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ABSTRACT 

In this work we developed a comparative study between 

many resolution methods of the exponential matrix from an 

inequality extracted from a specific Liapunov function to 

obtain information about some stability regions for 

sampled-data control systems as a function of the sampling-

time and the plant used. We used many methods from the 

literature like: power series, Cayley-Hamilton theorem, 

Lagrange-Sylvester theorem, eigenvalues/ eigenvectors 

decomposition and Padé rational approximation. The main 

objective of this study is to choose the most appropriate 

method for the resolution of this important problem and to 

use the results found as a basis for future works. 

MATRIX EXPONENTIAL MCLAURIN-TAYLOR 
(MT) AND PADÉ APPROXIMANTS 

Here we will do a simple explanation about the MT and 

Padé approximation techniques starting with the MT series 

and showing how is the Padé algorithm with examples. 

Basically, a continuous function f(t) can be expressed as a 

MT series like expressed in Eq.1. 
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The N
th
  order MT  approximation of f(t) if clearly given by, 
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The Padé rational approximation is a natural extension of 

the MT and Taylor series that make use of the MT 

approximation in its calculations. The Padé method uses 

rational polynomials and it is much more accurate than the 

MT. 

Basically, the Padé algorithm is summarized in the 

following expression making use of Eq.2: 
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Where the objective is to find a linear system that solve the 

qi and pi coefficients, having N=L+M, and finally express 

the Padé approximation of degree [L/M] of f(t) as, 
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Example 1: if tetf −=)(  evaluate the Padé approximation 

f[3/2]. 

The MT expansion will be of order N=L+M=5, 
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that gives, 
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that results the following linear system of N=5 equations: 

















=−+−

=+−

−+−=

+−=

−=

=

0
246

0
62

2

1

1

:

:

:

:

:

:

120
112

24
112

6
11

23

2
1

122

11

0

5

4

3

2

1

0

qq

qq

q
qp

qqp

qp

p

t

t

t

t

t

t

 

That gives, 
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Finally, the Padé approximation will expressed by, 
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Some comparative results of the MT and Padé 

approximations for the exponential e
-t
 are shown in figure 1 

for 5
th
 MT approximation and Padé’s [1/1],[3/2] and [3/3]. 

The approximation errors between these methods and e
-t
 are 

disposed in figure 2. From these two figures can we see that 

how is inaccuracy and inappropriate the MT method and 

how better is the Padé technique. 

 

Example 2: given sTesf =)(  show that [ ]1/1f  corresponds 

to the Tustin (bilinear or trapezoidal) extrapolate mapping. 

For [ ]1/1f  L=M=1, N=2. The “T” here is the sampling-

period of A/D and D/A converters. 

The 2
nd
 order MT for this case is: 

2
1

22sT
Ts ++ . Applying 

this on the Padé algorithm, 
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that produces the linear system, 
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That gives, 
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Finally, the Padé approximation is, 
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Calling sTez =:  we have, 
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The Tustin extrapolate mapping is found isolating “s” 

above, 
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That represents the analog-discrete mapping as explained in 

[11]. 
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Figure 1: approximations for e
-t
. 

 

Figure 2: error on approximations of exponential. 
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NUMERICAL INVESTIGATIONS OF STABILITY 

In the later SAE 2004 work of these authors [1] it was 

presented a theorem that determinates a stability rule for a 

general sampled-data system through its dynamics matrix, 

being the control action function of the state velocity 

feedback vector. 

The main result was, 
TATA PeeP .. )'( max min

λλ
>    Eq 5 

Where P is a positive-definite matrix. 

That is the same of, 
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where ρ is the spectral radius of the matrix between 

brackets. 

As the first part of this present work we understood how is 

accurate the Padé method to calculate approximations for 

the exponential. For this manner we will explore 

approximations of this nature to present numerical results 

for the inequality presented. 

In this work we have used Padé [3/3] (third order) and Padé 

[8/8] (eighth order) approximations of the matrix 

exponential 
ATe  and it was sufficient to shown the 

presence of stability/instability regions of the sampled-data 

control system as a function of the sampling-period T. The 

dynamics matrix A in companion form used was  
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To calculate the positive-definite matrix P we made use of 

the Liapunov equation AP+PA’=Q; where Q is other 

positive-definite matrix given by, 
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From this Liapunov equation we have, 
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P      Eq 9 

The numerical results are shown in the Figure 3 with T 

varying until 50 seconds.. 

 

 

Figure 3: approximate stability/instability regions as a function of sampling period. 
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These accurate approximations are, 
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From figure 3 we can see that precisely are a stable region for ( )7.38,8.1∈T  and the instable regions are: ( ]8.1,0∈T  and 

[ )∞∈ ,7.38T , with T in seconds. 

Thought the Eq.6 we have a geometrical disposal of this theory by the use of spectral radius as shown in Figure 4. 

 

 

 
Figure 4: a geometrical representation of the stability rule using the spectral radius. 

 

CONCLUSION 

In this work we have presented accurate numerical solutions 

with the theorem early presented and we  have proved that 

can exist regions for stability and instability in a sampled-

data control system in function of the sampling-period. For 

future works we will extent these results and explore more 

industrial applications. 
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