expressions are used for the corre-
lation length &(L), in the time direction.

Figure 4 shows the finite-size behavior of the correlation
length scaled by the system size L near the transition line AC
in Fig. 2, as a function of g, for a fixed value of frustration
f=0.2<f. In the insulating phase for g> g, the correlation
length is finite and therefore &/L and &./L decrease with
system size and should vanish in the limit L — c° while at the
transition and in the superconducting phase, where the sys-
tem is critical, /L should approach a finite value depending
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FIG. 4. Behavior of the scaled correlation length ¢./L (a) and
&/L (b) across the superconductor-to-insulator transition line AC in
Fig. 2 at a fixed nonzero frustration f=0.2, for different system
sizes L.

of g. The behavior in Figs. 4(a) and 4(b), showing that both
&/L and &./L merge for low values of g at approximately the
same critical value g.~ 1.3 is consistent with a transition in
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FIG. 5. Behavior of the phase stiffness p, (a) and p (b) across
the superconductor-to-insulator transition line AC in Fig. 2 at a
fixed nonzero frustration f=0.2, for different system sizes L.
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FIG. 6. Behavior of the quadratic average of the phase stiffness
(pp,)'"? across the superconductor-to-insulator transition line AC in
Fig. 2 at a fixed nonzero frustration f=0.2, for different system
sizes L. A dotted line corresponds to the universal jump prediction
for a KT transition.

the KT universality class, where the correlation length di-
verges exponentially & etle=sd'" I general, for a power-
law correlation length &x|g—g |72, the dimensionless quan-
tity &€/L is expected to cross at the transition for different
system sizes?® and satisfy the scaling relation &/L=G[(g
—g.)L""] near the transition. Then, the slopes s(L) of the
curves &/L for different L are determined by the critical ex-
ponent v as s(L)=(d/dg)(£/L)=L"", evaluated near g . The
exponential correlation length of the KT transition corre-
sponds to v— o, which implies that s(L) should be L inde-
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FIG. 7. Numerical fit of the phase stiffness p according to the
Weber and Minnhagen scaling relation with two free parameters for
system sizes L=6,8,12,16,18,24, at different couplings g across
the superconductor-to-insulator transition. (a) The estimate of the
jump pg/g,. from the fitting parameter and (b) error estimate of the
fit. The location of the minimum in (b) determines the critical cou-
pling g.. The dotted line in (a) is the value of the universal jump for
a KT transition.
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pendent and therefore the curves &/L for different system
sizes should merge at the critical point, as, in fact, observed
in Fig. 4.

The finite-size behavior of the helicity modulus p and p,
is also consistent with a KT transition. As shown in Fig. 5, p
and p, also merge for decreasing g at approximately
the same critical g.. At the transition and in the supercon-
ducting phase, where the system is critical, these quantities
should scale as>® poc L>4~% and p,* L7, in d spatial dimen-
sions. Since p, and p in Figs. 5(a) and 5(b) approach finite
values, independent of L in this regime, the dynamic expo-
nent is z=1 for the present case, where d=1. This value of
the dynamic exponent z means that the line of Gaussian fixed
points can be made isotropic, even though the phase stiff-
ness, p and p,, are different in the spatial and time directions.
In fact, by a suitable rescaling of the coordinates in the spa-
tial and time directions, the stiffness of the renormalized iso-
tropic Gaussian model can be written as p=(pp,)">. If the
transition is in the KT universality class, then a universal
jump?! is expected for p as a function of g at the transition
given by p=2/g. Figure 6 shows that the finite-size behav-
ior of p appears consistent with the expected universal jump
for the phase stiffness. For each system size, the intersection
of the data with the dotted line representing the universal
jump prediction provides an upper bound estimate of the
critical coupling. A more quantitative determination of the
critical coupling and the corresponding jump in the phase
stiffness can be obtained by the Weber and Minnhagen scal-
ing analysis, which has been introduced before as an accurate
method of locating the critical coupling and the universal
jump of the KT transition for the ordinary XY model.?> The
phase stiffness at the transition should have a logarithmic
correction given by*?
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(5)

1
D=pe 14—,
plL) pR( 21nL+C)

where C is an undetermined constant and the universal jump
implies pg=(2/m)g.. Using data for different system sizes,
the best numerical fit according to this scaling form per-
formed for different values of the coupling g can then be
used to locate the transition and determine the jump. Treating
both pp and C as free parameters, we have performed this fit
using data of the quadratic-averaged phase stiffness g for
smaller system sizes L=< 24, where the data is more accurate.
As shown in Fig. 7, the value of the jump near the location of
the minimum in the fitting error for different couplings g, is
indeed consistent with the value expected for a KT univer-
sality class.

In conclusion, we have studied the superconductor-to-
insulator transition in a ladder of Josephson junctions under
an applied magnetic field by path integral MC methods. We
found clear numerical evidence in the phase diagram of an
intervening insulating phase between the superconducting
and vortex phases, in good agreement with an earlier predic-
tion by Kardar.'® In addition, we find that the field-induced
superconducting-to-insulator transition is in the KT univer-
sality class. In the vortex phase, commensurability of the
vortex lattice and the ladder'"!* will strongly depend on the
frustration parameter f. Since Josephson-junction arrays can
currently be fabricated in any desired geometry and with
well-controlled parameters, our numerical evidence of the
intermediate insulating phase and the universality class of
the transition should be interesting enough to motivate ex-
periments in these intriguing systems.
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