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The strong geomagnetic storms on April 17th 1999 (Dst peak = -91 nT) and on February 12th 2000 (Dst peak = -131 nT) were caused by different interplanetary structures. The April 1999 event was caused by a south-north fast magnetic cloud,
which drove an interplanetary shock detected at 1 astronomical unit (UA) at 10:30 UT on April 16th 1999. This interplanetary shock had Alfvenic Mach number of about 2.5. The magnetic cloud arrived at UA around 23:00 UT on April 16th and
ended around 19:00 UT on April 17th. The southward component of the interplanetary magnetic field remained above -10 nT for 5 hours, with peak value of -14 nT. The February 2000 event was caused by the interaction of two interplanetary
remnants of coronal mass ejections. Two interplanetary shocks were detected on February 11th 2000 at 02:00 and at 23:00 UT. These shocks had Alfvenic Mach numbers of about 2.0 and 2.8, respectively, and were driven by interplanetary
ejecta. The first interplanetary ejecta arrived at 1 UA around 16:00 UT on February 11th. However, it was engulfed by the second one around 20:00 UT on the same day, creating an intense and highly turbulent southward magnetic field, which
remained above -10 nT for 3 hours, with peak value of -16 nT. In this paper the interplanetary aspects of these two solar-terrestrial connection events are analyzed and compared. Plasma and magnetic field data obtained from sensors on board
ACE spacecraft orbiting L1 point are used.
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perpendicular to both the x and z axes with a positive direction
opposite to the Earth's motion around the Sun.




