
Visual Environment for High Performance Real-Time 3D Reconstruction

Célio E. Morón1, Lilian N. Faria1, Nelson D. A. Mascarenhas1,
José H. Saito 1, Reinaldo R. Rosa2, Hanumant S. Sawant2

1 Federal University of São Carlos - UFSCar

Computer Department
São Carlos - SP - 13565-905 - Brazil

{celio, lilian, nelson, saito}@dc.ufscar.br
2 National Institute for Space Research – INPE – LAC/DAS

São José dos Campos - SP - 12201-970 - Brazil
{reinaldo@lac.inpe.br, sawant@das.inpe.br}

Abstract

We are carrying out a development of a whole system for
processing solar images in a high performance parallel
system. The main objective is to create the initial
conditions for studying and forecasting the solar
explosions in real time. Due to the high computational
costs involved in the processing, visualization and
analysis of a great amount of solar images, a high
performance computer system becomes necessary to carry
out the forecast of solar explosions. As a joint effort
between the Department of Computer Science at Federal
University of São Carlos (UFSCar), the Astrophysics
Division (DAS) and Associated Laboratory for Computing
and Applied Mathematics (LAC) at National Institute for
Space Research – INPE, a high performance parallel
system was developed with capacity to support realistic
applications, involving a reasonable amount of parallel
processing. The forecast of solar explosions is important
as they may cause serious perturbations in terrestrial
communication systems. A significant limitation for the
development of parallel real -time systems is the lack of
adequate programming tools, mainly for supporting the
final stages of the development life cycle. This work
presents a development environment, called Visual
Environment for the Development of Parallel Real-Time
Programs, that supports the design and implementation of
parallel real-time applications executed with the support
of a parallel kernel . This paper shows how this
Environment was used to carry out the 3D Reconstruction
of Solar Images.

1. Introduction

With the advance of space technology, solar images
with high spatial and temporal resolution, captured by
satellites equipped with X-ray telescopes, revealed
structures in the solar atmosphere, known as coronal
loops [5, 6]. Coronal loops (Figure 1) consist of the
magnetic field lines that connect magnetic regions on the
solar surface, holding a hot moving plasma inside a tube
having an arc shape.

The coronal loop can become unstable, and suspicious
to be able to cause solar explosion that is nothing more
than a sudden release of great amounts of stored magnetic
energy in the coronal loop. These explosions emit
energetic particles that may cause serious perturbations in
terrestrial communication systems, to satellites and energy
transportation system. Thus it is important to investigate
the dynamics of coronal loops in order to improve the
capability of predicting solar explosions.

Figure 1 – Coronal loop.

Motivated by the need to forecast these explosions,
efforts have been made in order to allow the
tridimensional reconstruction of the coronal loop from 2D
images obtained through satellites.

The DC/UFSCar acquired an Atlas systems , a parallel
machine based on DSPs (Digital Signal Processors),

composed by one host PC Pentium and four DSPs using
the Virtuoso real-time operating system.

In order to offer support to the development of parallel
programs in the Atlas system using the kernel Virtuoso, a
Visual Environment for the Development of Parallel Real-
Time Programs [2, 4] was developed at the Department of
Computer Science at UFSCar. Using this tool, an
application for 3D reconstruction of X-ray tomographic
images of the solar atmosphere was implemented to
execute in a parallel machine using DSPs.

The Visual environment is aimed at supporting the
generation of source code for the programs executed in a
parallel machine. The applications are built through the
construction of a graphical model, which is used to
integrate the other tools from the visual environment. This
model is represented by a graph, where nodes denote the
data structures that compose a parallel program, and
arrows denote the communication operations and
synchronization between the structures. The information
in the graphical model can be complemented with textual
descriptions, that is, segments of code written by the user.
The application's graphical and textual information is
stored in the project's file. Based on this information, the
tool automatically generates the source code of the
application and the makefiles, which are used for the
compilation and linkage of the source code produced.

This paper is organized as follows. In section 2, the
3D reconstruction of coronal loops is presented. Section 3
describes the parallel Atlas system and the Visual
Environment for the Development of Real-Time Parallel
Programs used for the development of the parallel
application. Section 4 describes a parallel 3D
reconstruction method of coronal loops. Section 5
presents the results. Finally, Section 6 presents the
conclusions.

2. 3D reconstruction of coronal loops

X-ray tomographic images captured by telescopes on
board of the Yohkoh satellite show the energy emission of
a magnetic loop in two different depths of the solar
atmosphere. Figure 2 shows the X-ray images with a
resolution of 128x128 pixels, with information of the top
and bottom of the loop, respectively.

Figure 2. Top and bottom images of the loop
observed by the Japanese satellite Yohkoh.

In order to reconstruct the 3D structure of the coronal
loop from these X-ray tomographic images, a
reconstruction method is used to generate the intermediate
images of the loop. However, as there is no information
about the tridimensional structure of the loop between the
top and bottom images, conventional methods of image
interpolation do not reconstruct the magnetic loops,
because the shape of the transversal sections between the
top and bottom images must gradually be modified to
generate the loop.

In order to solve this problem, a reconstruction
method was developed to reconstruct the coronal loop
using image metamorphosis [8, 9] with a transition
function controlled by a Bezier curve in arc shape to
generate the intermediate images.

Image metamorphosis (or image morphing) is the
gradual transformation of shape and color of an image
into another one [9]. In order to obtain the 3D
reconstruction of the loop, the deformation of the top and
bottom images is controlled by a Bezier curve that
approximates the shape of the loop (Figure 3).

Figure 3. Original images and Bezier curve.

Figure 4. 3D reconstruction of a loop using
image morphing with a Bezier curve.

Due to the need of obtaining the 3D reconstruction of
the coronal loops within a reasonable time (to estimate
and analyze the physical parameters involved in the
forecasting of solar explosions), the reconstruction
method was implemented to execute in the high
performance parallel system described in the next section.
Figure 4 shows the final result of the 3D reconstruction of
a loop using image morphing with a Bezier curve.

3. Parallel system based on DSPs

A parallel system [3] is being developed by the
Department of Computer Science at UFSCar in
cooperation with the Astrophysics Division at INPE,
aimed at the processing, visualization and analysis, in
real-time, of 3D tomographic images of the solar
atmosphere.

The ATLAS™ (Figure 5) system [1], includes
hardware and software to implement and execute
applications that need high performance and digital signal
processing. This system is composed by one host PC
Pentium with Windows NT, and four processors
ADSP -21160 (Hammerhead SHARC™) from Analog
Devices. These high performance signal processors are
used for communications, graphics, and imaging
applications, which combine floating-point operations
with multi-processing support.

Figure 5. Atlas parallel system.

The ATLAS™ system is shipped together with the

fully installed Virtuoso™ real-time operating system
(RTOS) from Wind River Systems, Inc.

3.1. Virtuoso™ RTOS

The Virtuoso kernel (Virtual Single Processor
Programming System) [7] is a programming tool that
offers support for the development of real-time
applications.

The applications developed using Virtuoso are divided
into tasks; that is, independent program modules that can
interact with other tasks through communication and
synchronization services. In single-processor systems,
Virtuoso uses the multitask concepts in order to simulate
simultaneous execution of processes. In multi-processor
systems, the tasks can be easily distributed among the
different processors, until the real-time requirements are
met.

The Virtuoso kernel is an operational system that
concentrates only the objects and services necessary for
the development of real-time applications in multi-
processor systems. Each microkernel object – task,

semaphore, resource, and so on – has specific attributes
and supports a set of services.

The main microkernel objects are: tasks, semaphores,
mailboxes, queues, channels, memory partitions,
resources and timers.

Task - A task is a program module that exists to
perform a defined function or a set of functions. A task is
independent of other tasks but may establish relationships
with them.

Semaphore - Semaphores are used to synchronize two
tasks and/or events. A signalling task will signal a
semaphore while there will be another task waiting on that
semaphore to be signalled. One can wait on a semaphore
with a time-out or return from the wait if no semaphore is
signalled. This can be useful to make sure that the task
does not get blocked.

Mailbox - Messages are used between a sender and a
receiver task. This is done using a mailbox. The mailbox
is used as an intermediate agent that accepts messages.
Messages work with arbitrary sizes and allow a selective
transport between sender and receiver.

Queue - Queues are also used to transfer data from a
task to another one but here the data with fixed size is
actually transferred in a buffered and time -ordered way.
The advantage is that no further synchronization is
required between the enqueuing and the dequeuing task,
allowing the enqueuer to carry on.

Channel - A channel consists of queued writer(s) and
reader(s) and an optional channel buffer. In the
unbuffered case, data with arbitrary size will flow directly
from writers to readers. When using the option of channel
buffers, data will probably first be copied to the buffer
before being finally transferred to the reader. Channels
should be thought of as software ‘pipes’ that allow one
task to put data in and another one to take it out. In
addition, channels allow communication between a task
and an external program.

Memory - In any system, memory is a resource for
which tasks compete. Memory management is an area
where various techniques can be applied. Many
techniques are very fast and use elegant models for
allocation and deallocation of memory.

Resource - The resource protection calls are needed to
assure that the access to resources is done in an atomic
way. Unless the processor can provide real physical
protection, the locking and unlocking of a resource is in
fact a convention that all tasks using a resource must
follow.

Timer - This class of calls allows an application task
to use a timer as part of its function. From them on, the
timer can be started to generate a timed event at a
specified moment (one shot) or interval (cyclic). This
event can then signal the associated semaphore. Timers
are mainly used to regulate the execution of tasks in
relation to a required timely behavior.

3.2. Visual Environment for the Development of
Real-Time Parallel Programs

The Visual Environment for the Development of Real-
Time Parallel Programs is an integrated programming
environment for the development of applications executed
in a parallel machine.

In the Visual Environment, applications are built
through the construction of a graphical model. This model
is represented by a graph, where nodes denote the data
s tructures that compose a parallel program (tasks, signals,
resources, mailboxes, etc.), and arrows denote the

communication and synchronization operations between
the structures.

The graphical notation used by the Visual
Environment tries to integrate the three basic components
(functional, behavioural and structural) of a parallel real-
time program into a single graphical representation [2, 4].
As in most visual environments, this representation is
based on graphs composed of nodes (tasks) and arcs
(message flow). However the graph is extended in order
to represent also the data structures that control the
communication and synchronization between the
processes (mailboxes, channels, semaphores, etc.).

Figure 6. Main interface of the Visual Environment for the Development of Real-Time Parallel Programs

The information in the graphical model can be

complemented with code written by the user. Based on
this information, the Visual Environment automatically
generates the source code of the application.

The programmer defines the microkernel objects –
tasks, semaphores, resources, and so on – and distributes
these objects among the more convenient processors, until
the real-time requirements are met. Figure 6 shows a
simplified graphical representation of the parallel program
in the Visual Environment

4. Parallel program for 3D reconstruction of
coronal loops

The application for 3D reconstruction of coronal loops
is composed by a main program running in the host PC of
the At las parallel system, and a 3D reconstruction parallel
program running in the four DSPs. The communication
between these programs is carried out through a bi-
directional communication pipe.

The 3D reconstruction parallel program, implemented
in the programming model based on tasks and channels, is
divided into five tasks (MASTER, TASK1, ... , TASK4).

Task MASTER distributes the original images of the
loop between the tasks TASK i, where each task TASKi
executes in a different processor, in order to
simultaneously generate a subgroup of intermediate
images.

The tasks are interconnected by channels (PIPE,
CHANNEL1, ... , CHANNEL4). The external channel
(PIPE) allows a bi-directional communication between
the main program at the host PC and the tasks on the
DSPs of the parallel machine. The other channels carry
out the inter-processor or intra-processor communication
between tasks.

Figure 7 illustrates the data flow of the 3D
reconstruction application.

Figure 7 – Flow data of the 3D reconstruction application.

When the main program is executed, a pipe for

external communication is created, and the parallel
program initiates the execution. Task MASTER opens a
connection with the pipe and waits for the main program
to send the original images of the loop.

When the user requests a 3D reconstruction, the main
program sends the original images for task MASTER,
who in turn, distributes these images between the other
tasks using the internal channels. Each task TASKi waits
until receiving the original images to initiate the
processing.

During the generation of the intermediate images
subgroup, tasks TASKi send the intermediate images to
the main program through the communication pipe. The
main program stores the intermediate images to obtain a
volume dataset. After the 3D reconstruction, the
tridimensional structure of the coronal loop can be
visualized through an interface of volume visualization.

After that, new requests of 3D reconstruction can be
executed. Finally, when the main program is finished, the
parallel program closes the pipe and ends the execution.

5. Results

The 3D reconstruction parallel program was executed
for performance analysis in the parallel machine with four
processors. Then we estimate the result for 8, 16, 32, 48
and 64 processors.

Based in these estimates, we noticed that up to 16
processors the efficiency of the program basically keeps
constant. However, due to the increasing of overhead and
the communication bottleneck, the efficiency tends to
decrease and the speedup does not increase linearly as the
number of processors is increased (Figure 8 and 9).
Nevertheless, the estimated values show that the
algorithm is scalable allowing an increase in the number
of processors.

0

0,2

0,4

0,6

0,8

1

14 8 16 32 48 64

Number of Processors

E
ff

ic
ie

n
cy

Figure 8 – Efficiency x number of processors.

0

10

20

30

40

50

60

14 8 16 32 48 64

Number of Processors

S
p

ee
d

u
p

Figure 9 – Speedup x number of processors.

Based on this analysis, it can be concluded that,
increasing the number of processors to 32, the same 3D
reconstruction can be obtained in about 2.5 seconds. The
next step is to begin the work of optimizing our software
as we believe that the processing time can be further
decreased.

6. Conclusions

A significant limitation for the development of parallel
real-time systems is the lack of adequate programming
tools, mainly for supporting the final stages of the
development life cycle. CASE tools represent an
alternative in this direction, but require development to
follow a single methodology from beginning to end.

This paper presented a Visual Environment that was
used to develop a 3D reconstruction of coronal loops. Due
to the need to obtain the 3D reconstruction of the coronal
structures in real-time for the forecasting of solar
explosions, a parallel program was implemented to
execute in the Atlas system with four DSPs. The parallel
program was developed using the Visual Environment for
the Development of Real-Time Parallel Programs, which
offers support for the development of applications using
the Virtuoso kernel. The graphical notation used by the
Environment integrates the three basic components of a
parallel real-time system (behavioural, structural and
functional), into a single graphical representation,
facilitating therefore the understanding of the system as a
whole.

Preliminary results of the scalability analysis show
that the number of processors can be increased. The 3D
reconstruction using the Atlas system with 4 processors
spent 19.28s, with the speedup of 3.93, nearly linear.

The 3D reconstruction parallel program was executed
for performance analysis in the parallel machine with four
processors. The values for the execution time were
measured only for one, two and four processors. For the
higher number of processors, the values were calculated
by an estimate of the execution time. Our estimation
shows that using 32 processors , the same reconstruction
can be carried out in 2.5 seconds. We are working now in
decreasing this time further.

Acknowledgments

We thank the financial support offered by the three
Brazilian government agencies: FAPESP (Foundation for
the Support of Research for the State of São Paulo),
FINEP (Financing Body for Studies and Projects) and
CNPq (National Council for Scientific and Technological
Development).

References

[1] Eonic Atlas System User Guide: Atlas2-HS V1.1, Eonic

Solutions.

[2] C.E. Morón et al., “A visual environment integrating

design, implementation and debugging in parallel real-
time systems”, 12th Brazilian Symp. on Computer
Architecture and High Performance Computing , SBAC-
PAD, Brazil, Oct. 2000.

[3] C.E. Morón et al., “Parallel Architecture using DSPs”,

Proc. 9th Brazilian Symp. on Computer Architecture and
High Performance Computing, SBAC-PAD’97, Brazil,
1997, pp. 605-608.

[4] J.R.P. Ribeiro, N.C. da Silva, and C.E. Morón, “A Visual

Environment for the Development of Parallel Real-Time
Programs”, Lecture Notes in Computer Science, vol. 1388,
1998, pp. 994-1014.

[5] S. Tsuneta and J.R. Lemen, “Dynamics of the solar

coronal observed with the Yohkoh soft X-ray telescope”,
Physics of Solar and Stellar Coronae , 1993, pp. 113-130.

[6] Y. Uchida, “New Aspects of Solar Coronal Physics

Revealed by Yohkoh”, Physics of Solar and Stellar
Coronae, 1993, pp. 97-112.

[7] Virtuoso™ User Guide for Version 4.2, Wind River

Systems, 2001.

[8] G. Wolberg, Digital Image Warping , IEEE CS Press, Los

Alamitos, CA, 1990.

[9] G. Wolberg, Image morphing: a survey. The Visual
Computer Journal, 14, pp. 360-372, 1998.

