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1. Introduction

This paper develops a comprehensive expression for the neoclassical current density

in toroidal devices of tokamak ordering, accounting for the acceleration effect of the toroidal

electric field in reducing the pitch angle of trapped electrons such that they become

untrapped; the effect of launch-point averaging in reducing the trapped particle fraction on a

given flux surface, and the increase in bounce period brought about by the combination of the 

toroidal electric field and the non-linearity of large-excursion banana orbits. The initial

sections outline the electric field effect in terms of single particle analysis and the subsequent 

sections develop this further to account for a Maxwellian distribution of particle velocity,

launch point averaging of the trapped particle fraction, variation of the bounce period with the 

poloidal excursion of the banana orbits, and finally the convolution with collisionality.

It is shown that including the collisionality or the toroidal electric field alone removes 

the “catastrophe” of infinite current density gradient otherwise theoretically predicted at the

magnetic axis of the tokamak according to the usual neoclassical theory [1-2]. With both

terms active, the effect on the current density profile, especially the central and peripheral

regions, is quite significant given parameters typical of many present-day experiments. 

The implications for experimental interpretations concerning such neoclassical effects 

as bootstrap current [3], neoclassical tearing modes [4], current drive and so on are also

potentially of significance but are not elaborated here. Also finite trapped particle fraction on

the magnetic axis resulting from orbit effects like kidney-bean (aka potato) orbits [5-6] is not 

included in this work. This paper addresses the role of the driven electric field in detrapping

particles that would in conventional neoclassical theory exhibit a trapped particle fraction, ft,

falling to zero at the magnetic axis as ε≈tf . It should be also underlined that the topology

of orbits for highly energetic ions with large excursions over the plasma cross section is not

considered here. Our trapped region is thus symmetric in the ⊥− vv//  space, different from

ref.[7], and modified due to the presence of the driven electric field.

The structure of the paper is as follows:

1. Introduction
2. Mono-energetic particles launched at the outer midplane
3. Integration over velocity distribution
4. Launch point averaging of trapped particle fraction
5. Current density profiles 
6. Collisionality effects
7. Conclusions
8. References
9. Appendices
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2. Mono-energetic particles launched at the outer midplane

For a circular plasma in the large aspect ratio approach, the combination of the

magnetic mirror force and the parallel electric field, approximately given by the toroidal

component φE , results in a potential energy curve resembling a tilted sine wave, as developed 

in Appendix 1. This yields an expression for the total potential energy versus the coordinate

qφ , or equivalently the poloidal angle θ, as follows:
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described in a toroidal coordinate system (r, θ, φ) where r represents the radial coordinate on 

the poloidal plane, θ is the poloidal angle representing the excursion of a field line around the 

minor circumference, and φ is the toroidal angle representing excursions around the symmetry

axis. This expression contains an approximation in the first term, as explained in Appendix 1.

In Eq.(1), A is the local aspect ratio ( rRA 0= ), R0 is the tokamak geometric radius, e is the 

electronic charge and q the safety factor. The potential energy described in Eq.(1) is plotted in 

figure 1 for a range of normalised electric fields x given by

x = {0, 0.2, 0.5, 0.6, 0.724611, 0.8, 0.9, 1}, with x being defined as )(RqeEx 0 ⊥φ ε= E . ε is 

the local inverse aspect ratio; 1A−=ε .

Figure 1: Potential Energy Curve for different normalised electric field values “x”. The thicker trace 

corresponds to the critical value xc=0.7246 for θ =0.

If x = 1, the potential energy has a point of inflexion at 2π=θ , that is the

electrostatic and magnetic forces balance each-other. Accordingly for finite values of x below 

unity there arises a critical initial parallel energy in order that a particle launched from θ = 0

can overcome the potential barrier (ie. to become untrapped):
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The region of trapping we are interested in lies within the poloidal range – π < θ < π.

Dots above π/2 in figure 1, represent the peak energy for different electric field values (or x

values). Dots below π/2 represent the equivalent upstream point.

The critical toroidal electric field for particles launched from the outboard

midplane (θ = 0) with no parallel velocity is given by solving the expression for E//c = 0, with 

the result:

)eqR(7246.0E 0⊥φ ε≥ E .                                             (3.a)

The thicker trace, in figure 1, corresponds to this critical normalised electric field xc = 0.7246.

In the same way, for a given electric field, there will also be a critical perpendicular

energy below which no particles launched at the outboard midplane with any E// are trapped. 

This critical perpendicular energy is defined by:

)7246.0(RqeE 0c ε≤ φ⊥E               (3.b)

The expression for E//c, given in (2), can be approximated without significant loss of

accuracy by:

)725.0x1(2c// −ε= ⊥EE                           (4)

Noting that ( ) 725.0RqeEx 0 ≈ε= ⊥φ E  corresponds, in the case θ = 0, to the critical value of 

⊥E  ( c⊥E being constant for each flux surface), Eq.(4) can be rewritten as:

( )⊥⊥⊥ −ε= EEEE cc// 12                                  (5)

This expression will be used in the next section in the integration of the velocity

distribution function over the velocity space in order to estimate the trapped particle fraction

for particles launched at the outer midplane under the action of the driven electric field.

3. Integration over velocity distribution

The part of the velocity distribution representing particles with perpendicular

velocities below the critical perpendicular energy contributes nothing to the trapped particle
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fraction. This critical ⊥E  (ie. c⊥E ) corresponds to a critical ⊥v , here termed cv⊥ . This is

shown diagrammatically in figure 2 for a representative series of values of cv⊥ .

Figure 2: Trapped particle boundaries in velocity space for various values of the normalised electric field x. The 

dots indicate the chosen values of cv⊥ , and the dashed lines represent the boundary when Eφ =0.

The ratio vv//  represents, for high perpendicular velocities, the trapped particle

fraction, and corresponds to the sine of the asymptotic complementary pitch angle (ie. the

angle formed by a dashed line and the horizontal axis in figure 2). This ratio is conventionally 

accepted as given by ))r(1()r(2)r(f t ε+ε=  [8], and may be obtained by integrating a

Maxwellian over the trapped boundary delimited by the dashed lines in velocity space in

figure 2. Furthermore, this result represents the trapped particle fraction for launch points at

the outer midplane, which is the assumption in the calculations described in the present

section. The effect of different launch points on the resulting )r(f t will be considered in

section 4. 

In the presence of the electric field, the trapped boundary is modified into the regions 

defined by the full lines in figure 2, which have a lower limit in ⊥v corresponding to the

critical value cv⊥ . The total trapped particle fraction on a flux surface is then obtained by

integrating the velocity distribution, still considered as a Maxwellian, over this new boundary.

This integration is shown in full in Appendix 2, resulting in the following expression for the 

trapped particle fraction:

)r(21

)r(2
))r(vexp()r(f 2

t ε+
ε−=       , (6)

where )r(T)r()r(v ec⊥= E , in the exponential factor, introduces the modification due to

the electric field. Te(r) represents the electron temperature profile. Note that when the electric 

field Eφ = 0, then 0c =⊥E  and v(r) = 0. In this case, the trapped particle fraction reduces to
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the large aspect ratio expression in the absence of the electric field,

))r(21()r(2)r(f t ε+ε= , which is slightly different from the usual expression mentioned

above, ))r(1()r(2 ε+ε . This is due to the fact that in this paper an approximation for the

parallel potential energy has been adopted.

In order to make the estimate of the trapped particle fraction profile consistent with a

determined current density and for given electron temperature profiles, an iterative process for 

the current density j(r) is developed as described below.

Initially, a first guess for j(r) is considered and the central current density j0 is chosen

in order to support a particular value for q0, say q0=1.0. This then sets the value of φE  for a

calculation of j(r), allowing an intuitively interpretable superposition of current density

profiles with the same central current density, for various values of control parameters such as 

Te0. (Of course, since central current density is thus kept constant while the current profile

shape varies, the total plasma current and the profile of safety factor q are in general not

constant). Thus (ignoring Shafranov shift, diamagnetism and paramagnetism, skin effect and

tearing modes lowering the central electric field compared to the surface value),

( ) ( )0000 RqB2j φµ=     ,                                             (7)

leading to a toroidal electric field given by:

)0(
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In Eq. (7), Bφ represents the toroidal magnetic field and the Spitzer conductivity σSpitzer, in (8), 

is described as:
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where me and e are respectively the electron mass and charge, and ΛE(Zeff) represents the

correction to account for impurities in the plasma given by [9]:
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The electron temperature profile adopted here was taken to be of the form:
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The neoclassical current density, when the plasma collisionality is not taken into

account, is approximately given by:

( ) φ−σ= E)r(f1)r()r(j tSpitzer       .                              (12)

The trapped particle fraction is then calculated through Eq.(6) where c⊥E is obtained 

from (3.b) replacing the inequality by the equal sign. In this equation we have also dropped

the electronic charge in order to obtain the perpendicular critical energy in eV. Note that the

critical x value for θ = 0 is xc=0.7246. In each case there is only q(r) which has to be

determined. The safety factor profile that enters the equation for c⊥E is estimated using the

following expression:






 ′′′µε= ∫φ

r

000
2 rd)r(jrBR)r(q           (13)

with j(r) being given in the first iteration by our first guess introduced in the process. 

At this point, having defined all the necessary parameters, the new current density

profile can thus be obtained from (12). This new current density is reintroduced in the

iterative process and all the calculations described above are repeated until j(r) converges

within a given tolerance. The central current density j0 and the toroidal electric field Eφ are

kept constant for all iterations. 

Figure 3 shows resulting profiles of trapped particle fraction for different central

electron temperatures as listed in table 1. The respective toroidal electric fields in each of

these cases are also listed in the same table. The other fixed parameters used in the calculation 

are listed in table 2.

Te0  (eV) 50 80 200 2000

φE   (V/m) 7.1 3.5 0.89 0.03

Table 1: Central electron temperatures and electric fields obtained for trapped particle calculation in figure 3.

Teedge αT Zeff Bφ q0 R0 R0/a

1.0 x 10-3 Te0 2 1 1 T 1 0.56 m 3.5

Table 2: Set of parameters used for trapped particle and current density profile calculations.

It can be observed in figure 3 that for Te0 = 50 eV there is essentially a simple Spitzer

behaviour, (ie. almost no trapping), due to the very effective action of the electric field in low 

temperature plasmas. In the other cases shown in the figure, although particles are trapped in 

a significant ratio, the electric field continues to play a significant role in detrapping them.

This detrapping effect takes place over the whole plasma cross section becoming more
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evident, in the case of high temperature plasmas, in the plasma edge, where the temperature is 

lower. In the plasma centre, as the temperature increases, the detrapping of particles occurs

closer and closer to the magnetic axis and it is hardly observed when Te0 = 2 keV. However, it 

is always sufficient, even in high temperature plasmas, to eliminate the singular behaviour in 

this region, otherwise present when there is no electric field. The crosses in the plot represent 

the trapped particle fraction for 0E =φ  and circular plasmas, given by

))r(21()r(2)r(f t ε+ε= . Note that for Te0 = 2 keV, ft is nearly coincident with this result

but the electric field is still acting. Its effect is better observed, in this case, in the plasma

edge.

Figure.3: Trapped particle fraction for various central electron temperatures under 
the effect of the toroidal electric field, and in the case when there is no electric field
(crosses). In this figure only outboard midplane launch points are considered. 

4. Launch Point Averaging of Trapped Particle Fraction

In this section the theory is developed to account for the different launch points of the

particles around the poloidal circumference, still assuming a Maxwellian distribution at each

launch point.

Any charged particle born at a point can only be co-passing, counter-passing or

trapped, and in the absence of an electric field will map out the whole orbit associated with

whichever of these (nested) classes it represents, wherever it started from.

In the situation of interest here, the co-passing particles are continuously accelerated

by the toroidal electric field and hence develop increasingly inwardly displaced drift orbit

surfaces. Those born as counter-passing are decelerated by the electric field until they reflect

off one of the peaks of the potential energy curve. They will not become trapped unless they

lose parallel energy by some other mechanism (not considered here) within the potential

energy well where they were reflected, and hence they just become part of the continuously
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accelerating co-passing class. While decelerating, these counter-passing particles

progressively lose their characteristic outward drift orbit displacement, of course. This leaves

the ones born as trapped particles, necessarily with turning points between the poloidal angle 

of formation (equivalently the major radius of formation) and the downstream point of highest

potential energy (which is a function of their ⊥E ). Neglecting collisions and other energy loss 

or gain processes, these will stay trapped but they will suffer net ∇B drift towards the

midplane, owing to the lack of up-down symmetry in the banana orbits.

The first thing to note in developing the calculation of trapped particle fraction is that, 

as noted in figure 1, the minimum of the potential energy function is not at the outboard

midplane but is shifted “downstream” by the toroidal electric field (oppositely for the ions and 

electrons, of course). Appendix 3 covers the details, beginning with the derivation of the

critical parallel energy for detrapping as a function of the poloidal angle of the launch point θ:

( ) 


 θ+θ+−−π−−+ε=θ ⊥ x)(Cos1)xarcsin(xx11)( 2
c// EE  .          (14)

This expression already includes the corrections to the potential energy curve for the shift of

the potential energy minimum due to the electric field.

Equation (14) can be approximated, as developed in details in Appendix 3, by the

following expression:
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allowing an analytical form for the trapped particle fraction related to a given launch point,

similar to the derivation used in the case θ = 0:

)cos1()r(1

)cos1()r(
)),r(vexp(),r(f 2

t θ+ε+
θ+εθ−=θ   , (16)

with )r(v),r(v)r(T),r(),r(v thcec θ=θ=θ ⊥⊥E , and vth(r) representing the thermal

velocity. The value of xc(θ), used in the calculation of ),r(v c θ⊥ , is obtained by solving

numerically Eq.(14) when E//c (θ)= 0.

This and the exact calculation, here denominated “complete”, obtained numerically

when the potential energy curve is given by the full form described by Eq.(14), are then

integrated over the poloidal circumference to produce the full average trapped particle

fraction, generating graphical results such as those of figures 4 and 5. These figures show,

respectively, the variation of the trapped particle fraction with the inverse aspect ratio plotted

in both linear and logarithmic scales. The plots show also the comparison of ft obtained from



10

both methods (complete and approximated) for fixed values of h, which is a form for the

normalised electric field described by ))r(T2(Vloop)r(q)r(h eπ= . The normalisation here

refers to the electron temperature profile while the variable x refers to the electric field

normalised to the perpendicular energy. The parameter “h” is considered to vary from 1 × 10-6

to 1, covering the full range of parameters for large aspect ratio machines (see details for the

definition of this parameter in Appendix 3).

We can observe from these figures that ft does not present the usual singular behaviour 

as ε ? 0, and that the role of the electric field in detrapping particles is actually more

effective when the temperature is lower or, of course, when the electric field is higher (or in

other words, when h increases). When h is low, the trapped particle profile approaches the

usual well known behaviour as shown in figure 4(a).

Figure 4: Variation of ft with inverse aspect ratio in
linear scale and fixed values of “h”. The plot
compares ft when the complete or approximated forms 
for E//c are used in the calculation.

Figure 5: Variation of ft with inverse aspect ratio 
in logarithmic scale and fixed values of “h”. The
plot compares ft when the complete or
approximated forms for E//c are used in the
calculation.

Figure 6 shows the trapped particle fraction obtained again from both methods, but

now plotted against “h” and for fixed inverse aspect ratios such as ε = 0.01 and ε = 0.1. These 

figures reinforce the fact that as the ratio of the electric field to the electron temperature

increases, the detrapping of particles is more effective.
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Figure 6: Variation of ft with “h” for fixed inverse aspect ratios ε=0.01 (a) and ε=0.1 (b), comparing the 
complete and approximated forms for E//c employed in the ft  calculation.

It is observed in figures 4-6 that the approximated and complete forms for the trapped 

particle fraction agree reasonably well in all range of parameters representing large aspect

ratio machines. We have made an extensive analysis for the error committed with the

approximation (presented in details in Appendix 3), which is always below 20% for the

parameter range of interest. We consider this error acceptable and for this reason the

calculation of the trapped particle fraction for different launch points will be performed from 

now on in this paper using Eq.(16) over which is performed a poloidal average in order to

obtain the total ft.

It is also possible to generate profiles of trapped particle fraction for the full minor

radius, as indicated in figure 7 for the same tokamak parameters as used for figure 3, but now 

with launch point averaging. Note that in the cases shown here, the trapped particle fraction is 

less than when a launch point at the outer midplane is considered (figure 3). It is also

observed in figure 7(a) that when r/a=0.4, there is approximately 10% of error between the

complete and approximated calculations. In this case ε(r) ≈ 0.11, and the value of h is roughly 

0.1. We observe from figure A3.1(c) that our analysis for the error is consistent with this

result. When the temperature rises, we expect the relative error between the two calculations

to decrease. This is confirmed in figure 7(b).
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Figure 7: Comparison of the trapped particle fraction in the presence of the driven electric field for
Te0 = 50 eV (a), and Te0 =2 keV (b), obtained when the complete (eq.14) or approximated (eq.15) forms for
E//c are employed. In these cases launch point averaging is taken into account.

In the next section current density profiles are obtained for different central electron

temperatures taking into account the detrapping effect of the toroidal electric field averaged

over different poloidal launch points.

5. Current Density Profiles

The foregoing results can be used to develop profiles of current density in a typical

tokamak, given a set of model assumptions such as those elaborated in section 3, but now

replacing Eq.(6) for the trapped particle fraction by Eq. (16) in order to account for the

average on different launch points.

The free parameters of the calculation are taken as listed in table 2, apart from the

central temperature, which now assumes the values indicated in figures 8 and 9.

Figure 8 shows the current density profiles with electric field detrapping for

different central electron temperatures. A fixed temperature profile peaking factor of αT = 2 is 

considered here. In this case, as previously mentioned, the total plasma current is not the same 

in all cases as well as the safety factor profile. It is observed that as the temperature increases 

the effect of the electric field in detrapping particles is less pronounced, generating current

density profiles more peaked in the central region. However, it should be emphasized that

although the detrapping effect is diminished as the temperature increases, the cusp in the

current density no longer exists since the trapped particle profile has a different behaviour due 

to the presence of the driven electric field. An alternative way of portraying the results,

arguably of greater experimental relevance, is to adjust the profile parameter αT for each

chosen value of central electron temperature, such that in addition to holding central q

constant (at 1.0 in all the calculations so far), the edge q (equivalently the total current) is also 
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held constant. In figure 9, the value of αT has been adjusted to achieve an edge q of 5.51,

which corresponds to the edge q value for Te0 = 2 keV in figure 8.

Figure 8: Current density profiles with electric
field detrapping and constant temperature profile
peaking factors αT = 2. The graphs are obtained
for different central electron temperatures.

Figure 9: Current density profiles with electric
field detrapping and constant edge q(a) = 5.51.
The profiles are shown for different central
electron temperatures as listed in the figure.

In the results shown in figures 8 and 9, if particles were assumed to be born at the

outboard midplane, that is, not considering launch point average, the trapped particle fraction 

would be larger and the current density profiles would be below the curves shown in these

figures. This behaviour is observed explicitly in figure 10.

In the next section collisionality effects will be evaluated and their role in detrapping

particles will be convoluted with the electric field effect.

6. Collisionality effects

Appendix 4 develops the traditional convolution of neoclassical trapping with

collisionality to account for the electric field detrapping effect. Since the collisionality

parameter is defined as the ratio of effective collision frequency (for the scattering angle of

interest) to the bounce frequency, it is also necessary to evaluate the modifications to the

bounce frequency caused by the electric field. This is done in Appendix 5, where it is shown

that the “tilting of the potential energy sine wave” exacerbates the usual (but usually

neglected) non-linearity of the bounce oscillation, as well as reducing the bounce frequency at 

small amplitudes. The modified bounce period is given in Eq.(A5.2) by:

⊥

−
ε

−π≈
v

)r(qR2
))r(x1(4.2)r(T 04/12

b ,
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and the collisionality parameter thus modified by the electric field is provided by Eq.(A4.10), 

obtained in Appendix 4: 

1
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The current density profile, when collisionality effects are taken into account, is

considered here according to the Hirshman et al. formulation given in ref.[9]:
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All quantities in this expression are defined in Appendix 4. The trapped particle fraction used 

in this equation is now modified by the presence of the electric field, differently from the

effect described in ref.[9]. In order to simplify our analysis but accounting for the launch

point average contribution, ft(r) is approximately considered here as given by 60% of the

trapped particle fraction calculated for θ=0. This approach is valid for most cases of interest

in large aspect ratio machines within an error of about 15 to 25%. It is not valid, for instance, 

when there is a combination of high values of the normalised electric field (roughly larger

than h > 0.01) and small values of ε, which represents the region closer to the magnetic axis.

In these cases, however, the trapped particle fraction is already nearly zero and the error

committed is not so important. The following approach is thus considered for ft:

)r(21

)r(2
))r(vexp(6.0)r(f 2

t ε+
ε−≈ ,                     (18)

with )r(T)r()r(v ec⊥= E  and ( )7246.0)r(ER)r(q 0c ×ε= φ⊥E .

This results in the set of curves shown in figure 10, where all the usual parameters that 

vary in a tokamak minor radius profile have been taken as constants since only the central

region is of interest in this case. Curves named as “conventional” in this plot are obtained by

using the trapped particle fraction calculated only for launch points at the outer midplane (ie.

without considering the launch point average, approximately accounted here by the

factor 0.6), and without the correction to the bounce frequency in the collisional case. It can

be seen that in every case where either the electric field or the collisionality effects are turned 

on, the derivative of the trapped particle fraction with respect to the inverse aspect ratio
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vanishes at the minor axis, consistent with the analytical derivative of the simplified

expression for the trapped particle fraction. Thus in reality there is never any “catastrophe” in 

the central current density in a tokamak. The parameters used for these calculations are as

follows: Eφ = 1 V/m, q = 1, R = 0.56 m, Te0 = 200 eV, n19 = 1 and Zeff = 1.

Figure 10: Normalised central current density with both collisionality and electric field terms, with 
one at a time, and with neither. The thicker full trace corresponds to the case where the electric field 
is considered alone. The “conventional” traces are obtained for ft calculated for a launch point at
the outer midplane (NONE) and without correction to the bounce frequency due to the presence of
the electric field (COLL).

The conventional cusp in central neoclassical current density is clearly shown for

reference, with either of the electric field or collisionality terms generating shoulders on the

cusp so that the discontinuity is removed. For the parameters chosen, the collisionality term is 

clearly much stronger than that of the electric field. This situation can only be reversed in

plasma conditions corresponding to tokamak start-up, when the toroidal electric field is very

high and the density is very low (thus aggravating runaway electron production).

7. Conclusions

This work has extended the treatment of neoclassical resistivity in tokamaks to include 

a hitherto neglected term representing the parallel acceleration by the toroidal electric field

acting to reduce the pitch angle of the electrons and hence the trapped particle fraction. In

addition, new consideration has been given to averaging both the bounce frequency of the

trapped particles and the trapping fraction with respect to the position of their birth (or

launch) points distributed around the poloidal circumference. An analytic form for the electric 

field detrapping term has been developed, allowing it to be included in an approximate

analytic expression for the overall neoclassical current density. This can be readily
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differentiated with respect to inverse aspect ratio to demonstrate that there is never any real

“neoclassical catastrophe” at the minor axis of a tokamak. Analyses with typical tokamak

conditions show that the collisionality term dominates the detrapping effects except in

extreme start-up conditions with high electric field and low plasma density. Even in normal

tokamak discharge conditions, some of the corrections developed above to bounce frequency

and flux-surface averaged trapped particle fraction as well as the concept of a toroidal force

detrapping a section of the particle population will be significant. They could be expected to

modify the behaviour of a variety of neoclassical phenomena such as bootstrap current, potato 

or kidney-bean orbits, neoclassical tearing modes and certain types of momentum and current 

drive relying on inter-species drag.
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Appendix 1

Mono-energetic particles launched at the outboard midplane

The magnetic (mirror) force on a charged particle along the magnetic field in a

circular plasma of large aspect ratio geometry is given by 

( )
( ) ( ) ( )[ ]

( )
( )[ ] ,Sin

qCos1R

1
F

Cos1RSinBB1

SinBBBBF

2
0

m

2
0

m

θε

θε+

ε+=

∴

θε+θε+=

θ∇=

⊥

φθ⊥

φθ⊥

E

E

E

where the φθ BB  term (the ratio between the poloidal and toroidal magnetic fields),

represents the component of the ∇B force along the magnetic field line, and the Sin θ term

accounts for the modulation in poloidal angle (since the flux surface is orthogonal to the ∇B

force at the inboard and outboard midplane). In the equation above, the ratio B⊥=µ E  is

constant and evaluated in the midplane, where the magnetic field assumes its minimum value 

given, in the large aspect ratio approach, by ( )ε+= 1BB 0 . It is also considered to this order 

that 2
00 RRBB =∇  and that the safety factor q is described as ( )θφ= BRrBq 0 , with R0

being the major tokamak radius.

The electrostatic acceleration force on the particle is given by

( )( )θε+π−=−= φ Cos1R2VeEeF 0loope

(under the ordering assumption Bθ << Bφ).

The sum of the two forces is accordingly

( )
( )[ ] φ⊥ −θε

θε+

ε+= EeSin
qCos1R

1
F

2
0

E  ,

where the poloidal angle θ can be replaced by )qR( 0l , with l  representing the length along 

a field line. The integration of this force along l , yields an expression to the parallel energy

added by the electric field given by:

l
l

l

ll
l

φ⊥ −



ε+










−
ε=δ=∫ eE

qRCos1

qRCos1
)(dF

0

0
//0

EE   .
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Substituting the toroidal angle φ for 0Rl  and multiplying the second right hand term by q/q

to achieve the variable φ/q (the poloidal angle θ), the parallel potential energy can be finally

written as:

q
qReE

qCos1

qCos1
)( 0//

φ−



 φε+





 


 φ−

ε=φδ φ⊥EE    .                      (A1.1)

The shape of the potential energy curve is thus a tilted sine wave. If the initial parallel energy 

of a launched particle, plus that gained from the electric field, is enough to overcome the

potential energy hill, the particle will not be trapped in the magnetic mirror. The peak of this

function is found for the angle which is a solution of the following equation:

( )
( )[ ] )1(

RqeE

qCos1

qSin 0
2 ε+ε

=
φε+

φ

⊥

φ
E

,

Note that when the electric field 0E =φ , this peak corresponds to the solution ( ) 0qSin =φ .

The point of maximum is obtained for ( ) π=φ q ; that is when ( ) 1qCos −=φ . Substituting

this back into the equation for )(// φδE  in A1.1, for a zero electric field, the parallel critical

energy results as given below:

( )ε−
ε= ⊥ 1

2
c// EE ,

which is consistent with the well known critical energy found when the driven electric field is

not taken into account [8]. Having checked this, and in order to simplify the calculations and 

analyses throughout this paper, the correction in ε in the denominator of the first term of

Eq.(A1.1) will be neglected from now on. The parallel potential energy is thus written as:

q
RqeE

q
Cos1)( 0//

φ−












 φ−ε=φδ φ⊥EE                          (A1.2)

and the critical parallel energy is now obtained, at this approximation, for:

( ) x)RqeEqSin 0 =ε=φ ⊥φ E( , say.                   (A1.3)

Thus

( ) 2x1qCos −±=φ .
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Substituting now this back into the equation A1.2, and noting that it is the value of φ/q just

below π which represents the peak, the parallel critical energy is then obtained as:

( )



 −π−−+ε= ⊥ )xarcsin(xx11 2

c// EE    ,                            (A1.4)

where the surd takes the positive sign in order to recover the usual form, ε=⊥ 2c// EE , for 

the critical parallel energy when x = 0 in the approximation adopted above. c//E  is the

minimum value of //E necessary for a particle launched at that //E , from θ = 0, to overcome 

the potential energy barrier, for a given value of x (which characterises the strength of the

parallel electric field).

If x is sufficiently large, the potential energy curve has a point of inflexion, that is the

electrostatic and magnetic forces balance each-other. This represents a “no trapped particles” 

threshold, which as shown in figure 1 occurs when x = 1, ie.

0

loop

0 R2

Ve

qR π
≤ε⊥E

                         (A1.5)

ie when 
q

2
Vloop

⊥πε
≥

E
, with energies expressed in eV.

When the first peak is at the same potential energy as the launch point, particles launched

with zero parallel energy will not be trapped. The worst case corresponds to the parallel

launch energy being zero, since any oppositely launched particle will reflect “upstream”,

where the magnetic and electrostatic forces act in the same direction, sending the particle back 

through the launch point (ignoring the half-banana-orbit width, negligible for electrons).

The critical toroidal electric field for particles launched from the outboard midplane

(θ = 0) with no parallel velocity is given by solving the expression for 0c// =E , with the

result:

)eqR(7246.0E 0⊥φ ε≥ E ,

or q4492.1Vloop ⊥επ≥ E         (with ⊥E  in eV).

For a given electric field, this can be rearranged to yield a critical perpendicular energy (at

which the electric field accelerates the launched particles sufficiently to detrap them, whatever 

the initial //v ), below which no particles launched at the outboard midplane are trapped:

)7246.0(eqRE 0c ε≤ φ⊥E .
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Trapped particles occupy a region in the velocity space delimited by curves shown

with full lines, in figure 2, for three chosen values of cv⊥ . For a given value of the

perpendicular velocity, particles will be trapped within a range of parallel velocities between

the values ±v//c.

Appendix 2

Integration of the trapped particle fraction over the velocity distribution,
 with finite toroidal electric field and launch points at the outer midplane

This is here achieved using cylindrical coordinates in velocity space, represented by

the parallel and perpendicular components of the particle velocity, with the trapped particle

fraction given as:

∫ ∫
∞

− ⊥⊥
⊥

π=
c

c//

c//v

v

v //t dvdvv)v(f2)r(f      ,                           (A2.1)

or substituting f(v) by a Maxwellian distribution function,

∫ ∫
∞

− ⊥⊥⊥
⊥

+−
π

π=
c

c//

c// thv

v

v //
222

//
2/3

t dvdvv]v/)vv(exp[)
T2

m
(2)r(f .

The previous equation can be rearranged as:

⊥
∞

⊥⊥∫ ∫⊥
−−

π
π= dvdv]v/vexp[)]v/v(exp[v)

T2

m
(4)r(f

c

c//

ththv

v

0 //
22

//
222/3

t ,

which yields the following result after performing the integration over the parallel velocity:

⊥
∞ ⊥

⊥⊥∫ ⊥ 





−= dv

v

)v,r(v
Erf)]v/v(exp[v)

T

m
()r(f

c thv th

c//22
t    . (A2.2)

In Eq. (A2.2), Erf is the error function and )v,r(v c// ⊥  is taken from the expression of c//E

given by Eq.(5).

This reduces to the usual large aspect ratio trapped particle fraction when the

normalised electric field (x) is zero. Taking the expression for ⊥EE c//  in the case x=0,

resulting when the full expression for the parallel potential energy, given by Eq.(A1.1), is

considered, it is possible to write:
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0vand
1

2

v

v

1

2
c

c//c// =
ε−

ε=⇒






ε−
ε= ⊥

⊥⊥E
E

 (x=0). 

In these expressions, the dependence of c//v on r and ⊥v was dropped in order to

simplify the notation. Substituting this into (A2.2) we get:

⊥
∞ ⊥

⊥⊥∫

















ε−

ε

−= dv
v

v
1

2

Erf)]v/v(exp[v)
T

m
()r(f

0 th

22
t th

ε+
ε=⇒

ε−
ε+

ε−
ε

=
1

2
)r(tf

1

)1(

2
thv

22)
T

m
()r(tf .

In order to compute the integral given in (A2.2) in the general case, when the acceleration

effect of the electric filed is taken into account, it has been introduced a change of variables to 

the normalised perpendicular velocity so that thvvy ⊥= . Noting that mT2vth = ,

Eq.(A2.2) assumes then the following form:

dy
)r(v

)y,r(v
Erf]yexp[y2)r(f

thc vv th

c//2
t ∫

∞

⊥ 





−=   . (A2.3)

We consider now the relation between c//v  and ⊥v  given by Eq.(5), which neglects the

correction in ε in the denominator of the first term of the parallel potential energy (Eq.(A1.1)),

and rewrite it in terms of this new variable y:

2/1

2
th

2

2
c

th

c//

)r(vy

)r(v
1y2

)r(v

)y,r(v










−ε= ⊥ . (A2.4)

Substituting Eq.(A2.4), into Eq.(A2.3) the following equation is provided for the trapped

particle fraction:

( ) dy)r(vy2Erf]yexp[y2)r(f
)r(v

2/1222
t ∫

∞





 −ε−=     ,         (A2.5)
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where )r(v)r(v)r(T)r()r(v thcec ⊥⊥ == E .

The integration by parts of Eq.(A2.5) yields the result below:

( )

dy
y

2/12)r(v2y2Erf

)2yxp(

2/12)r(v2y2Erf)2yexp()r(tf

)r(v

)r(v

e∫
∞ 



















+

∞

=

∂

−ε∂

−







−ε−−

       , (A2.6)

where the first term goes to zero since Erf[∞]=1 and Erf[0]=0. In the second term, let us call

∂Erf/∂y as Erf '[f[y]]. The derivative of the Error Function given in (A2.6) can be written as:

( ) ( )[ ]
( )22

222/122

)r(vy)r(2

)r(vy)r(2expy)r(4
)r(vy2'Erf

−ε

−ε−
π

ε=




 −ε ,    (A2.7)

which is substituted into Eq.(A2.6) leading to:

( )
( ) dy

)r(vy)r(2

))r(vy)r(2(expy)r(4
)yexp()r(f

)r(v 22

22
2

t ∫
∞

−ε

−ε−
π

ε−= (A2.8)

A new change of variables such as ( )22 )r(vy)r(2z −ε= , allows an analytical solution to

the integral in (A2.8), generating the following expression for the trapped particle fraction

when a launch point at the outer midplane is considered:

)r(21

)r(2
))r(vexp()r(f 2

t ε+
ε−=      . (A2.9)
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Appendix 3

Launch point averaging of trapped particle fraction,
with finite toroidal electric field

As pointed out in section 4, in order to derive the potential energy function for a

particle under the action of the driven electric field, one has to have in mind that the minimum 

of the potential energy is not at the outboard midplane, but is shifted downstream by the

toroidal electric field (oppositely for ions and electrons as already mentioned), as can be

observed in figure 1, section 2. The minimum of the potential energy curve occurs at the other 

force-balance root (ie the other root of the equation provided when the derivative of the

potential energy curve, (Eq.(A1.2)), equals 0). This minimum is given by:





 −−−ε= ⊥ )xarcsin(xx11 2

min// EE                               (A3.1)

The required root here is no longer at π−arcsin(x) but simply arcsin(x), and the surd now has

to have the negative sign to recover 0// =E  when x = 0. Clearly x has to be less than 1.0 for 

this to remain valid and x = 1 corresponds to the condition of “no trapped particles” threshold

when the potential energy well marginally disappears. This condition is described by

Eq. (A1.5). When x > 1, there are no trapped particles. We note that:

( ) θ=φ= SinqSinx                                                   (A3.2)

where θ is the poloidal angle, so θ = Sin-1(x) defines the launch point with the minimum

potential energy. It would seem natural to choose a set of launch points starting from this

value of θ, but this is impracticable since this value of θ depends upon ⊥E  which is a key

variable in the velocity space integral carried out for each launch point. (One could average

over launch points for each velocity, but not over velocity for each launch point.) 

For each launch point, we need to know the starting potential energy )(0// θE , given

by selecting a value for θ (=φ/q), in the equation for )(// φδE  given in Eq.(1);

( )[ ] θ−θ−ε=θ φ⊥ 00// RqeECos1)( EE                             (A3.3)

Whatever the launch combination of ⊥E  and //E , particles are accelerated by the electric

field towards the point of maximum potential energy (PEmax), which remains given by the

expression previously identified with c//E :
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( )



 −π−−+ε= ⊥ )xarcsin(xx11PE 2

max E                (A3.4)

The revised c//E  is this expression corrected by the potential energy )(0// θE  at the

selected launch point θ, thus 

)(PE)( 0//maxc// θ−=θ EE .                        (A3.5)

As before, any particle launched with //E  larger than this c//E  will be detrapped by the

toroidal electric field, so for a given ⊥E , the trapped particle fraction for the respective local

temperature can be calculated as before.

Thus we are now ready to extend the calculation to account for the full range of

poloidal angles of launch point around each flux surface, including the corrections to the

potential energy curve for the shift of the potential energy minimum due to the electric field.

Substituting Eqs.(A3.3) and (A3.4) into (A3.5), the following equation results for )(c// θE :

( ) 


 θ+θ+−−π−−+ε=θ ⊥ x)(Cos1)xarcsin(xx11)( 2
c// EE             (A3.6)

where as before, )(RqeEx 0 ⊥φ ε= E .

Similarly to the derivation in Appendix 2 (Eq.A2.3), the expression for the trapped

particle fraction related to a given launch point θ is now given by: 

dy
v

)y,,r(v
Erf]yexp[y2),r(f

),r(v th

c//2
t ∫

∞
θ 




 θ
−=θ (A3.7)

where thvvy ⊥=  and )r(v),r(v)r(T),r(),r(v thcec θ=θ=θ ⊥⊥E   .                     (A3.8)

The expression for thc// vv  in the error function given in (A3.7) is taken from

Eq.(A3.6) for which we propose an approximation in order that the integral in )r(f t  may be

obtained analytically. Accordingly, we will let 

( ) 


 θ+θ+−−π−−+=θ x)(Cos1)xarcsin(xx11),x(f 2 (A3.9)

and write an approximated form to it given by:
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)(cx
x

),0(f),0(f),x(fs
θ

θ−θ=θ (A3.10)

In this way, Eq.(A3.6) becomes:












θ

θ−θε=θ ⊥ )(cx
x

),0(f),0(f)(c// EE                                  (A3.11)

or in terms of velocities:

2/1

2
thth

c//

)r(v

),r(2
cv2y))cos(1()r(

)r(v

)y,,r(v












 θ⊥−θ+ε=
θ

,                (A3.12)

where we have used the fact that the ratio cxx  can be written as ⊥⊥ EE c  and applied the

change of variables given by thvvy ⊥= . We have also substituted f(0, θ) = 1+cos θ.

Introducing the result (A3.12) into (A3.7), the integral that provides ft(r, θ) can be

obtained analytically, similarly to the case of θ = 0 (Appendix 2). In this way, the trapped

particle fraction related to a given launch point results as follows:

)cos1()r(1

)cos1()r(
)),r(vexp(),r(f 2

t θ+ε+
θ+εθ−=θ      , (A3.13)

with v(r,θ) already defined in (A3.8).

The total trapped particle fraction averaged over several launch points will be finally

given by:

∫
π

π−
θθ

π
= d),r(f

2

1
)r(f tt              (A3.14)

We have analysed the approximation represented by equation (A3.11) in a large range 

of tokamak parameters in order to check its accuracy. In order to describe this analysis here

let us rewrite Eq.(A3.6) in terms of velocities and substitute x by ⊥= E)r(gx , where g(r) is

given by )r(RE)r(q)r(g 0 ε= φ . This function can still be redefined as:

)r(2

Vloop)r(q
)r(g

επ
=   ,                                             (A3.15)

with x assuming the form:

2y)r(

)r(h
x

ε
=   , where 

)r(Te2

Vloop)r(q
)r(h

π
=   . (A3.16)
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In Eq. (A3.16) we have used again the change of variables thvvy ⊥=  from where we get

TeyE 2=⊥ . In this way, Eq.(A3.6) is rearranged, as given below, in terms of general

variables embedded in this new function h(r) that allows an analysis for the accuracy of the

approximation represented by Eq. (A3.11), for large aspect ratio machines:

2/1

2y

)r(h
Cos1)

2y

)r(h
arcsin(

2y

)r(h
4y2

2)r(h
11y

thv

)y,,r(c//v













θ
ε

+θ+−
ε

−π
ε

−
ε

−+ε=
θ





























.

(A3.17)

The function h(r), similarly to x, represents the normalised electric field strength. 

Considering typical values of tokamak parameters, h(r) is allowed to range from

1×10-6 to 1, and plots of ft are shown both for some fixed values of ε or fixed values of h, as

in figures 4-6, in section 4.

The relative errors ((fts-ft)/ft), between the complete and approximated forms, for some 

fixed values of ε, such as ε = 0.01, 0.03, 0.1 and 0.5 are shown in figure A3.1. The value

ε = r/R0 = 0.5 is considered here as our limit for large aspect ratio tokamaks. In the case of

ε = 0.1, h is shown to range up to 0.1 and 1, respectively represented by figures A3.1(c) and

A3.1(d). However, values of h higher than 0.1, are not generally of relevance in typical

tokamak machines.

We can see from these figures that the relative error between the complete and

approximated calculations for h up to h=0.1 remains below 25 or 30%. The highest errors are 

obtained when h ≈ 1 × 10-1 and for low values of ε. However, in these cases, the trapped

particle fraction is very small and the error we may commit between the two calculations is

not important. This can be confirmed in figures 4(b) and 5(b) in section 4. We observe that

when h ≈ 1 × 10-1 and ε =0.01 or ε =0.03, which corresponds to errors of about 50 to 25%

between the two calculations, (figures A3.1(a) and A3.1(b)), the trapped particle fraction is

already nearly zero as shown in figure 5(b).
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Figure A3.1: Relative errors between the approximated and complete calculations for ft against “h” and for
fixed values of the inverse aspect ratio ε.

So, we can conclude that the trapped particle fraction obtained from an approximated

calculation that results in Eq.(A3.13) provides relative errors, when compared to the exact

calculation, always below 20% for the parameter range of interest, which is considered

acceptable in the scope of this paper. It should be also emphasised that absolute errors, given 

only by the difference between the complete and approximated forms, will be always less

than the relative errors presented here. The errors obtained when h→0.1, which represent the

largest deviations introduced by the approximated form in relation to the complete

calculation, assume these high values since the denominator ft in the error estimate is always

small for such values of h.
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Appendix 4

Neoclassical collisionality in the presence of a toroidal electric field

The neoclassical conductivity allowing for collisionality (but traditionally neglecting 

parallel electric field) can be approximated by an analytical formula proposed in [9] as:







νξ+

−





νξ+

−Λ=
σ
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∗∗ eeff

teffR

eeff

t
effE

0

NC

)Z(1

)r(f)Z(c
1

)Z(1

)r(f
1)Z(                    (A4.1)

where )Z( effE0 Λσ  is the Spitzer conductivity corrected for impurities and defined in Eq.(9); 

beffe ων=ν∗  is the collisionality parameter (ie. the ratio of the effective collision frequency 

for detrapping to the bounce frequency of the trapped particles) and

∑
≠

=
ei e

2
ii

eff n

Zn
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The classical collision frequency cν  is usually defined for a scattering angle of one

radian (sometimes 90°) developed in a random-walk diffusive process by integration over a

large number of Coulomb collisions, each producing very tiny modifications to the pitch

angle. Accordingly, the effective collision frequency is given by the one-radian collision

frequency divided by the square of the scattering angle of interest, which is now the order of

ε2 , thus:

ε
ν

≈ν
2

c
eff                                                        (A4.6)
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Let us introduce here the collisionality parameter ( beffe ων=ν∗ ), following the

formalism described in refs. [9,10] as:

the
2/3
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ν
=ν∗    ,                                                   (A4.7)

chosen independent of Zeff. The thermal velocity thev is defined here as mT2v ethe =  and 

1
eeee
−ν=τ is given by:
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The bounce frequency obtained when the action of the electric field is not considered, 

is given according to Eq. (A5.1) in Appendix 5 as:

0

th2/1
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Rq

v

2
ε=ε=ω ⊥

where it has been considered that thv2v =⊥ .

Equation A4.7 will now be developed to account for the introduction of the parallel

electric field, which modifies bω  and hence e∗ν , as well as directly modifying ft. As

derived in Appendix 5, the bounce period allowing for the electric field is given by Eq.(A5.2):

⊥
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and the bounce frequency in terms of the thermal velocity is thus written as:
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Taking into account the expression for the bounce frequency when there is no electric 

field, the collisionality parameter in Eq.(A4.7) will be modified by the new bω given above, 

according to:
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where x(r) is described by:
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Here ⊥E  is taken as evm 2
thee)eV( ≈⊥E  and instead of defining a value of x for each

particle, an average value of x is implied, using the mean thermal velocity of the electron

population as ⊥E .

A set of curves showing the ratio of the current density profile to its Spitzer value is

shown in figure 10 with all plasma profile parameters kept constant since we are interested in 

analysing only the central plasma region. In order to compute these profiles, the following

procedure is adopted: it has been considered that if the variable x(r), given by Eq.(A4.11),

results below unity, then the collisionality parameter e∗ν  is calculated through Eq.(A4.10);

otherwise we consider that all particles would be untrapped, ie. ft(r)=0, reducing to the

classical case where the current density is given by its Spitzer value. The trapped particle

fraction is evaluated using Eq.(18) accounting for the 0.6 multiplying factor as an approach to 

the launch point average calculation. The parameters used in these calculations are, as already 

listed in section 6, the following: m/V1E =φ , q = 1, R = 0.56 m, Te0 = 200 eV, n19 = 1 and

Zeff = 1.

Appendix 5
Bounce frequency in the presence of a toroidal electric field

The trapped particle bounce frequency is generally derived as a simple harmonic

motion (SHM) in the toroidal direction, given the magnetic gradient force described at the

beginning of Appendix 1;
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where φ= 0RS  and m is the mass of a particle. For small angle excursions such as

q~Sin φ=θθ , and for 1<<ε , this expression can be reduced to:
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This requires correction for the distortion due to the electric field, but is in any case a small

amplitude approximation usually taken in the literature to apply at large amplitudes. Clearly

when the poloidal excursion is large, the motion is far from an ideal SHM due to the tendency 

for the particle to stagnate near the zero-gradient regions, which in situations with a finite

electric field is particularly marked at the downstream end of the potential well. The periodic 

time of the orbit, Tb, has been evaluated numerically for various zero-velocity starting points

and for an array of x values given by x ={0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99}, as

shown in figure A5.1. All the results, actually evaluated for the half-period between

reflections, are normalised using the standard result for Tb = 2π/ωb, taking bω  from the

formula given in Eq.(A5.1), that is without considering the electric field.

Figure A5.1: Half bounce period ratio versus poloidal angle of reflection point (ie. zero-velocity launch
point) for a range of values of the normalised electric field x={0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9,
0.95, 0.99}. The curves corresponding to x=0 and x=0.99 are labelled explicitly in the graph, with the
other curves corresponding respectively to the x values in between.

It can be seen that the trend is as expected in that the large amplitude excursions have 

significantly longer periodic times than the small ones, while increasing the value of x (the

normalised electric field) causes an increase in periodic time with much the same magnitude

of effect.
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It is instructive to consider the effect on periodic time of tilting a sinusoidal potential

energy (PE) curve.  If the PE curve is an inverted cosine, then the restoring force is a sine

function and the force per unit displacement (identified with ω2 in a SHM oscillator) is a

cosine. Thus displacing the minimum of the PE curve causes the average force per unit

displacement to reduce, following the cosine variation, in turn reducing the oscillation

frequency.

In the situation of interest, the minimum of the PE curve has moved to the point where 

)xarcsin(=θ . Here, ( ) ( )2x1)xarcsin(coscos −==θ . Since the force per unit displacement 

is identified with 2
bω , this means that ( ) 412

b x1−∝ω and ( ) 412
b x1T

−
−∝ . Inspection of

the figure A5.1 shows that this is indeed the case, valid for all values of x.

Neglecting the very small population of particles exploring the stagnation region near

the crest of the PE curve, an approximate expression for the average of the bounce times can

be inferred taking the ratio between the half bounce periods given by 1.2 times the minimum

in each case. The average bounce period is thus approximately given by:

⊥
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Figure Captions

Neoclassical Resistivity Revisited, by T.N.Todd, M.C.R. Andrade, G.O. Ludwig and J. G.
Ferreira

Figure 1: Potential Energy Curve for different normalised electric field values “x”. The
thicker trace corresponds to the critical value xc=0.7246 for θ =0.

Figure 2: Trapped particle boundaries in velocity space for various values of the normalised
electric field x. The dots indicate the chosen values of cv⊥ , and the dashed lines represent the 

boundary when 0E =φ .

Figure.3: Trapped particle fraction for various central electron temperatures under the effect
of the toroidal electric field, and in the case when there is no electric field (crosses). In this
figure only outboard midplane launch points are considered.

Figure 4: Variation of ft with inverse aspect ratio in linear scale and fixed values of “h”. The
plot compares ft when the complete or approximated forms for E//c are used in the calculation.

Figure 5: Variation of ft with inverse aspect ratio in logarithmic scale and fixed values of “h”. 
The plot compares ft when the complete or approximated forms for E//c are used in the
calculation.

Figure 6: Variation of ft with “h” for fixed inverse aspect ratios ε=0.01 (a) and ε=0.1 (b),
comparing the complete and approximated forms for E//c employed in the ft  calculation.

Figure 7: Comparison of the trapped particle fraction in the presence of the driven electric
field for Te0 = 50 eV (a), and Te0 = 2 keV (b), obtained when the complete (eq.14) or
approximated (eq.15) forms for E//c are employed. In these cases launch point averaging is
taken into account.

Figure 8: Current density profiles with electric field detrapping and constant temperature
profile peaking factors αT = 2. The graphs are obtained for different central electron
temperatures.

Figure 9: Current density profiles with electric field detrapping and constant edge q(a) = 5.51.
The profiles are shown for different central electron temperatures as listed in the figure.

Figure 10: Normalised central current density with both collisionality and electric field terms, 
with one at a time, and with neither. The thicker full trace corresponds to the case where the
electric field is considered alone. The “conventional” traces are obtained for ft calculated for a
launch point at the outer midplane (NONE) and without correction to the bounce frequency
due to the presence of the electric field (COLL).
 
Figure A3.1: Relative errors between the approximated and complete calculations for ft

against “h” and for fixed values of the inverse aspect ratio ε.

Figure A5.1: Half bounce period ratio versus poloidal angle of reflection point (ie. zero-
velocity launch point) for a range of values of the normalised electric field
x={0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.99}. The curves corresponding to x=0 and
x=0.99 are labelled explicitly in the graph, with the other curves corresponding respectively to 
the x values in between.


