
18’th International Conference on Transport Theory (18 ICTT)
Rio de Janeiro, RJ, Brazil, July 20-25, 2003

INVERSE PHOTON TRANSPORT: SPACE SCIENCE APPLICATIONS

H. F. Campos Velho1, F.M. Ramos1, E. S. Chalhoub1, S. Stephany1,
J. C. Carvalho2, N. J. Ferreira2

1 Laboratory for Computing and Applied Mathematics (LAC-INPE)
2 Earth Observation Division (OBT-INPE)

INPE - National Institute for Space Research
Caixa Postal 515, CEP 12245-970 São José dos Campos, SP - Brasil.
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ABSTRACT

This paper is focused on the application of inverse problem methodology for solving some problems that
have emerged in space science. The inverse model is an implicit technique: a constrained non-linear
optimization problem, in which the forward problem is iteratively solved for successive approximations
of the unknown parameters. Iteration proceeds until an objective-function, representing the least-square
fit of model results and experimental data added to a regularization term, converges to a specified small
value.

1. FORMULATION OF THE INVERSE PROBLEM

A technique for property reconstruction from measurements can be described as a gener-
alized least squares approximation. The standard least squares solution can be unstable
in the presence of noise. In order to have a robust inverse model, assuring that parameter
variation is bounded to become the final solution physically acceptable, some a priori
information must be added to the quadratic difference term. In general, this additional
information associated to the inverse solution means smoothness.

Denoting by p =
[
p1, p2, . . . , pNp

]T
the unknown vector to be determined by the inverse

analysis, the inverse problem can be formulated as a nonlinear optimization problem,

min J(p) , lq ≤ pq ≤ uq , q = 1, . . . , Np , (1)

where the lower and upper bounds lq and uq are chosen in order to allow the inversion to
lie within some known physical limits, and the objective function is given by

J(p) =
Nm∑
i=1

[
ΦExp
i − ΦMod

i (p)
]2

+ Ω[p] , (2)

where denotes the number of measurement points (or points for comparison), the regu-
larization operator, and a quantity that can be measured and modeled in a mathematical
formulation.

The optimization problem (1) has been solved by two deterministic schemes: quasi-
Newton [1], and Levenberg-Marquard [2] methods; and a stochastic scheme: genetic
algorithm [3]. Regularizations operators used are described below.
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1.1. Tikhonov Regularization

A well-known regularization technique proposed by Tikhonov [4] can be expressed by

Ω[p] =
N∑
k=0

αk
∥∥p(k)

∥∥2

2
(3)

where p(k) is the k-th derivative (difference), and the parameters αk ≤ 0. Here, if αk =

δkj (Kronecker’s delta), i.e., Ω[p] =
∥∥p(k)

∥∥2

2
then the method is called the Tikhonov

regularization of order-j (Tikhonov-j).

1.2. Entropic Regularization

The maximum entropy principle was first proposed by Jaynes[5] on the basis of Shannon’s
information theory. Similar to the Tikhonov’s approach, this general inference method
searches a global regularity, searching the smoothest solution which is consistent with the
available data.

Recently, a higher order entropic regularization has been proposed [6–10]. An expression
for entropic regularization can be written as

Ω(p) =
N∑
m=0

αm S
m(p) ; Sm(p) ≡ −

Np∑
q=1

sq log(sq) , (4)

where sq ≡ rmq /
∑

l r
m
l , and rmq represents the m-th difference of the parameter vector.

The function Sm attains its global maximum when all the rq are the same. It can be
shown that the Morozov’s discrepancy principle can also be applied for the maximum
entropy (MaxEnt) regularization of higher order [10].

2. APPLICATIONS

2.1. Hydrologic Optics

The transmission of light can be described from the linear non-charged particle transport
theory, if the light is understood as a beam of particles (photons). Therefore, the linearized
Boltzmann equation, known also as transport equation or radiative transfer equation, for
a given wavelength, is written as

µ
dLλ(ζ, ξ)

dζ
+ Lλ(ζ, ξ) = ω0(ζ)

∫
Ξ

Lλ(ζ, ξ
′) β(ξ′ → ξ) dξ′ + Sλ(ζ, ξ) (5)

where L denotes the radiance; β the scattering phase function; ω0 = b/c the single
scattering albedo, c = a + b the beam attenuation coefficient, a and b the absorption
and scattering coefficients, respectively; ζ is the optical depth; ξ′(θ′, φ′) and ξ(θ, φ) are
the incident and scattered directions for an infinitesimal beam; θ is the polar angle; φ is
the azimuthal angle, S is the source term, and µ = cos(θ). An outline of the physical

18 ICTT, Rio de Janeiro, RJ, Brazil.



Inverse transport problems

process is depicted in figure 1, where S stands for the direction of the scattered photon,
Φ is the scattering angle, and t is the transmitted beam. Three techniques have been
applied to solve the forward problem: invariant imbedding [11]; LTSN Method [12, 13];
and analytical SN method [14].

Figure 1. Pictorical representation of the forward radiative problem.

Reconstructions were obtained using in situ radiometric data (radiance and irradiances)
and remote sensing data (radiance). Estimations obtained with the present inverse ana-
lysis are summarized in Table 1, showing the property estimated, forward technique, reg-
ularization operator, and optimizer used. The properties of interest in hydrological optics
are: internal source term; IOP (inherent optical properties): absorption and scattering
coefficients, phase function; and boundary conditions.

An interesting aspect in Case-1 is that no regularization was necessary [15], and the source
term is approximated as the sum of Gaussian distributions. In Case-2 the alternate step-
by-step strategy was introduced, meaning that a, b coefficients are estimated first, then
the source term is estimated, and finally the convergence is checked [16]. The phase
function was identified in Cases 3 and 4 [17, 18]. Boundary conditions are identified in
Case-5. Finally, the case-6 represents our first result in inverse hydrologic optics using
remote sensing data [19].
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Table 1. Estimation of properties in hydrologic optics.

Cases Property Forward method Optimizer Regularization
(1) S(ζ) Inv. imbedding Q-Newton (NAG) / GA –
(2) S(ζ), a, b Inv. imbedding Q-Newton (NAG) MaxEnt-0
(3) β(ξ) standand SN Q-Newton (NAG) MaxEnt-0
(4) β(ξ), ω0 ASN L-M (IMSL) L-M method
(5) B. C. LTSN Q-Newton (NAG) Tikhonov-0
(6) S(ζ) ASN–multispectral L-M (IMSL) L-M method

2.2. Atmospheric Temperature Profile from Satellite Data

Considering the infrared radiances captured by the satellite, the integral form of the
radiative transfer, for a given wavelength λ, can be simplified for following expression [23]:

Iλ(τλ) = Iλ(τ
s
λ)−

∫ τλ

τsλ

Bλ[T (z)] dτλ (6)

where Iλ(τλ) is the radiance at height z, τλ and τ sλ are the transmittance at level z and
at surface, and Bλ is the Planck function [23]:

Bλ(T ) =
2h c2 λ−5

ehc/kBλT − 1
(7)

being h the Planck constant, c the light speed, kB the Boltzmann constant, and T the
temperature at level z.

This inverse problem was solved using 7 satellite channels for retrieving the atmospheric
temperature profile with 40 layers. The second order maximum entropy principle was used
as regularization [24, 7]. Results are showing in figure 2. Our methodology has shown
more robust than ITPP5 code, since it produces the same result for different initial guess
(figures 4a and 4b).

3. FINAL REMARKS

A methodology for inverse problems appearing on space applications concerning to photon
transport has been developed and applied, mainly dealing with regularized solutions.
Local and global searching strategies have been efficiently employed for solving the inverse
model.

Future works can include: (a) the multi-spectral reconstruction in hydrologic optics needs
more studies; (b) new regularization operators, such as non-extensive entropy [25, 26],
should be investigated for hydrologic optics problems; (c) new approaches deserve to
be explored, such as neural networks [27], Kalman filter, and variational methods [28];
(d) new applications: satellite inverse thermal analysis.

18 ICTT, Rio de Janeiro, RJ, Brazil.



Inverse transport problems

1000

100

180 200 220 240 260 280 300 320

 Radiosonde

 ITPP5-0

 MaxEnt-2

 Initial Profile

Temperature (K)

P
re

ss
ur

e 
(h

P
a)

1000

100

180 200 220 240 260 280 300 320

 Radiosonde

 ITPP5-0

 MaxEnt-2

 Initial Profile

Temperature (K)

P
re

ss
ur

e 
(h

P
a)

(a) (b)

Figure 2. Atmospheric temperature profile for different first guess: (a) climate
data base; (b) homogeneous atmospheric layer.

ACKNOWLEDGEMENTS

This work was partially supported by FAPESP and CNPq, Brazilian agencies for research
support.

REFERENCES

[1] E04UCF, NAG Fortran Library Mark 13, Oxford, UK (1993).

[2] DBCLSF, IMSL Math/Library Users Manual, Version 2.0, Houston, USA (1991).

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company Inc., USA (1989).

[4] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems, Winston and Sons
(1977).

[5] E.T. Jaynes, “Information Theory and Statistical Mechanics”, Physical Review, 106,
pp. 620-630 (1957).

[6] F.M. Ramos, H.F. Campos Velho, “Reconstruction of Geoelectric Conductivity Dis-
tributions Using a Minimum First-Order Entropy Technique”, 2nd International Con-
ference on Inverse Problems on Engineering, Le Croisic, France, Vol. 2, pp. 199-206
(1996).

18 ICTT, Rio de Janeiro, RJ, Brazil.



Campos Velho et al.

[7] F.M. Ramos, H.F. Campos Velho, J.C. Carvalho, N.J. Ferreira, “Novel Approaches
on Entropic Regularization”, Inverse Problems, 15, 1139-1148 (1999).

[8] H.F. de Campos Velho, F.M. Ramos, “Numerical Inversion of Two-Dimensional Geo-
electric Conductivity Distributions from Eletromagnetic Ground Data”, Brazilian
Journal of Geophysics, 15, pp. 133-143 (1997).

[9] H.F. de Campos Velho, M.R. de Moraes, F.M. Ramos, G.A. Degrazia, D. Anfossi
(2000): “An Automatic Methodology for Estimating Eddy Diffusivity from Experi-
mental Data”, Il Nuovo Cimento, 23 C, pp. 65-84 (2000).

[10] W.B. Muniz, F.M. Ramos, H.F. Campos Velho, “Entropy- and Tikhonov-based Reg-
ularization Techniques Applied to the Backwards Heat Equation”, Computers & Math-
ematics with Applications, 40, pp. 1071-1084 (2000).

[11] C.D. Mobley, Light and Water - Radiative Transfer in Natural Waters, Academic
Press, San Diego, USA (1994).

[12] L.B. Barichello, M.T. Vilhena, “A General Approach to One Group One Dimensional
Transport Equation”, Kerntechnik, 58, pp. 182-184 (1993).

[13] C.F. Segatto and M.T. Vilhena, “Extension of the LTSN Formulation for Discrete
Ordinates Problem without Azimuthal Symmetry”, Annals of Nuclear Energy, 21,
pp. 701-710 (1994).

[14] E.S. Chalhoub, R.D.M. Garcia, “The Equivalence between Two Techniques of An-
gular Interpolation for the Discrete-ordinates Method”, Journal of Quantitative Spec-
troscopy & Radiative Transfer, 64, pp. 517-535 (2000).

[15] S. Stephany, F.M. Ramos, H.F. Campos Velho, C.D. Mobley, “A Methodology for In-
ternal Light Sources Estimation”, Computer Modeling and Simulation in Engineering,
3, pp. 161-165 (1998).

[16] S. Stephany, F.M. Ramos, H.F. Campos Velho, C.D. Mobley, “Identification of In-
herent Optical Properties and Bioluminescence Source Term in a Hydrologic Optics
Problem”, Journal of Quantitative Spectroscopy & Radiative Transfer, 67, pp. 113-123
(2000).

[17] E.S. Chalhoub, H.F. Campos Velho, F.M. Ramos, J.C.R. Claeyssen, “Phase Function
Estimation in Natural Waters Using Discrete Ordinate Method and Maximum Entropy
Principle”, Hybrid Methods in Engineering, 2, pp. 373-388 (2000).

[18] E.S. Chalhoub, H.F. Campos Velho, “Simultaneous Estimation of Radiation Phase
Function and Albedo in Natural Waters, Journal of Quantitative Spectroscopy & Ra-
diative Transfer, 69, pp. 137-149 (2001).

[19] E.S. Chalhoub, H.F. de Campos Velho, “Multispectral Reconstruction of Biolumin-
escence Term in Natural Waters”, Journal of Computational and Applied Mathematics
(2003) – in press.

18 ICTT, Rio de Janeiro, RJ, Brazil.



Inverse transport problems

[20] M.R. Retamoso, M.T. Vilhena, H.F. de Campos Velho, F.M. Ramos, “Estimation
of Boundary Condition in Hydrologic Optics”, Journal of Computational and Applied
Mathematics, 40, pp. 87-100 (2002).

[21] H.F. Campos Velho, M.R. Retamoso, M.T. Vilhena, “Inverse Problems for Estim-
ating Bottom Boundary Conditions of Natural Waters”, International Journal for
Numerical Methods in Engineering, 54, pp. 1357-1368 (2002).

[22] H.F. Campos Velho, M.T. Vilhena, M.R. Retamoso, R.P. Pazos, “An Application of
the LTSN Method on an Inverse Problem in Hydrologic Optics, Progress in Nuclear
Energy, (2003) – in press.

[23] K.N. Liou, An Introduction to Atmospheric Radiation, Academic Press (1980).

[24] J.C. Carvalho, F.M. Ramos, H.F. Campos Velho, N.J. Ferreira, “Retrieval of Vertical
Temperature Profiles in the Atmosphere”, 3rd International Conference on Inverse
Problems in Engineering (3ICIPE), Proceedings in CD-ROM, under paper code HT02,
Port Ludlow, Washington, USA, June 13-18 (1999) – Proc. Book: 235-238, UEF-
ASME (2000).

[25] C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics”, Journal of Stat-
istical Physics, 52, pp. 479-487 (1988).

[26] E.H. Shiguemori, H.F. de Campos Velho, F.M. Ramos, J.D.S. da Silva, “A Parametric
Study of a New Regularization Operator: Non-extensive Entropy”, 4th International
Conference on Inverse Problems in Engineering: Theory and Practice (ICIPE-2002),
Angra dos Reis (RJ), Brazil - Proc. in CD-Rom: paper code 093 (2002).

[27] E.H. Shiguemori, H.F. de Campos Velho, J.D.S. da Silva, “Estimation of Initial
Condition in Heat Conduction by Neural Network”, Inverse Problems in Engineering
(2003) – in press.

[28] L.D. Chiwiacowsky, H.F. de Campos Velho, “Different Approaches for the Solution
of a Backward Heat Conduction Problem”, Inverse Problems in Engineering (2003) –
in press.

18 ICTT, Rio de Janeiro, RJ, Brazil.


