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Abstract

Data assimilation is a process where an improved prediction is obtained from a weighted combination
between experimental measurements and mathematical model data. In the present work this procedure
is applied to pollutant atmospheric dispersion by using a Kalman filter (KF). This is interesting
approach, because the KF gives an output in which the balance between the data from the diffusion
model and the experimental data is done automaticaly, through the Kalman gain. In addition, the
Kalman filter computes the propagation of the error.

1  Introduction

Natural and anthropogenic pollutant sources have caused great impact on the environment. The natural
causes, such as volcanic eruptions, can not be controlled by man, on the contrary of the anthropogenic
sources. After the industrial revolution the atmospheric pollution has enhanced, and nowadays it
becomes a public health problem in some big cities. From these considerations, the air monitoring is an
important feature in the present time (Zannetti, 1990).

Data assimilation techniques are used to improve the prediction of an inaccurate mathematical model
associating to it observational data. The Kalman filter (KF) is one of methods used to perform the data
assimilation process, which provides an optimal response for linear Gaussian stochastic linear system.
Nowosad et al. (2000a, 2000b, 2000c) has used a KF (in its versions linear, extended, and adaptive) for
data assimilation in a Hénon and Lorenz systems in chaotic regime, as well as for a Dynamo model, a
1D meteorological simulator based on shallow water formulation. Zhang and Heemink (1997) applied
a KF and Kriging approach (optimal interpolation) to the 2D advection-diffusion equation. These
authors concluded that the Kriging approach presents good results, when the number of observations is
large enough (9 observations points at 41x41 grid points, with observations at each 11 time-steps). The
KF is more precise for a less number of observations points (3 observations points at 41x41 grid
points, with observations at each 11 time-steps). However, the KF has a computational cost greater
than the Kriging approach.

In this paper a linear KF is applied to the advection-diffusion equation. Some numerical experiments
are done to test the performance of the filter related to the number of observations. Description of the
mathematical diffusion model and Kalman filter are presented in the Sections 2 and 3, respectively.
Section 4 presents the numerical experiments and the final comments are addressed in the Section 5.



2  Description of Advection-diffusion Model

Considering the mean stream bowling in the direction-x, and the advection in this is the predominant
mechanism for the transport, the pollutant diffusion can be described by the following diffusion
equation and boundary conditions
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where c is the pollutant concentration, U is the mean wind speed, Kzz is the vertical turbulent eddy
diffusivity for stable boundary layer (Degrazia and Moraes, 1992; Campos Velho, 1992), h is the
boundary layer height. The partial differential equation was solved by using a finite difference
approximation: the explicit Euler method for integration  in the direction-x and central difference
approximation for diffusion operator (Hoffman, 1993). Defining 2zUxd ∆∆≡  the Eq. (1) can be
expressed in finite differences
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on the vertical grid i = 1, 2, …, Nz. The index n refers the position in the direction-x, starting from n =
0. This finite difference approximation is numerically stable for d = 0.3.

3  Kalman Filter

The Kalman filter is frequentely used in control and estimation problems. From the first applications
on aerospace domain (Jazwinski, 1970), it has been employed in others fields, such as meteorology
and oceanography (Daley, 1991; Bennett, 1992). A brief description of the KF is done, following
Jazwinski (1970).

Let be the prediction model

                                                                    nnn cFc  1 =+                                                                         (3)

where Fn is a mathematical description of the system. The observational model is represented by

                                                                  nnnn ν+= cHz                                                                      (4)



being ?n the noise of the experimental data, and Hn represents the observational system. The typical
assumptions of Gaussianity, zero mean, and orthogonality for the noises are assumed. The
concentration cn+1 is estimated through the recursion expression
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where a
n 1+c  is the estimator of  cn+1, Gn is the gain of KF, chosen to minimize the variance estimation

error of Jn+1, given by
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with E{.} the expected value. The algorithm for KF is shown in Figure 1, in which Qn is the covariance
matrix of the dynamic model noise, f

nP  is the prediction error covariance, Rn is the covariance of the

noise ?n, and a
nP  is the covariance of the estimation error. The assimilation is done using the

innovation
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Figure 1 – A sketch for linear Kalman filter.



4  Numerical Experiments

With the purpose to test the assimilation scheme described previously, the following parameters were
used in Eq. (2): ? x = 6 m, ? z = 10 m, U = 0.31 m.s-1, h = 400 m. For the observational matrix system
Hn = I, and covariance matrices for modeling noise and observation noise, Qn = 0.5I,  Rn = 2I,
respectively, being I the identity matrix of order Nz = 41. The number of points in the direction-x is Nx
= 2000. The true concentration value was  assumed as being given  by Eq. (2) added to a constant
small source of pollutants and a stochastic forcing term (with zero mean).

The diffusion problem simulates a pollutant puff released at origin of the coordinate system. This
condition is modeled  by a delta function:

                                                           0for        )( ),( == xzQzxc δ .                                                     (8)

Three classes of experiments were performed. Firstly, a high number of sensors were used in the
observation grid varying the number of samples for direction-x. Secondly, the number of samples in
the direction-x was fixed with different number of sensors uniformly spaced in the vertical coordinate.
Finally, the performance of assimilation process is investigated for several arrangements of the
observation grid in the vertical direction; where the number of sensors in the vertical coordinate and in
the direction-x are maintained constants.

In the first case of our experiments, the performance of filter was analyzed with respected to the
number of measurement points and with the frequency of the samples. The following experiments
were carried out: observations inserted at each ?x (EXP1), at 100 ?x (EXP2), at 200 ?x (EXP3), at
300 ? x (EXP4), at 500 ? x (EXP5), at 700 ? x (EXP6). The number of measurements (observation grid)
was taken equal to the number of vertical grid points (Nm = Nz). Table 1 shown the errors for each
experiment and Figures 2a-2c show respectively EXP3, EXP5, EXP6 for the concentration data for z =
150 m. The labels of figures CP, CO, and CE are respectively the concentration predicted by
mathematical model, observed concentration, and the estimated concentration by KF.

The error is computed by
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Clearly, the estimation made by KF is better when the number of samples is increased. However, the
computational effort is enhanced for a greater number of samples.

Table 1: Error for experiments EXP3, EXP6, EXP7.

Experiment Frequency  of  observations Error

1 every  ? x 0.328

2 at  100  ? x 7.236



3 at  200  ? x 11.880

4 at  300  ? x 13.877

5 at  500  ? x 21.627

6 at  700  ? x 31.779
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Figure 2 – Effect of the observation frequency in the KF: (a) EXP3; (b) EXP5; (c) EXP6.

The assimilation process also was analyzed with relation to the number of measurement points in the
vertical coordinate. In this class of experiments, the observations were sampled at 100 ?x. In the EXP7
was used Nm = 9 at the following positions: z = 0, 50, 100, 150, 200, 250, 300, 350 and 400 m; for
EXP8 was used Nm = 7 at the following positions: z = 0, 100, 150, 200, 250, 300 and 400 m; in the
EXP9 was used Nm = 5 at the following positions: z = 0, 100, 200, 300 and 400 m. Figures 5a-5c show
the results for this experiments.

Table 2 – Error for different number of sensors in direction- z.

Experiment Number of sensors in direction- z Error

7 Nm = 9 22.377

8 Nm = 7 44.650

9 Nm = 5 77.933

From Table 2 and Figure 3, it is seen that the error decreases when the number of observation levels
enhance. It is pointed out that the observations are uniformly distributed.

The last case of experiments is focused on the analysis of the filter performance under different
arrangements of the observation grid. Five positions (Nm= 5) of measurements were used in the
vertical, with experimental data inserted at every ?x. Three different arrangements were considered:
Grid-1, uniformly distributed sensors - EXP10; Grid-2 with sensors positioned close to the ground (z =
0, 20, 40, 60 and 80 m) - EXP11; Grid-3 sensor positioned near to the top of boundary layer (z = 320,
340, 360, 380 and 400) – EXP12. Table 3 presents the errors for these different arrangements.

Table 3 – Error for three different observation grid for direction- z.



Experiment Type of grid Error

10 Grid-1 77.933

11 Grid-2 355.897

12 Grid-3 394.200

5  Final Remarks

The Kalman filter was applied for data assimilation for atmospheric pollutant dispersion governed by
advection-diffusion equation. Three classes of experiments were performed. The results show that as
greater the samples of observation the estimative is improved, in so far as direction-x (experiments of
Class-1) as direction- z (experiments of Class-2). The arrangement with uniformly distributed sensor in
the vertical direction (Grid-1) presented the best performance for the three different vertical
observation grid. However, this is not conclusive statement, more experiments need to be performed.

The assimilation procedure based on Kalman filter is effective for dispersion models, and it can be
used for operational air monitoring systems. The neural networks can be an alternative scheme for the
data assimilation process in atmospheric dispersion models, as suggested in recent studies (Nowosad et
al., 2000b, 2000c).
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Figure 3 – Assimilation with different observation grids: (a) Nm = 9, (b) Nm = 7, (c) Nm = 5.
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