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Critical dynamic events at the crisis of transition to spatiotemporal chaos
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In the driven/damped drift-wave plasma system a collision of the weak chaotic attractor with a saddle point
is demonstrated at the crisis that induces a transition from a spatially coherent state to spatiotemporal chaos
~STC!. The phenomenon of the collision is consistent with the previous observation of the ‘pattern resonance’
that triggers the crisis. Subsequent to the collision, before the system is ejected to the STC attractor, there is
evidence of another critical dynamic event involving state transition of a mode phase. The second event plays
a crucial role in the destruction of the spatial coherence.
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I. INTRODUCTION

Turbulence is a very common phenomenon in fluids, pl
mas, optics, etc. A fully developed turbulence is not on
chaotic in time, but also erratic in space. The investigation
the mechanism for the onset of turbulence has attracted m
attention for decades. As is well known, Landau’s picture
turbulence is a sequence of stepwise increases in the nu
of frequencies. Later on, it was realized that three inco
mensurate frequencies directly lead to chaos. This Rue
Takens route has been observed theoretically in the mo
of wave-wave interaction@1,2#. In a drift-wave experiment it
was demonstrated that the Ruelle-Takens route leads to w
turbulence@3,4#. In contrast to fully developed turbulenc
where a wave is broken, in weak turbulence the spatial
havior remains coherent. In these examples a sequenc
local bifurcations is not sufficient to destroy the spatial c
herence; it cannot explain wavebreaking in fully develop
turbulence. If wavebreaking is not a result of local bifurc
tions, is it possible that a global bifurcation, i.e., a crisis,
responsible for it?

Crisis is a sudden change of a chaotic attractor, includ
the sudden creation and expansion of a chaotic attracto
merger of two chaotic attractors, and the inverse of th
processes@5–7#, which has been widely studied in time
dependent systems. There are also examples of crisis in
tended systems. For instance, in a model derived from
Kuramoto-Sivashinsky equation it is found that a hig
dimensional interior crisis leads to an abrupt expansion
the chaotic attractor, which results in a sudden increase in
system chaoticity@8#. In this model, the spatial coherenc
still persists after the crisis. In contrast, there is an exam
that spatial coherence is destroyed by a crisis@9#, described
by the model of a driven/damped plasma drift-wave eq
tion:
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heref(x12p)5f(x), anda,0,c, f are constants. In Ref
1063-651X/2004/69~2!/026207~6!/$22.50 69 0262
-

f
ch
f
ber
-
e-
ls

ak

e-
of

-
d
-

g
, a
e

x-
e

-
f

he

le

-

@9# we have shown that for a givenV in certain regime there
exists a criticale5ec , if e,ec the system dynamics is spa
tially regular ~SR! although temporally it can be chaotic
while if e.ec a crisis occurs in the time evolution leading
a transition to spatiotemporal chaos~STC!. For example, for
V50.65 we haveec'0.20.

In general, a crisis occurs when a chaotic attractor colli
with an unstable periodic orbit. For example, if the orb
point ‘‘by chance’’ lands near a stable manifold segment
an unstable orbit of the saddle point, the orbit then mo
towards this fixed point, following the direction of its stab
manifold until being ejected to the unstable manifold a
moving to another attractor@5#. Both crises observed in Refs
@8,9# are due to collision with the unstable orbit of a sadd
point, respectively. In particular in Ref.@8# a collision with
the saddle point was demonstrated at the critical transi
parameter by projecting the orbit to low-dimensional pha
space. It would then be interesting to see in system~1!
whether and in what representation one can observe su
collision with the saddle point in the transition to the ST
Besides, after the crisis, in Ref.@8# the wave remains smoot
but in Eq. ~1! the wave is broken. The question is, then,
the latter case, is there any further dynamic event, other t
a a possible collision with the saddle point, that can dest
the spatial ccoherence? These are the questions we tr
answer in the present work.

In Sec. II we demonstrate that a collision with the sad
point occurs at the critical parameter point for the transit
of a weak chaotic attractor to the STC. In Sec. III the co
sion with the saddle point at the onset of STC is investigat
In Sec. IV it is found that just after the collision a subseque
dynamic event occurs, through which the phase of the ma
mode crosses a critical value and then experiences a tra
tion in its dynamical behavior. The important role of th
event in wavebreaking is addressed. Finally, Sec. V gives
conclusion and a discussion.

II. COLLISION WITH THE SADDLE POINT AND
TRANSITION TO SPATIOTEMPORAL CHAOS

In the first place, we need to find out what a saddle po
is like in Eq. ~1!, where the steady solutions are travelin
©2004 The American Physical Society07-1
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FIG. 1. Asymptotic SR attractor in the phase spacef(j50) vs ]f(j50)/]j for ~a! e50.18, ~b! e50.19, ~c! e50.20, and~d! e
50.2009, withV50.65. ‘‘s ’’ shows the respective saddle points~SSW!.
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waves. Our investigation shows that it is a steady wave~SW!
solution with a saddle instability@9#. For given parameters in
the driver framej5x2Vt,t5t, in general a SWf0(j) can
be solved from ]f0(j)/]t50 by expanding f0(j)
[(k51

` Akcos(kj1uk). A SW f0(j) is a fixed point in the
Fourier space, for the mode amplitudes$Ak% and phases$uk%
are all constants, respectively. When free dimensions
fixed point are perturbed, if the complex conjugate eigenv
ues in one dimension are degenerated to become real
positive and negative values, the fixed point is unstable to
saddle instability. A saddle steady wave~SSW! is a saddle
point in the Fourier space, denoted asf0* (j) henceforth. In
the (j,t) frame one can expect to see the phenomenon
collision with the saddle point at crisis.

By substitutingf(j,t)5f0(j)1df(j,t) into Eq. ~1!,
the perturbation wavedf(j,t) is governed by the following
equation:

]

]t F11a
]2

]j2Gdf2V
]

]j F11a
]2

]j2Gdf1c
]

]j
df1gdf

1 f
]

]j
@f0~j!df#1 f df

]

]j
df50. ~2!
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Here,f0(j) plays the role of a potential that influences t
motion of df. By expandingdf(j,t)5(k51

` bk(t)cos@kj
1ak(t)#, after $Ak ,uk% are obtained from]f0 /]t50, the
modes$bk(t),ak(t)% can be solved from Eq.~2!.

It is amazing that in this system with infinitely many d
mensions the collision with the saddle point can be obser
in a simple phase space. In Fig. 1 we plot the asympt
attractor in the phase spacef vs ]f/]j at j50 with ~a! e
50.18, ~b! e50.19, ~c! e50.20, and~d! e50.2009,ec ;
heref(j,t)5(k51

N $Akcos(kj1uk)1bk(t)cos@kj1ak(t)#% and
]f/]j5(k51

N k$2Aksin(kj1uk)2bk(t)sin@kj1ak(t)#%. In the
plots ~and in following Figs. 2, 4 as well! the saddle point
f0* (0) is denoted by a circle, respectively. Comparing Fi
1~a!–1~d! one can see that whene approaches a criticalec
the attractor and the saddle point gradually approach e
other. Ate50.2009, which is very close toec , the attractor
orbit almost ~but not yet! touches the saddle point. In a
these cases no crisis occurs and the attractors are in th
state.

By increasinge a little bit further, e.g.,e50.2010 in Fig.
2, the asymptotic attractor shows a completely different p
ture. Due to a collision with the saddle point, a crisis occu
after which the basin of attraction of the attractor is grea
enlarged; in the new attractor the variation of]f/]j with f
7-2
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CRITICAL DYNAMIC EVENTS AT THE CRISIS OF . . . PHYSICAL REVIEW E 69, 026207 ~2004!
is much more irregular. Our previous investigation sho
that the new attractor is in the STC state for its spatial
herence has been destroyed. In this case, the saddle
gets embedded in the attractor.

Figure 3 shows examples of asymptotic contour plots
~a! a SR state fore50.18,ec and ~b! a STC state fore
50.21.ec , in ~a! the space-time behavior is slightly chaot
but a travelling wave can still be seen, in~b! the wave is
broken and the spatial coherence no longer holds. The sp
spectrum in~a! shows an exponential law and in~b! a power
law @9#.

III. COLLISION WITH THE SADDLE POINT AT THE
ONSET OF STC

For a givene.ec , it is important to find out what hap
pens at the onset of transition to the STC. From the result
Sec. II it is reasonable to anticipate an occurrence of co
sion with the saddle point in the temporal evolution. Figur
shows the transient attractor of]f(0,t)/]j vs f(0,t) for e
50.22.ec ; ~a!–~d! are for the same parameters but w
different initial distributionsf(j,t50), which are taken to
be adjacent to the saddle pointf0* (j). To avoid confusion
the orbit in the first few steps is not shown in the plot.
fact, in all these four examples~and in all the test runs! one
can see the transient attractor colliding with the saddle p
before the orbit transits to a much larger STC attractor.

The collision with the saddle point in Fig. 4 is consiste
with the phenomenon of ‘‘pattern resonance’’ reported
Ref. @10#. We have pointed out that a pattern resonance
responsible for triggering a crisis of transition to the STC.
demonstrated by snapshots in Ref.@10#, at the pattern reso
nance (t5tc) the realized waveformf(x,tc) almost coin-
cides with the virtual waveform of the SSWf0* (x2Vtc).
Obviously in the phase spacef(j) vs ]f/]j a pattern reso-
nance should be manifested as a collision with the sad
point. This is exactly what we observe in Fig. 4 atj50.

FIG. 2. Asymptotic STC attractor in the phase spacef(j50)
vs ]f(j50)/]j for e50.2010, with V50.65. ‘‘s ’’ shows the
saddle point~SSW!.
02620
s
-
int

f

tial

of
i-
4

nt

t

is
s

le

Figure 5~a! is a contour plot ofd2(x,t); here d(x,t)
[f(x,t)2f0* (x2Vt), the difference between the realize
wave and the SSW. In the plot an onset of crisis leading
transition from SR to STC occurs att5t1'31 as indicated
by the arrowt1. Just around this moment one can find a zo
with almost white color, indicating the waveformf(x) is
nearly the same as the virtual waveformf0* (x) at t5t1, i.e.,
the pattern resonance takes place. With the same initial c
dition Fig. 5~b! shows the variation ofD(t)[uf(x,t)
2f0* (x2Vt)u. Before transiting to the STC with highe
level fluctuations one can identify a sharp spiky valley w
an extremely small value ofD at t5t1 marked by the arrow
t1, indicating the occurrence of the pattern resonance.

In the above plots, Figs. 3 and 5 are obtained by solv
Eq. ~1! with the pseudospectral method, and Figs. 1, 2, an
by solvingf0(j) anddf(j,t). It is of no surprise that they
agree with each other qualitatively, since in deriving Eq.~2!
no approximation has been made. All these results sup
that the pattern resonance or collision with the saddle poin
the origin for the onset of the STC. In Ref.@10# we also
pointed out that the pattern resonance is essentially due

FIG. 3. Contour plot off(x,t) for ~a! the SR attractor fore
50.18, and~b! the STC attractor fore50.21.
7-3
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FIG. 4. Transient SR attractor and its collision with the sad
point in the phase spacef(j50) vs ]f(j50)/]j which leads to
the crisis of transition to the STC:V50.65 ande50.22. ~a!–~d!
are for different initial conditions. ‘‘s ’’ and ‘‘ , ’’ denote the saddle
point ~SSW! and the ‘‘ejecting point,’’ respectively.
02620
nonlinear frequency resonance, which also applies to the
lision with the saddle point discussed here.

IV. A SUBSEQUENT CRITICAL DYNAMIC
EVENT AFTER THE COLLISION

There is evidence indicating that the collision with
saddle point is not the only critical event at the onset to
STC. As we noted in Ref.@10# @also see Fig. 5~b!#, the big-
gest spike is always followed by a slightly smaller spi
before transiting to the STC. On the other hand, in Fig
after the collision the orbit is not immediately ejected to t
new attractor; instead, it seems to continue moving smoo
for one more circle surrounding the old attractor; only wh
it once again approaches closer to the saddle point ‘‘(s), ’’
does the orbit suddenly turn its direction and is ejected to
new attractor. In all tested runs we observed such an ‘‘eje
ing point,’’ which is denoted by ‘‘, ’’ in Fig. 4. By compar-

e

FIG. 5. ~a! Contour plot of the squared distanced2(x,t) and~b!
distanceD(t) between the realized solutionf(x,t) and the corre-
sponding SSW,f0* (x2Vt): V50.65 ande50.22. The initial con-
ditions in ~a! and ~b! are the same. The arrowst1 and t2 mark the
critical times corresponding to the sharp points of the two bigg
spikes in~b!, respectively.
7-4
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FIG. 6. bk51(t) vs ak51(t) in the transient state.~a!–~d! correspond to the same cases as in Fig. 4; ‘‘, ’’ indicates the position of the
‘‘ejecting point.’’
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ing the behaviors in Figs. 5 and 4 qualitatively, it is evide
that at the first big spike~marked by the arrowt1) in Fig. 5
a collision to the saddle point takes places~see the colliding
point s in Fig. 4!, and near to the second big spike~marked
by the arrowt2) in Fig. 5 the orbit is ejected to the STC
attractor~see the ejecting point, in Fig. 4!.

Investigating the behavior of thek51 master mode may
help us to understand what happens at the ejecting p
Figure 6 shows the transient orbit ofbk51 vs ak51@mod
(2p,p) has been taken#; here~a!–~d! are for the same case
as in Figs. 4~a!–4~d!, respectively. The corresponding pos
tion to the ejecting point is also denoted by,, respectively,
in Fig. 6. One can notice that they are all located at the top
a hump respectively. Most importantly, right after crossi
over the hump, the variation of the mode phaseak51 sur-
passes 2p, and the mode amplitudeb1 increases greatly
leading to the STC attractor. Conversely, before the ejec
point the phaseak51 is confined within an angle less tha
2p.

A significant phenomenon is that theak51 values at the
ejecting points,a1* , in Figs. 6~a!–6~d! are nearly the same
For 20 test runs with different initial conditions we get th
averaged value ofa1* '21.539 with the averaged relativ
deviation^ua1* 2a1* u/a1* &'0.039. Therefore it is reasonab
02620
t

nt.
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to believe that near the ejecting point there exists a crit
phasea1

c , across whichak51 experiences a state transitio
i.e., before the point it is in vibration, beyond itak51 can be
whirling as well as vibrating. This point is presumably
saddle, just as occurs when crossing the separatrix a vib
ing pendulum becomes rotating. Figure 7 displays the ti
series ofb1 and a1 for the same case as in Figs. 4~c! and
6~c!. In the plot one can see that after the crisis~a! the fluc-
tuation level ofbk51 suddenly becomes very large and~b!
ak51 transits to a vibrating-whirling state. The arrow in Fi
7~a! denotes the first critical dynamic event, i.e., the collisi
to the SSW, whereas the arrow in Fig. 7~b! denotes the sec
ond critical dynamic event, i.e., the state transition ofak51.
After the transition to the STC the master mo
dfk51(j,t)5b1(t)cos@kj1a1(t)# is no longer confined by
the ‘‘potential’’ f0* (j); its peak is allowed to move freely
relative to it. This results in a wavebreaking off(x,t) and
the destruction of spatial coherence.

V. CONCLUSION AND DISCUSSION

In the present work by using an appropriate representa
in the driver frame it is demonstrated that a transition fro
weak chaos to the STC is induced by a collision with
7-5
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saddle point~SSW!. The result on the collision in the tem
poral evolution supports our previous observation that ‘‘p
tern resonance’’ is responsible for driving the onset of a cr
to the STC. We also identify a dynamic event subsequen
the collision, at which thek51 mode phase of the perturba
tion wave experiences a state transition. That is, we disco

FIG. 7. Temporal evolutions of~a! bk51 and~b! ak51. One can
see a state transition taking place in~b!. The same case as in Fig
4~c! and 6~c!.
T.
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that there are two critical dynamic events instead of one
are involved in the crisis of transition to the STC. The fir
event provides the possibility for the occurrence of the s
ond one, but only after the second event is the wave brok

In our case the collision with the saddle point (s) in Fig.
4 does not occur in a strict sense. At the moment of collis
not all bk are very close to zero, in particular for high-k
modes the deviations from the saddle point can be appa
This fact can also be seen in Figs. 5~a! and 5~b!; at the
pattern resonance marked by the arrowt1 the realized
f(x,t1) does not exactly coincide with the virtualf0* (x,t1).
A small but finite difference between them can be seen. T
is in contrast to the high-dimensional interior crisis observ
in Ref. @8#, where an exact collision with the saddle point
seen in every dimension. Moreover, in Ref.@8# the mode
phase does not appear in the model, and hence no subse
event involving state transition of the mode phase occ
following the collision. Presumably this is why its spati
coherence is still retained after the crisis.
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