Theoretical Study of Reaction
 $\mathrm{BF}_{3}+\mathrm{BF} \rightarrow \mathrm{BF}_{2}+\mathrm{BF}_{2}$

Patrícia R.P. Barreto
Laboratório Associadode Plasma- LAP
Instituto Nacional de Pesquisas Espaciais- INPE patricia@plasmainpe.br
Alessandra F.A. Vilela and Ricardo Gargano
Instituto de Física
Universidade de Brasília - UnB

Abstract
A gas-phase kinetic mechanism for the $\operatorname{Ar} / B / F / N / H$ system was developed to describe the chemistry present during the growth of boron nitride films in a CVD reactor. The gas-phase mechanism, initially, includes 26 species and 67 elementary reactions, but this mechanism was extended to a mechanism with 35 species and 1012 reactions. Rate constants for 117 elementary reactions were obtained from published experimental/theoretical data and those for the other 895 reactions should be estimated using transition state theory(TST). We developed a simple program to determine the reaction rate by using conventional transition state theory and also the thermodynamic properties of the species. The program prints out the reaction rate in the Arrhenius form ($k=A T^{n} \exp \left(-E_{a} / R T\right)$) over the temperature range of 200 - 4000K and also, if it is desirable, the thermodynamic properties (heat capacity, entropy and enthalpy) in the polynomial form for $200-6000 \mathrm{~K}$ temperature range. The reaction rate and the polynomial form for the thermodynamic properties is used in the kinetic program as ChemKin to simulated the gas phase composition during the growth of boron nitride in a plasma torch experiment. The theoretical data is used to optimize the experimental conditions because films properties depend on complex interactions involving heat and mass transport and chemical kinetics.

Introduction

> There has been considerable interest in recent years, in the growth of boron nitride thin films;
> Like carbon, boron nitride has different allotropes, the hexagonal (hBN) and cubic (cBN) phases;
> The hexagonal phase, although electrically insulating, has properties that are very similar to graphite while the cubic phase has properties comparable to diamond;
> There is little understanding of the chemical process which are involved in and which control the synthesis of either hBN or $C B N$ from the vapor phase;
> Theoretical research found in the literature includes thermodynamic equilibrium calculations for mixtures involving $B / F / N / H$ and $B / C l / N / H$, as well as limited kinetics studies of the reactions between BCl_{2} and NH_{2}.

Kinetic Model

$>$ Thin film deposition \Rightarrow chemical process
> Chemical species

- Thermodynamic Properties
> Chemical reactions
- Rate constants (Arrhenius form): A, n, E_{a}
\triangleright Experimental, theoretical
> Bimolecular reaction between A and B producing C and D:

$$
A+B \underset{k_{r}}{\leftarrow_{k_{f}}^{k_{f}}} C+D
$$

$>$ Rate constants in Arrhenius form:

$$
k_{f}=A T^{n} \exp \left(-\frac{E_{a}}{R T}\right) \quad k_{r}=k_{f} K_{c}=k_{f}\left(\frac{R T}{V}\right)^{\Delta v} \exp \left(-\frac{\Delta S}{R}\right) \exp \left(\frac{\Delta H}{R T}\right)
$$

Theoretical Rate Constant

-Collision theory:

$$
A=\sigma_{A B} v_{A B}
$$

$>$ Transition state theory:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{a}}^{\mathrm{G}^{+}}=\mathrm{V}^{+}+\varepsilon_{\mathrm{ZPE}} \\
\beta=\arccos \left[\frac{\mathrm{m}_{\mathrm{A}} \mathrm{~m}_{\mathrm{c}}}{\left(\mathrm{~m}_{\mathrm{A}}+\mathrm{m}_{\mathrm{B}}\right)\left(\mathrm{m}_{\mathrm{B}}+\mathrm{m}_{\mathrm{C}}\right)}\right]^{1 / 2}
\end{gathered}
$$

Partition Function $Q=Q_{\text {trans }} Q_{\text {rot }} Q_{\text {vib }} Q_{\text {elet }}$

	Degrees of freedom	Partition Function	Magnitude order
Translation	3	$Q_{\text {trans }}=\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}$	$10^{33} \mathrm{~m}^{3}$
Rotation-2D	2	$Q_{\text {rot-2D }}=\left(\frac{8 \pi^{2} I k_{B} T}{\sigma_{e} h^{2}}\right)$	$10-10^{2}$
Rotation-3D	3	$Q_{\text {rot }-3 D}=\left[\frac{\sqrt{\pi}}{\sigma_{e}}\left(\frac{8 \pi^{2} I_{m} k_{B} T}{h^{2}}\right)^{3 / 2}\right.$	$10^{2}-10^{3}$
Vibration	$n=3 N-5$ $n=3 N-6$	$Q_{\text {vib }}=\prod_{i=1}^{n}\left[1-\exp \left(-\frac{h c v_{i}}{k_{B} T}\right)\right]^{-g_{i}}$	$1-10^{n}$
Electronic	-	$Q_{\text {elet }}=\sum_{i=0}^{n} g_{i} \exp \left(-\frac{\varepsilon_{i}}{k_{B} T}\right)$	1

Minimum Energy Path - MEP

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{MEP}}=-\frac{\mathrm{AY}}{1+\mathrm{Y}}-\frac{\mathrm{BY}}{(1+\mathrm{Y})^{2}} \\
& \mathrm{Y}=\mathrm{e}^{\alpha\left(\mathrm{s}-\mathrm{S}_{0}\right)} \\
& \mathrm{A}=\Delta \mathrm{E}_{\mathrm{C}}=\mathrm{V}_{\mathrm{MPE}}(\mathrm{~s}=+\infty) \\
& \mathrm{B}=\left(2 \mathrm{~V}^{+}-\mathrm{A}\right)+2\left(\mathrm{~V}^{+}\left(\mathrm{V}^{+}-\mathrm{A}\right)\right)^{1 / 2} \\
& \mathrm{~S}_{0}=-\frac{1}{\alpha} \ln \left(\frac{\mathrm{~A}+\mathrm{B}}{\mathrm{~B}-\mathrm{A}}\right) \\
& \alpha^{2}=-\frac{\mu\left(\omega^{+}\right)^{2} \mathrm{~B}}{2 \mathrm{~V}^{+}\left(\mathrm{V}^{+}-\mathrm{A}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}=-\frac{\mathrm{ay}}{1+\mathrm{y}}-\frac{\mathrm{by}}{(1+\mathrm{y})^{2}}-\mathrm{c} \\
& \mathrm{y}=\mathrm{e}^{\alpha\left(\mathrm{s}-\mathrm{s}_{0}\right)} \\
& \mathrm{a}=\Delta \mathrm{H}_{0}=\mathrm{V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}(\mathrm{s}=+\infty)-\mathrm{V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}(\mathrm{s}=-\infty) \\
& \mathrm{b}=\left(2 \mathrm{~V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}-\mathrm{a}\right)+2\left(\mathrm{~V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}\left(\mathrm{V}_{\mathrm{a}}{ }^{\mathrm{G}^{+}}-\mathrm{a}\right)\right)^{1 / 2} \\
& \mathrm{c}=\varepsilon_{\text {int }}{ }^{\mathrm{G}}(\mathrm{~s}=-\infty) \\
& \mathrm{s}_{0}=-\frac{1}{\alpha} \ln \left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{~b}-\mathrm{a}}\right)
\end{aligned}
$$

Tunneling Corrections

> Wigner:

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{TST}}^{\mathrm{W}}(\mathrm{~T})=\kappa(\mathrm{T}) \mathrm{k}(\mathrm{~T}) \\
& \kappa(\mathrm{T})=1+\frac{1}{24}\left|\frac{\hbar \omega^{+}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}\right|^{2}
\end{aligned}
$$

$>$ Eckart: $\quad \kappa(\mathrm{E})=1-\frac{\cosh [2 \pi(\alpha-\beta)]+\cosh [2 \pi \gamma]}{\cosh [2 \pi(\alpha+\beta)]+\cosh [2 \pi \gamma]}$

$$
\begin{array}{lc}
\alpha=1 / 2 \sqrt{\mathrm{E} / \mathrm{C}} & \beta=1 / 2 \sqrt{(\mathrm{E}-\mathrm{a}) / \mathrm{C}} \\
\gamma=1 / 2 \sqrt{(\mathrm{~b}-\mathrm{C}) / \mathrm{C}} & \mathrm{C}=\frac{\left(\mathrm{h} \omega^{+}\right)^{2} \mathrm{~B}}{16 \Delta \mathrm{~V}^{+}\left(\Delta \mathrm{V}^{+}-\mathrm{a}\right)} \\
\Gamma(\mathrm{T})=\frac{\exp \left(\Delta \mathrm{V}^{+} / \mathrm{RT}\right)^{\infty}}{\mathrm{RT}} \int_{0}^{\infty} \exp (-\mathrm{E} / \mathrm{RT}) \mathrm{k}(\mathrm{E}) \mathrm{dE}
\end{array}
$$

Thermodynamic Properties

$$
\begin{aligned}
& A=-k_{B} T \ln Q \\
& G=A+P V \\
& E=k_{B} T\left(\frac{\partial \ln Q}{\partial \ln T}\right)_{v} \\
& H \equiv E+P V \\
& S=k_{B} \ln Q+k_{B}\left(\frac{\partial \ln Q}{\partial \ln T}\right)_{v} \\
& C_{v}=\frac{k_{B}}{T^{2}}\left(\frac{\partial^{2} \ln Q}{\partial(1 / T)^{2}}\right)_{v} \\
& C \equiv C_{v}+R
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{R}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{i}^{\mathrm{i}-1} \\
& \frac{\mathrm{H}}{\mathrm{RT}}=\frac{\mathrm{b}_{1}}{\mathrm{~T}}+\frac{1}{\mathrm{RT}} \int \mathrm{c}_{\mathrm{p}} \mathrm{dT} \\
& \frac{\mathrm{~S}}{\mathrm{R}}=\mathrm{b}_{2}+\int \frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{RT}} \mathrm{dT}
\end{aligned}
$$

$>$ Two temperature range
> $0-1000 \mathrm{~K}$
> $1000-6000 \mathrm{~K}$
$>$ Seven coefficient

Optimized Geometry HF/6-31G(d)

	BF_{3}	BF	BF_{2}	$\boldsymbol{F}_{2} \mathrm{BF}^{\prime} \mathrm{B}^{\prime} F^{\prime \prime}$
$R_{B F}$	1.324		1.321	1.382
$R_{B F^{\prime}}$				1.500
$R_{B^{\prime} F^{\prime}}$				1.403
$R_{B^{\prime} F^{\prime \prime}}$		1.281		1.251
$A_{F B F}$	120.0		121.1	117.770
$A_{F B F^{\prime}}$				112.097
$A_{B F^{\prime} B^{\prime}}$				62.759
$A_{F^{\prime} B^{\prime \prime}}$				112.902

	BF_{3}	BF	BF_{2}	TS
	480.95	1471.09	522.85	138.99
	480.95		1173.66	278.88
	698.54		1446.56	366.99
	888.61			396.39
	1496.76			508.70
	1496.76			512.90
				686.76
				862.62
				1200.20
				1433.64
				1655.59
				$427.92 i$
ZPE	8.357	2.103	4.178	11.496

BF_{3}	-323.1954852
BF	-124.1031842
BF_{2}	-223.6268073
TS	-447.1987338
Reaction Entalphy	27.248
Potential Barrier	63.746

BF		BF_{2}		BF_{3}	
$0.4341 \mathrm{E}+01$	$-.84896 \mathrm{E}+00$	$0.3832 \mathrm{E}+01$	$0.5156 \mathrm{E}+01$	$0.3109 \mathrm{E}+01$	$0.6933 \mathrm{E}+01$
$-.76199 \mathrm{E}-02$	$0.82593 \mathrm{E}-02$	$0.89619 \mathrm{E}-03$	$0.18512 \mathrm{E}-02$	$0.85572 \mathrm{E}-02$	$0.30749 \mathrm{E}-02$
$0.31068 \mathrm{E}-04$	$-.39087 \mathrm{E}-05$	$0.10616 \mathrm{E}-04$	$-.71641 \mathrm{E}-06$	$0.73393 \mathrm{E}-05$	$-.11890 \mathrm{E}-05$
$-.44477 \mathrm{E}-07$	$0.74485 \mathrm{E}-09$	$-.14939 \mathrm{E}-07$	$0.12138 \mathrm{E}-09$	$-.19342 \mathrm{E}-07$	$0.20134 \mathrm{E}-09$
$0.20884 \mathrm{E}-10$	$-.49851 \mathrm{E}-13$	$0.60000 \mathrm{E}-11$	$-.75098 \mathrm{E}-14$	$0.93432 \mathrm{E}-11$	$-.12453 \mathrm{E}-13$
$-.12010 \mathrm{E}+04$	$0.5899 \mathrm{E}+03$	$-.12487 \mathrm{E}+04$	$-.18368 \mathrm{E}+04$	$-.13349 \mathrm{E}+04$	$-.25889 \mathrm{E}+04$
$0.7233 \mathrm{E}+01$	$0.3485 \mathrm{E}+02$	$0.5059 \mathrm{E}+01$	$-.28983 \mathrm{E}+01$	$0.8633 \mathrm{E}+01$	$-.12207 \mathrm{E}+02$

Conclusion

We have studied the gas-phase $\mathrm{BF}_{3}+B F \rightarrow 2 B F_{2}$ abstraction reaction with the conventional transition state theory with the Wigner and the Eckart transmission coefficient using our own code. With these information, we calculated the reaction rate over a wide temperature range from 200-4000K. We found that the reaction rate obtained using conventional transition state, with or not the Wigner and Eckart transmission coefficient have the same behavior in the high temperature range, 1000-4000 K, that we are interested in. Understanding the chemical process which are involved in and which control the synthesis of either hexagonal or cubic boron nitride from the vapor phase are the goal of our research. Furthermore, the results presented in this work could elucidate the BF_{3} decomposition that is very important for the kinetic mechanism information of boron nitride using as $B F_{3}, H_{2}$ and N_{2} as the gas source.

