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2Instituto Nacional de Pesquisas Espaciais, PO Box 515, 12201-970
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An electromagnetic particle-in-cell simulation code is used to investigate particle
density effects on the nonlinear amplification of inverse-bremsstrahlung electron
acceleration, according to the schemes proposed by Kawata et al. and by Hussein
and Pato. It is shown that although the space-charge self-consistent field does not
modify the basic results obtained with the one-particle model, the electromagnetic
fields produced by the transverse particle current play a substantial role for large
beam densities.

1. Introduction
Various new ideas for particle accelerators with or without a medium have been
proposed in order to overcome the limitation of the acceleration gradient for the
current linear accelerators. Kawata et al. (1991) have proposed a scheme for elec-
tron acceleration using a laser and a weak perpendicular static electric or magnetic
field, the inverse-bremsstrahlung electron-acceleration mechanism. The static ap-
plied field breaks the symmetry of the electromagnetic (EM) wave in space and time,
allowing the electrons to gain energy in both half-wavelengths of the wave. Hussein
and Pato (1992) have analytically solved the coupled electron–EM-field system,
which is governed by a set of equations containing one nonlinear and several linear
ones. They have shown that the energy gain can be made much larger than that of
the Kawata et al. scheme by employing a system of externally applied electrostatic
fields Eapp, with alternating signs at optimally determined positions. This scheme
was dubbed NAIBEA, for ‘nonlinear amplification of inverse bremsstrahlung ac-
celeration’. The optimal positions were determined by analyzing the expected be-
haviour of the energy as a function of the phase ϕ = k(ct−x). It was found that the
applied field had to be reversed at ϕ = 1

2 (2n + 1)π, with n = 1, 2, 3, ..., in order to
get continuous acceleration (Hussein and Pato 1992, 1993). A crucial issue in this
scheme is whether the self-consistent space-charge field due to particle bunching
affects the critical phase relation between the laser and external fields with respect
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to the particles being accelerated, decreasing the net energy gain. This problem
was addressed in a previous work (Galvão et al. 1994) using the so-called phase-
average bunching approximation for the space-charge self-field (Seo 1991; Serbeto
and Alves 1993) and the relativistic beam approximation in the equation of motion
of a small number of particles initially uniformly distributed in one wavelength of
the electromagnetic field. It was found that the space-charge self-field did not spoil
the net energy gain. In this paper we investigate the effect of several other relevant
physical processes that have not been properly considered in previous works. Both
the schemes of Kawata et al. (1991) and of Hussein and Pato (1992) are simulated
using a 1−2/2(x, vx, vy, vz) dimensional electromagnetic particle-in-cell simulation
code.†Effects such as thermal spread, large beam density, longitudinal electric field,
and the electric and magnetic fields generated by the transverse beam current are
self-consistently taken into account.

2. One-particle model
We briefly present the mechanisms of the inverse-synchroton-radiation acceleration
proposed previously (Kawata et al. 1991; Hussein and Pato 1992). Consider an
EM wave that propagates in the +x direction at the speed of light c. The electric
component EEMy is in the y direction and the magnetic component BEMz is in the
z direction. Electrons move mainly in the x direction, and their speed is less than
c. Therefore the EM wave catches up with the electrons and leaves them behind.
In this scenario the electrons oscillate and cannot absorb the wave energy. The
cause of this oscillation is the symmetry of the EM wave in space and time. Let us
now introduce an externally applied static electric Eapp (or magnetic Bapp) field.
This applied field removes the symmetry of the EM wave in space. The coupled
particle–field equations are

dpx
dt

= −e
c

(v× B)x = −eβyBz, (1)

dpy
dt

= −eEy −
e

c
(v× B)y = −eEy + eβxBz, (2)

where Ey = EEMy + Eapp and βi = vi/c (i = x, y), and px and py are the x and
y components of the linear momentum of the particle. If we now choose BEMz =
EEMy = −Ey0 sin ϕ, with ϕ = k(ct− x), we have

dpx
dt

= −eβyEy0 sin ϕ, (3)

dpy
dt

= e(1− βx)Ey0 sin ϕ− eEapp. (4)

The energy equation is
dε

dt
= −eEyvy. (5)

It is clear that the speed vy parallel to Ey is important for the electron energy
gain, and vy is determined by the equation of motion. In order to accelerate an

† The authors are indebted to Dr B. Lembege (Centre de Recherches en Physique de
l’Environnement Terrestre et Planétaire, Issy-les-Molineuax, France) for providing a basic
version of the particle code used here.
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Figure 1. Ey, vy and γ versus ϕ for the Kawata et al. scheme (a, c, e) and for the
Hussein and Pato scheme (b, d, f ), from one-particle model. Initial conditions are an
electron speed of 0.95c (γ0 = 3.2), an incident angle with respect to the x axis of 13.83◦

and Eapp/Ey0 = 2.23× 10−2.

electron in both half-wavelengths in one period of the laser wave, we choose an
appropriate value of Eapp so that vy becomes zero at ϕ ≈ π; this means that in the
half-wavelength 0 < ϕ < π we have vy > 0, and in the remaining half-wavelength
we have vy < 0. As a result, in the half-wavelength 0 < ϕ < π the electron is
accelerated in the +y direction and can absorb wave energy. Then vy decreases
according to the force Fy, and becomes zero at ϕ ≈ π. In the remaining half-
wavelength the electron has velocity vy < 0 and can again absorb wave energy.
In addition, the electron is accelerated in the +x direction by the force Fx > 0
in both half-wavelengths, and the interaction between the electron and the EM
wave goes on for longer (Kawata et al. 1991). Assume now that we can alternate
the sign of Eapp at optimally determined locations relative to the phase of the
electromagnetic wave. Because of the relativistic effect, the distance between the
positions of sign reversal are macroscopic in the laboratory frame. This allows for
a continuous acceleration of the electrons (Hussein and Pato 1992). These ideas
are illustrated in Figs 1(a–f ), which show vy, Ey and γ versus ϕ for the Kawata
et al. scheme (a, c, e) and the Hussein and Pato scheme (b, d, f ), obtained from the
numerical integration of (1) and (2), with the following initial conditions: electron
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speed of 0.95c (γ0 = 3.2), an incident angle with respect to the x axis of 13.83◦, and
Eapp/Ey0 = 2.23× 10−2.

3. Simulation model
In the simulation model, particle and field equations are solved in a self-consistent
way. To study the mechanisms of electron acceleration, an infinitely long train of
electromagnetic radiation with wavenumber k is imposed on an initially uniform
thermal electron beam immersed in an static electric field in the y direction. The
direction of laser propagation, as well as the allowed spatial variation, is taken
to be the x direction. The dynamics of the acceleration process of the particles is
described in (x, γ) space when we want to observe what is happening to the whole
set of particles, or on (ϕ, γ (or other variable)) plots when we want to trace the
motion of an specific particle.

Let us briefly describe the numerical model of the particle dynamics employed
in the simulation code. The trajectories of a large number of particles are followed
in time according to the relativistic equation of motion

dpi
dt

= qi

(
E(ri) +

pi × B(ri)
mcγi

)
, (6)

dri
dt

= vi, (7)

where E and B are the self-consistent plus externally applied electromagnetic fields
at the position ri of the ith particle, and γi = [1 + (pi/mic)2]1/2 is the relativis-
tic factor. From the particle positions and velocities, one calculates the respective
charge and current densities on a spatial grid; the corresponding electromagnetic
fields are given by the Maxwell equations, namely

∂E
∂t

= c∇× B− J, (8)

∂B
∂t

= −c∇× E, (9)

∇ · B = 0, (10)

∇ · E =
ρ

ε0
. (11)

Among the different techniques available for solving these coupled equations, we
choose the leapfrog method (Birdsall and Langdon 1985; Tajima 1989). In this
method (6) is replaced by the finite-difference equations

p (n+1/2)∆t − p (n−1/2)∆t

∆t
= q

(
En∆t +

p (n+1/2)∆t + p (n−1/2)∆t

2
× Bn∆t

cγn∆t

)
, (12)

r (n+1)∆t − rn∆t

∆t
= v(n+1/2)∆t. (13)

In order to solve (12) and (13) we define the auxiliary variables p + and p− by (Boris
1970)

p (n−1/2)∆t = p− − 1
2qE

n∆t∆t, (14)
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p (n+1/2)∆t = p + + 1
2qE

n∆t∆t. (15)

Introducing these equations into (12), we obtain

p + − p−

∆t
=

q

2mγ
(p + + p−)× B , (16)

where γ = [1 + (p−/mec)2]1/2, which represents a rotation (assuming that the rota-
tion angle between these two auxiliary variables is small). Hence the computational
steps are:

(i) add half the electric impulse to p (n−1/2)∆t to obtain p−, which is rotated ac-
cording to (16) to obtain p +;

(ii) add the remaining half of the electric impulse to obtain p (n+1/2)∆t.

In solving the Maxwell equations, we have to take into account the applied con-
stant electric field Eapp, and solve for the self-consistent electromagnetic fields.
Since the beam spread in the y direction is not considered, it suffices to calcu-
late only the x component of the self-consistent electrostatic field, Ex = −∂Φ/∂x.
The scalar potential Φ is obtained by solving the Poisson equation numerically
using fast-Fourier-transform techniques assuming periodic boundary conditions.
The transverse electric and magnetic fields are obtained from (8) and (9). These
equations are solved by decomposing the electric and magnetic fields in left and
right-going field quantities that move with propagation velocity ±c. This approach
requires that ∆x/∆t = c (where ∆x is the length of the cell and ∆t is the time inter-
val for advancing in time), since the equations are integrated along the vaccuum
characteristic x± ct = constant, and consequently there is no Courant condition in
the usual sense (Cohen et al. 1975). The numerical stability depends only on ∆t and
is given by the condition ωp∆t � 1. The particle and current densities associated
with each grid point are calculated from the position and velocity of the electrons
using the subtracted dipole scheme (SUD or SUDs) (Tajima 1989).

As initial conditions for the electromagnetic wave we choose EEMy = Bz =
Ey0 cos kx and the particles of the beam are loaded uniformly distributed in posi-
tion along one laser wavelength. We initiate the velocity of particles in such a way
that they have the same spread in x and y, determined from the spreads of momenta
of the particles, which are obtained from the relativistic Maxwellian distribution
(Birdsall and Langdon 1985):

f (p′) =
Nmc2

2πKT
1

(KT/mc2 + 1)
exp
(
−mc

2(γ′ − 1)
KT

)
, (17)

whereN is the total number of particles being loaded and v′ = p′/mγ′. The function
f is normalized by requiring that

∫ 2π
0 dθ

∫∞
0 fp′ dp′ = N .

To allow a relativistic drift velocity and yet maintain particle velocities less than
c, the drift velocity v0 = v0xi+v0yj is added relativistically to each particle velocity
v′, determined from (17), by

v =
u+ + v0

1 + v′ · v0/c2 , (18)

where u+ = v′/γ−(1−γ)v0(v0 ·v′)/γv′2, and v is the total velocity of each particle of
the beam in the laboratory frame. The ions are kept fixed as a uniformly distributed
neutralizing background.
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Figure 2. Phase space (γ versus x) for the Kawata et al. scheme with ne = 7.96× 1012 cm−3

and T = 100 keV: (a) ϕ = 2π; (b) 4π; (c) 6π; (d) 8π. Initial conditions for velocities, positions
and electromagnetic fields are described in the text.

4. Results

Using the simulation model previously described, we investigate the effect of space
charge, beam density and thermal spread. The choice of initial conditions is very
critical for efficient particle acceleration, even in the one-particle model. Therefore,
to clarify the effects that we are considering, we choose the one-particle optimized
conditions already determined by Kawata et al. (1991). The averaged electron speed
is 0.95c, the averaged incident angle with respect to the x axis is 13.83◦, the ampli-
tude Ey0 of the EM wave, EEMy = Bz = Ey0 cos kx, is 1.636 × 106/λV cm−1, and
applied static electric field Eapp = 2.23× 10−2Ey0.

The electrons of the beam are initially considered uniformly distributed along
one laser wavelength with a temperature T . This distribution is justified, since it
is rather difficult to generate an electron beam bunched at the scale of an optical
period. Therefore all possible initial phases are equally populated by electrons.
We select one particle as a reference particle to obtain ϕ. At t = 0, the position
of this particle is xr(0) = 0 and the value of γ is γr0 = 3.2. For a given time
t, ϕ(t) = k[ct−xr(t)], which is the phase difference between the electric field vector
and the motion of the electron along x. We remark that the particle distribution
is truly relativistic, so that the decay for large energies is less pronounced than
for a non-relativistic Maxwellian. We have used ∆x = 1

32λ and a total number of
simulation particles of 3200 (100 particles per ∆x). The initial electron number
density is 7.96× 106λ2 cm−3, which gives ne = 7.96× 1012 cm−3 for λ = 10µm, and
T = 100 keV.

Let us first investigate the effect of high density on the scheme of Kawata et al.
The phase space (γ against x) results for different phases of the reference particle, i.e.
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Figure 3. Phase space (γ versus x) for the Hussein and Pato scheme with ne = 7.96×1012 cm−3

and T = 100 keV: (a) ϕ = 2π; (b) 4π; (c) 6π; (d) 8π. Initial conditions for velocities, positions
and electromagnetic fields are described in the text.

ϕ = 2π, 4π, 6π and 8π, are shown in Figs 2(a–d) respectively. The result presented
in Fig. 2(a) is to be compared with that shown in Fig. 5 of Kawata et al. (1991). The
maximum values of γ are of the same order and 20% of particles have γ > 15.0.

To check the effect of high beam density on the scheme of Hussein and Pato,
let us compare the results presented in Figs 3(a–d) with the one-particle results
(Fig. 1). The phase-diagram plots presented in Fig. 3 are for the same phases of the
reference particle as in Fig. 2. Therefore, after seven inversions of the applied field,
the phase is 8π, corresponding to the end of the diagram shown in Fig. 1(f ). We see
that the maximum of γ achieved in the one-particle simulation is approximately
γ = 140, whereas the maximum value for a beam density ne = 7.96× 1012 cm−3 is
less than γ = 80 (Fig. 3d). As we discuss below, this effect is not due to the self-
consistent electrostatic field but rather to the electromagnetic field generated by
the transverse current Jy.

In order to understand the reason for these results, not predictable by the one-
particle model, let us consider a smaller beam density, namely ne = 108 cm−3,
keeping the same initial values for the other parameters. The results are presented
in Figs 4 (a, b), for ϕ = 8π for the Kawata et al. and the Hussein and Pato schemes
respectively. We observe that with this low density, the maximum values of γ are
those predicted by the one-particle model for the Hussein and Pato scheme (Fig.
4b), and are somewhat larger for the Kawata et al. scheme (Fig. 4a), because some
particles at optimized initial positions have γ > 3.2, owing to the thermal spread.

As pointed out before, the sign of the product vyEy is crucial for the process of
energy gain. To show that this sign is mainly affected by the field generated by the
transverse current Jy, we have carried out the many-particle simulation, artificially
turning off the fields Bzj and Eyj generated by Jy. The results are shown in Fig. 5.
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Figure 4. Phase space (γ versus x) for ϕ = 8π, with ne = 108 cm−3 and T = 100 keV:
(a) Kawata et al. scheme; (b) Hussein and Pato scheme. Initial conditions for velocities,
positions and electromagnetic fields are described in the text.
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Figure 5. Plots of vy and γ versus ϕ for a reference particle in a beam of density
n = 7.96 × 1012 cm−3: (a, c) Hussein and Pato scheme; (b, d) Kawata et al. scheme. Full
lines are obtained from a complete many-particle model; dashed lines are obtained when the
fields Bzj and Eyj generated by Jy are artificially turned off.

The dashed line corresponds to the fields turned off and the full line to the complete
simulation. One can easily verify that results obtained by the one-particle model
(Fig. 1) are exactly reproduced by those without the self-consistent electromagnetic
fields. We have also verified that the effect of the space-charge electrostatic field is
negligible in comparison with the electromagnetic field.
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Figure 6. Energy distribution plotted in terms of γ as a normalized histogram for different
temperatures: (a) T = 10; (b) 50; (c) 100; (d) 150. Initial density is ne = 108 cm−3 in all cases.

The evolutions of vy and γ for the reference particle are shown in Figs 5(a–c)
respectively for the Hussein and Pato scheme, and in Figs 5(b, d) for the Kawata et
al. scheme. The evolution of vy is the same as presented in Figs 1(c, d), even for the
complete many-particle model. Let us first analyse Fig. 5(a) for the Hussein model.
We note that vy changes sign together with the applied field Ey in the one-particle
case, whereas there is a slight phase slippage in the many-particle case. This effect
repeats at every change of sign of the applied field, and consequently the overall
increase in the value of γ is smaller than predicted by the one-particle model, as
we can see in Fig. 5(c).

For the Kawata et al. scheme, there is only one change in the sign of vy in the one-
particle model, as shown by the dashed line in Fig. 5(b). We observe that vy changes
sign in the complete many-particle model more than once, as indicated by the full
line in the same figure. This occurs because the self-consistent electromagnetic field
introduces a sign change in the effective fields seen by the particles. As a conse-
quence, the particles gain energy for ϕ > 2π, as we can see in Fig. 5(d). Note how-
ever, that this energy gain saturates, and eventually decreases to the one-particle
values. Therefore, to tap this extra energy, the acceleration scheme has to be stopped
at a phase around 5π. This mechanism was not identified by Kawata et al. (1991).

We have investigated the effect of the thermal spread of the beam only for the
Hussein and Pato scheme, since it presents the best results for the particle accel-
eration. We consider four different cases, T = 10, 50, 100 and 150 keV, for high and
low density, keeping the same initial values for the other parameters. The results
for the low- and high-density cases are shown in Figs 6 and 7 respectively, obtained
for ϕ = 8π. The energy distribution is plotted in terms of γ as a normalized his-
togram. Parts (a)–(d) in both cases are for temperatures 10, 50, 100 and 150 keV.
It is possible to observe beam heating for both the low- and high-density cases. In
the low-density case, we also observe a sort of energy bunching for particles with
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Figure 7. Energy distribution plotted in terms of γ as a normalized histogram for different
temperatures: (a) T = 10; (b) 50; (c) 100; (d) 150. Initial density is ne = 7.96× 1012 cm−3 in
all cases.

γ ≈ 125. The number of accelerated particles decreases as the initial beam temper-
ature increases. The thermal spread is higher for the high-density case, and there
is no formation of a high-energy beam.

In the low-density case the fields acting upon the particles are basically the laser
field and the external field Ey. The effect of the thermal spread is then only to
spoil the optimized initial conditions for the particles in the beam, decreasing the
fraction of particles that get accelerated. The thermal effect is less relevant for the
high-density case, because of the effect of the self-consistent electromagnetic field,
already discussed.

5. Conclusions
In this work we have investigated the effect of space charge, beam density and ther-
mal spread on the nonlinear amplification of inverse-bremsstrahlung electron ac-
celeration using particle-in-cell simulation. We observe that the space-charge field
due to bunching of the beam plays a negligible role. Varying the beam thermal
spread can change the fraction of accelerated particles in the low-density case. We
find that the most important effect is due to the electromagnetic fields generated
by the beam that appear when the density is sufficiently high. These fields signifi-
cantly alter the behaviour of the tranverse particle velocity, modifying the results
predicted by the one-particle model in the Hussein and Pato (1992) and Kawata et
al. (1991) schemes. In the high-beam-density case the effect of the self-consistent
electromagnetic field dominates the thermal-spread effect.
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