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ABSTRACT

In this work we developed a comparative study between
many resolution methods of the exponential matrix from an
inequality extracted from a specific Liapunov function to
obtain information about some stability regions for
sampled-data control systems as a function of the sampling-
time and the plant used. We used many methods from the
literature like: power series, Cayley-Hamilton theorem,
Lagrange-Sylvester theorem, eigenvalues/ eigenvectors
decomposition and Padé rational approximation. The main
objective of this study is to choose the most appropriate
method for the resolution of this important problem and to
use the results found as a basis for future works.

MATRIX EXPONENTIAL MCLAURIN-TAYLOR
(MT) AND PADE APPROXIMANTS

Here we will do a simple explanation about the MT and
Padé approximation techniques starting with the MT series
and showing how is the Padé¢ algorithm with examples.
Basically, a continuous function f(t) can be expressed as a
MT series like expressed in Eq.1.
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The N2 order MT approximation of f(t) if clearly given by,
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The Padé rational approximation is a natural extension of
the MT and Taylor series that make use of the MT
approximation in its calculations. The Padé method uses
rational polynomials and it is much more accurate than the
MT.

Basically, the Padé algorithm is summarized in the
following expression making use of Eq.2:
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Where the objective is to find a linear system that solve the
g; and p; coefficients, having N=L+M, and finally express
the Padé approximation of degree [L/M] of f(t) as,
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Example 1: if f(t)=e¢™ evaluate the Padé approximation

f[3/2]-
The MT expansion will be of order N=L+M=5,
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that results the following linear system of N=5 equations:
o .| Po =1

1 _. pi=q -1

2._ Pr=%—q )

+

~ ~ ~ ~ ~ ~
W
=S
(98]
[
|
N
(38
+
=
[\)
[
AN

w B
| BN
PQ (58]
|

+ =
=R o
+

<
|

[a)

That gives,
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Finally, the Padé approximation will expressed by,
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Some comparative results of the MT and Padé
approximations for the exponential e* are shown in figure 1
for 5™ MT approximation and Padé’s [1/1],[3/2] and [3/3].
The approximation errors between these methods and e are
disposed in figure 2. From these two figures can we see that
how is inaccuracy and inappropriate the MT method and
how better is the Padé technique.

Example 2: given f(s) = ¢*" show that f[1 ) corresponds

to the Tustin (bilinear or trapezoidal) extrapolate mapping.
For f[l n L=M=1, N=2. The “T” here is the sampling-
period of A/D and D/A converters.

The 2™ order MT for this case is: 1+ T + s’ . Applying
this on the Padé¢ algorithm,
{1 +Ts + T;SZ }(l + qlt) = po+pit
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that produces the linear system,
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That gives,
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Finally, the Padé approximation is,
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Calling z := ¢" we have,
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The Tustin extrapolate mapping is found isolating “s”
above,
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That represents the analog-discrete mapping as explained in

[11].
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Figure 1: approximations for ™.
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Figure 2: error on approximations of exponential.
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NUMERICAL INVESTIGATIONS OF STABILITY

In the later SAE 2004 work of these authors [1] it was
presented a theorem that determinates a stability rule for a
general sampled-data system through its dynamics matrix,
being the control action function of the state velocity
feedback vector.

The main result was,

min P > max (e””) Pe™’ Eq5
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Where P is a positive-definite matrix.
That is the same of,
p[(e“ )'Pe“]< mﬂinP Eq 6

where p is the spectral radius of the matrix between
brackets.

As the first part of this present work we understood how is
accurate the Padé method to calculate approximations for
the exponential. For this manner we will explore
approximations of this nature to present numerical results
for the inequality presented.

In this work we have used Padé [3/3] (third order) and Padé
[8/8] (eighth order) approximations of the matrix

exponential e’ and it was sufficient to shown the
presence of stability/instability regions of the sampled-data
control system as a function of the sampling-period T. The
dynamics matrix A in companion form used was

5

To calculate the positive-definite matrix P we made use of
the Liapunov equation AP+PA’=Q; where Q is other
positive-definite matrix given by,

Eq7

0- 50 100 Eq$
40 100
From this Liapunov equation we have,
_ 1,4667 —-0,38 Eq9
-0,62 0,5

The numerical results are shown in the Figure 3 with T
varying until 50 seconds..
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Figure 3: approximate stability/instability regions as a function of sampling period.



These accurate approximations are,

e’/ = (120.1-60TA + 12T A*-T> 4° )" (120.1 + 60TA + 12T 4> + T° 4°)

e’s/s] = (518918400.1-259459200.74 + 60540480.7> A>-8648640.T° A° + 8316007 * 4*-55440T° 4° +
+2520T°A%-72T7 47 + T*4° )" (518918400.1 +259459200.T4 + 60540480.7> 4 +

+8648640.7° 4% +831600.7* 4" +55440.T7° 4> +2520.T°A4° + 72T A" +T*4°)

From figure 3 we can see that precisely are a stable region for T € (l .83 8.7) and the instable regions are: 1 € (0,1.8] and

T e [38.7,00), with T in seconds.

Thought the Eq.6 we have a geometrical disposal of this theory by the use of spectral radius as shown in Figure 4.
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Figure 4: a geometrical representation of the stability rule using the spectral radius.

CONCLUSION

In this work we have presented accurate numerical solutions
with the theorem early presented and we have proved that
can exist regions for stability and instability in a sampled-
data control system in function of the sampling-period. For
future works we will extent these results and explore more
industrial applications.
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