
INPE-10239-PRE/5757

A TOOL FOR FAULT INJECTION AND CONFORMANCE
TESTING OF DISTRIBUTED SYSTEMS

Maria de Fátima Mattiello Francisco
Eliane Martins*

*UNICAMP – Instituto de Computação (IC)

Paper presented at the Latin-American Dependable Computing Symposium:
LADC’2003, São Paulo, 21 a 23 de outubro de 2003.

INPE
São José dos Campos

2004

A tool for fault injection and conformance testing of
distributed systems

Eliane Martins1

Maria de Fátima Mattiello-Francisco2

1Institute of Computing (IC)
State University of Campinas (UNICAMP)

eliane@ic.unicamp.br

2Ground Systems Division (DSS)
National Institute for Space Research (INPE)

Av. Dos Astronautas, 1758 - São Jose dos Campos -12227-010 - SP - Brazil
FAX: +55-12-345-6625,

fatima@dss.inpe.br

Abstract. This paper presents an approach for conformance testing and fault
injection of distributed systems supported by a tool named FSoFIST (Ferry-clip
with Software Fault Injection Support Tool). The approach extends the ferry-
clip concept to cope with fault injection. The ferry-clip concept was aimed at
providing a highly modular, flexible and configurable architecture for protocol
conformance testing. Due to these qualities, this architecture can be used for
testing different protocol implementations with reduced effort. The work pre-
sents the design issues employed to achieve the ferry-injection architecture and
describe the components of the proposed architecture. The capabilities of the
approach are demonstrated in a case study used to validate the FSoFIST tool.

1 Introduction

On the last decades a continuous increase in the use of distributed systems has been
observed in several applications: industry, offices, research and education institutions,
banks, commercial organizations, and hospitals. The Internet extended the use of
these systems to the domestic environment, supporting applications such as “home
banking” and e-business among others.

Dependability becomes then an important property of such systems, as even more
activities depend on their good performance. For that reason, dependability validation
is more and more important, in order to guarantee that the developed system has the
expected properties. In this paper our concern is with testing, aimed at revealing
faults in a system’s implementation.

Testing distributed systems usually requires various types of tests [2]: confor-
mance, interoperability, quality of service testing. Conformance testing is aimed to
determine if an implementation meets its functional specification. The interoperabil-
ity tests aim to determine whether various components of a distributed system are

mailto:eliane@ic.unicamp.br
mailto:fatima@dss.inpe.br

able to cooperate with each other to perform the specified services. In the quality of
service (QoS) testing, the purpose is to assess the behavior of a distributed system to
determine whether attributes such as performance, reliability or availability meet the
expected standards. Complimentary to these techniques, fault injection allows validat-
ing the system in the presence of a variety of faults or errors, even those not antici-
pated in the specification.

Distributed systems consist of a number of independent components running con-
currently on different machines that are interconnected by a communication network.
Testing distributed systems is a difficult and challenging task for several reasons. One
problem is the generation of adequate test cases that present good potential for un-
covering faults. Another problem is the generation of the expected results for each
test case. Generally these tasks are performed manually, but in the case of distributed
systems the number of potential input sequences that the system can handle is infinite,
which means that a subset of the possible input sequence represents indeed too much
testing. This makes the cost of having people generating test cases and evaluating test
data unfeasible. Although an important issue, test case generation and results analysis
are not discussed further in this text. These were the concerns of two other tools
developed by the group and can be seen in [16, 22].

Here our concern is with test execution support. One challenge is the intrinsic non-
determinism of distributed systems. Non-determinism may occur when the
implementation under test (IUT) cannot be accessed directly. For example, a protocol
implementation is tested via an underlying communication service, or it is embedded
in other protocol layers. This limits the view that the test component has of the
system and the ability to reproduce the same IUT behavior when repeating the same
input conditions. To reduce non-determinism, one has to introduce various test
components into the System Under Test (SUT), which increase intrusion in the
original system to be tested. Those test components may alter either the system
structure (e.g., some fault injectors are implemented as extra code inserted either at
the IUT or into libraries it access) or the behavior of the IUT, for example, by altering
its execution speed, which may be a problem when testing real-time systems.
Moreover, this requires distributed test components and, consequently, some
mechanism to synchronize them.

Typically, distributed systems are heterogeneous in terms of communication net-
works, operating systems, hardware platforms and also the programming language
used to develop individual components. This represents another challenge, in that a
test system must be able to run in a wide variety of platforms and has to access differ-
ent kinds of interfaces.

This text presents a tool built to support conformance testing, with the aim to give
an answer the question: does the system comply with its functional specification?
Fault injection is used as complement, in that it allows answering questions such as:
how does the system react when whenever faced with unexpected or invalid behavior
of its environment? The tool design is based on the ferry architecture [28] proposed
in the context of protocol testing. The tool, named FSoFIST (Ferry-clip with Sofware
Fault Injection Support Tool) [1], extends this architecture in order to support fault
injection by software. The ferry architecture was adopted because of the following
features:

• It offers the means to introduce test instrumentation inside the IUT with low
intrusiveness;

• It provides the means to synchronize the test components;
• It is portable for different platforms and easy to adapt to different kinds of

interfaces
• It is highly modular, which eases modifications;
• It can be easily extended to cope with testing of multiple IUT.

The paper is organized as follows: Section 2 presents basic notions about the two

types of test currently supported. In Section 3 we present the proposed test architec-
ture. Section 4 presents an implementation of the proposed test architecture, perform-
ance evaluation of the tool and also a case study for its validation. Section 5 describes
some related works. Finally, section 6 concludes the paper. The appendix contains a
list of abbreviations used in this text.

2 Types of Tests Supported

2.1 Conformance Testing

Conformance testing aims to determine whether an implementation meets the specifi-
cation [12]. In the context of the Reference Model for Open Systems Interconnection
(OSI), it was developed a particular standard for protocol conformance testing, the IS
9646: “OSI Conformance Testing Methodology and Framework” (CTMF) [14]. The
standard defines the methodology, structure and specification of test sequences as
well as the procedures to be followed. The purpose is to improve the capability of
both comparing and reproducing the tests results performed by different groups. The
standard does not establish the way that the tests should be generated, rather, it de-
fines a framework for structuring and specifying the tests.

The CTMF also defines conceptual architectures (designated as abstract test meth-
ods) to support test execution (ISO IS-9646, 1993, Parts 1 and 2). A test architecture
describe how an IUT (which represents a protocol entity) is to be tested, i.e., what
inputs can be controlled and what outputs can be observed. As can be seen in figure
2.1 a, the points at which inputs and outputs to/from the IUT can be controlled and
observed are called the Points of Control and Observation (PCO). The specification
of a protocol of the OSI reference model describes the behavior of an entity in terms
of the inputs and the outputs passing by the upper and lower service access points
(SAP), respectively named (N)-SAP and (N-1)-SAP.

Ideally each SAP is a PCO that is directly used for the communication with the
IUT. But generally one or more SAPs are not directly accessible during testing. An
IUT may be embedded in other applications or may be only accessed via underlying
services. For these reasons, test architecture might be described in terms of [23]:

(i) the PCOs,

(ii) the test context, that is, the environment in which the IUT is embedded and that
is used during testing to interface the IUT (the test context, also called test inter-
face, is supposed to be correct);

(iii) the testers – there is a tester associated to each PCO, they are named upper
tester (UT) and lower tester (LT) respectively connected to (N)-SAP and (N-1)-
SAP. Whenever both testers are used, synchronization between them during
testing is required; this is achieved by the Test Coordination Procedure (TCP).

Since, in real world, the IUT and the testers can reside on different machines, the

following 4 architectures were proposed [14, 23] that can be classified as local or
external. Figure 2.1 illustrates these architectures.

Figure 2.1. Conformance testing architectures.

In the local architecture (figure 2.1(a)), the IUT interacts with both testers, UT and

LT, intercepting the SAP (Service Access Point) in the upper and lower interfaces of
IUT, which are the tests PCOs.

The other three architectures are external, in which case the LT has remote access
to the IUT. The LT resides remotely in the Test System (TS) and its interaction with
the IUT is through the (N-1) layer. Test Coordination Procedure (TCP) shall imple-
ment a communication protocol between the TS and the LT. In the distributed archi-
tecture (figure 2.1(b)), the UT is physically close to IUT, directly accessing its upper
interface. The Coordinated Method (Figure 2.1(c)) uses a Test Management Protocol

(TMP) as TCP. In the remote architecture, (Figure 2.1(d)), the UT does not access
directly the IUT upper interface

Each test architecture has three variant forms [14]: single-layer, multi-layer and
embedded. In single layer-methods, the IUT represents a single layer of a protocol
stack and is tested without reference to the layers above it. Multi-layer methods are
designed for testing a multi-layer IUT as a whole. In the embedded method a single-
layer is tested within a multi-layer IUT; the SAP of the single-layer being tested is
accessed through the layers above it, which constitutes the upper test context.

The architectures described so far are aimed at testing an IUT that communicates,
in a point-to-point connection, with a single peer. This is the single-party testing
context. A generalization of these architectures was proposed for the case in which an
IUT participates in a multi-point connection with several peers at the same time. This
constitutes the so-called multi-party testing context, in which several LT and zero or
more UT are used to control and observe the IUT. Since our concern in this paper is
single-party testing context, we will not discuss multi-party testing issues any further.
Interested readers can consult references [6, 24] for further details on this topic. Also,
[27] presents a good survey on distributed test architectures for protocol conformance
testing according to CTMF and beyond.

2.2 Fault Injection

Fault injection consists in the deliberated insertion of faults or errors into a system
aiming at observing its behavior. This technique is very useful to validate the imple-
mentation of error recovering and exceptions mechanisms, as well as to determine the
system behavior in presence of faults in the environment.

There are several approaches for fault injection [2, 7, 13]. These work addresses
fault injections by software, in which changes in the state of the system under test, are
performed under control of special software. In this way both hardware and software
failure modes might be emulated. The mechanism consists in interrupting the IUT
execution to run the fault injector code. The latter can be implemented in various
forms: as a routine started by a high priority interruption; as a routine started by a
trace mechanism; as an extra code inserted into the IUT or in its context (operating
system, underlying communication layer, for example). A pioneering work in [21]
implements some of these mechanisms.

The fault injector implemented in ATIFS aims to mimic communication faults,
which represent typical faults of distributed systems like message lost, duplication,
corruption and delay. Communication fault injectors are generally inserted by a
probe/fault injection layer between the IUT and the underlying service [9, 10, 11, 19,
20], as shown in Figure 2.2.

Figure 2.2. The probe/fault injection approach

Typically, fault injection is used later in the test process, mainly to obtain depend-

ability measures. Here we are concerned with the testing of one IUT, and fault injec-
tion is used to ensure that erroneous messages can be generated as required by the test
case being run.

3 FSOFIST design overview

3.1. The proposed ferry-injection architecture

The ferry architecture was proposed in [28, 29] to support protocols test architectures
defined under ISO9646 standard. This architecture has a high modular structure,
which allows its use in different platforms requiring few modifications. Basically, it
consists of transporting the test data from the Test System (responsible to the test
coordination) to the SUT, which contains the IUT, in a transparent way to allow those
both upper and lower testers reside in the Test System. This approach simplifies the
synchronization between the UT and LT, minimizing the amount of test software to
be aggregated to the SUT. The study in [6] has shown the flexibility of the ferry ar-
chitecture in supporting other types of testing. The architecture proposed here, desig-
nated as ferry-injection, extends the ferry-clips to support fault injection.

Figure 3.1 illustrates the distributed architecture proposed. The Active Ferry (AF)
and the Passive Ferry (PF) are the main elements of the ferry architecture. They are
responsible for the test data transfer according to a simplified ferry-protocol. Addi-
tionally, they adapt the data into the format understandable by the IUT, so the Test
Sequence Controller is not modified to each new IUT.

As shown in figure 3.1, the test data are transported from the Test System (respon-
sible for the test coordination) to the System Under Test by the ferry transfer me-
dium, which is an IUT-independent communication channel.

The test manager (TM) starts and stops a test session automatically or under a user
command. It provides a user interface allowing the user to follow the executed test

steps and to enter information before the test execution. It activates and deactivates
the Test System components.

The Test Sequence Controller (TSC) applies a test sequence to the IUT, using the
ferry clip protocol according to the available PCOs. The Fault Injection Controller
(FIC) controls fault injection testing, according to the script. It sends information
about the faults to be injected to the FIM and stores data collected by the latter. The
Fault Injection Module (FIM) intercepts the messages received by the IUT and inserts
the faults determined by FIC.

The current version of FSOFIST is aimed at single-party testing, in which there is
a single IUT that participates in a point-to-point communication with its peer. In this
context, fault injection objective is only to ensure that errors are generated as required
by the test case being run. The IUT can represent a single layer or multiple layers of a
protocol stack, considered as a whole.

Figure 3.1. FSoFIST architecture

An important aspect concerning software fault injection tools is intrusiveness: the

instrumentation introduced for injection and monitoring purposes may affect the
structure (structural intrusiveness) or disturb the execution of the target system (be-
havioral intrusiveness). Our approach attempts to minimize intrusiveness in the fol-
lowing ways: (i) only the IUT dependent part of the fault injection features resides on
the System Under Test (SUT), in that way reducing space overhead on this system;
(ii) the FIM is part of the PF test component, affecting messages passing through the

IUT lower interface. In this way, IUT code is not necessarily modified, which avoids
structural intrusiveness.

In the following, the major components of this architecture are described. Unless
otherwise stated, the components functions are identical to that indicated in the litera-
ture [5, 6, 29] which can be consulted for further details.

3.2. The ferry protocols

The transfer of data between the AF and PF is achieved through the Ferry Control
Protocol (FCP). Since the FCP is implemented in each ferry-clip, it should be as sim-
ple as possible, to simplify their implementation. The FCP defines abstract service
primitives (FCP-ASP) that allow open and close a connection and the transfer of data
between the two ferries. It also defines ASPs for the communication among the test
components and the ferries. They are not presented here, for sake of space. Interested
readers can consult [1] for further information The FCP uses services provided by the
Ferry Transfer Medium Protocol (FTMP). To simplify matters to the FCP, this proto-
col has the following requirements: (i) guarantees end-to-end error free delivery of
data and (ii) deliver packets in the same sequence they were sent. The SUT must
provide such a protocol. In the present implementation of FSoFIST, the TCP/IP is
used as the FTMP.

3.3. The ferry-clips

The structure of both ferry-clips is quite similar. They are structured into three mod-
ules:

• Ferry Engine (FE), which implements the core functions of the ferry-clip. It con-

tains all functions that are independent of the IUT and FTMP being used. It in-
teracts with the other test components by means of FP-ASP.

• Lower Mapping Module (LMAP), which maps the FP-ASP into the FTMP-ASP.
Thus, this is the module to change for different implementations of the FTMP.

• Service Interface Adapter (SIA) which provides interface to the IUT. Since in the
implemented test architecture the PF has access to both IUT interfaces, this mod-
ule was not implemented in the AF. In the Passive Ferry this module converts
data received through the ferry transfer medium into a format used by the IUT,
and conversely, i.e., it converts IUT outputs into a format that the Test Suite
Controller (TSC) understands. The PF-SIA is then logically structured in two
sub-modules: the U-SIA, associated with the IUT upper interface, and the L-SIA,
associated with the lower interface, as shown in Figure 3.3. Thus, the PF-SIA
module is IUT-dependent, hence, it is the only module to be replaced if a differ-
ent IUT is to be tested.

An important concern when designing the ferry clips is to keep the PF as small

and simple as possible. This can be achieved, on the one hand, by choosing a sim-
ple, yet reliable, ferry-transfer medium protocol. On the other hand, the conversion

functions performed by the PF-SIA should be reduced to a minimum. One possible
solution consists in externally specifying the IUT interface formats instead of cod-
ing the conversion into the PF-SIA. This is the solution we adopted for FSoFIST.
The primitives (or PDUs), their respective parameters, as well as parameter length
and the allowable range for each parameter are input to another tool, ConDado [16],
that automatically generates test cases in the adequate format.

3.4. The Fault Injection Module

The Fault Injection Module (FIM) is an extension of the PF-SIA to incorporate fault
injection capabilities. More precisely, it extends the L-SIA, given that communication
fault injectors typically resides in some layer bellow the IUT (see section 2.2). When
no fault injection is used for testing, the user can configure the PF to use the L-SIA
instead of the FIM. It contains the Injection Logic, which performs fault-injection
functions, and a message buffer to store messages to/from the IUT.

The FIM first processes the fault descriptor which was sent by the FIC. Then, it
runs through a loop, intercepting messages from/to the IUT and checking whether a
message should be injected or not, according to the fault descriptor. A message
counter is used by the FIM to trigger fault injection. In this way, the FIM is able to
inject various fault types such as: message delay (a message from/to the IUT is re-
tained until a certain delay is up), message dropping (a message from/to the IUT is
deleted), message duplication (a copy of a message from/to the IUT is maintained in
the buffer and sent after a certain delay) and message corruption (the content of a
message is modified). It can also inject faults permanently (affecting every message),
intermittently (affecting certain messages according to a pre-specified frequency) or
transiently (affecting only one message in a test run).

These fault types are applied only on incoming messages. When no faults are to be
introduced, FIM only transfers messages directly to the IUT.

3.5. The Fault Injection Controller

The Fault Injection Controller (FIC) implements all fault injection functions that are
IUT independent. Hence, changing the IUT has no effect on this module. It uses a
script defined by the user determining: when to start fault injection, what faults to
inject and for how long. This information is used to pass the appropriate commands
to the FIM using the Ferry Protocol primitives. This module also stores data sent back
by the FIM for post-mortem analysis.

3.6. Test Specification

The CTMF defines a test notation for test case specification: it is the Tree and Tabu-
lar Combined Notation (TTCN) [14, 18]. However we decided to use TCL for that
purpose, for the following reasons: (i) at the time the tool was designed, TCL was a
popular interpreted language, used in some fault injection tools (e.g, [9]); (ii) TCL

syntax is quite similar to C, which reduces the burden of learning a new language for
users already familiar with this programming language and (iii) TCL allows users to
write their own extensions, in C or C++, so that the script can invoke user defined
procedures.

3.7. Requirements on the System Under Test

It is important to point out that there are also requirements on System Under Test
(SUT) in order that our test architecture could be used. First of all, the SUT must
allow the insertion of test components to control and observe the IUT interfaces.
Another point is that it should allow the installation of a tester in a layer bellow the
IUT to perform fault injection. Furthermore, it must provide an IUT-independent
communication medium for the transfer of information between the Test System and
the SUT.

4 Implementation of FSoFIST

FSoFIST was developed according to the ferry-injection architecture described in the
previous Section. It presents a user interface allowing the tester to control and moni-
tor the tests step by step, allowing the user to start, stop and continue a test session
any time.

FSoFIST was developed under the Solaris 2.5 operating system, where it was first
used. It was further ported to Linux. Its PF component ran initially in Solaris but was
transferred to Windows platform for the case study presented in section 4.4.2. The
AF is written in C++ language and the PF in Perl. The communication between them
uses the socket library and the TCP/IP protocol, which guarantees portability, since
socket libraries are available in various Operating Systems.

In the following we present the experiments performed to validate FSoFIST. The
first experiments were aimed at evaluating the tools performance. The second one
illustrates the use of FSoFIST in a simple, real world application.

 4.1 Performance measurements

The SUT used in these experiments was a dual Xeon 300MHz CPU running a Linux
Operating System. The PF and the IUT resided both in the SUT. The IUT in this case
does not matter, since we were only interested in measure the overhead introduced by
the test components. The Test System was implemented on an Ultra SPARC 366
MHz running Solaris. The two hosts were connected through a FastEthernet network.

The Test Manager implements a TCL Interpreter, which manages the execution of
the testers (FIC and TSC). The Test System components were implemented as ob-
jects, and were written in C++.

The performance evaluation experiments are summarized bellow.

Measuring script interpretation overhead. These experiments were aimed at
evaluating the tool’s execution delay caused by the TCL Interpreter. For those pur-
poses, four scripts were generated: a null script, and three scripts that executed a loop
for 1000 times, 10000 times and 100000 times, respectively. The script is shown
bellow and the results obtained are presented in Table 4.1.

set x 0
while ($x < 1000) { incr x }

The time taken to process the null script indicates the TCL Interpreter overhead.

By subtracting this overhead from the times taken to execute the loops we obtain that
each assignment operation takes about 7µs (e.g., 208 (the time taken to process the
loop 10000 times) - 137 = 71 ms /10000 assignments).

Table 4.1. Script interpretation delays

Script Execution time
Null script 137 ms
Loops 1000 times 141 ms
Loops 10000 times 208 ms
Loops 100000 times 684 ms

Measuring TSC-AF communication delay. These experiments were aimed at
evaluating the execution delay caused by the communication internal to the Test
System. For that purpose, we vary the size of the data exchanged between two mod-
ules: Test Suite Controller and AF. Three buffer sizes were considered: 10, 100 and
1000 bytes respectively. The script is shown bellow and the results obtained are pre-
sented in Table 4.2.

set data_buffer “xxxxxxxxxx”
time {
 senddata Lower data_buffer
 } 1000

Table 4.2. Internal communication delays

Number of bytes Execution time
Empty data 13,353 s
Data with 10 bytes 13, 458 s
Data with 100 bytes 19,993 s
Data with 100 bytes 26,550 s

The internal communication is through pipes, and we considered that each pipe has

the same execution speed, so only one pipe was observed. The connection with the
PF was not opened, which causes the AF to respond to each request with a disconnect
indication.

Measuring AF-PF communication delay. These measurements were aimed at as-
sessing the response time in the ferry transfer medium. The PF was executed in loop
back mode, that is, all data received was sent back to the AF. The script used in these
experiments is presented bellow, and the results are in Table 4.3.

opening the connection with AF:
openconn <PF#> <host> <port>
openconn 1 lua 2345

putting PF in loopback mode
sendcmd 1 Loopback

sending nb bytes buffer and awaiting to receive it
back for 1000 times:
senddata <PF #> <SAP> <data>
time {
 senddata 1 Lower "xxx ...<nb bytes> ... xxx"
 recvdata 1 Lower
 } 1000

closing the connection with the PF
closeconn 1

The measures in table 4.3 show the time taken by the TCL Interpreter to process

the script as well as the internal communication overhead and the data transfer using
TCP/IP as Ferry Transfer Management Protocol (FTMP).

The overhead in the communication between PF and IUT depends on the inter-

faces between these components, and for that reason it is not presented here.

Table 4.3. Ferry transfer delays.

Number of bytes
(nb)

Execution time

nb = 0 20.89 s
nb = 100 57.75 s
nb = 1000 63.89 s
nb = 100000 86.10
nb = 1000000 bytes 244.6 3 s

4.2. Experiments with MASCO

The Telemetry Reception Software (TMSTATION) of the MASCO Telescope [25]
implements a ground entity of the ground-board communication protocol which re-
ceives in real-time the data of the sky imaging in X-rays got by the MASCO tele-
scope (a Brazilian space project). The data are acquired during approximately 30

hours during the telescope flight on board of a balloon mission. The experiment was
developed by the Astrophysics Division at the National Institute of Space Research
(INPE) and will be launched yet in 2003. The imaging data acquired by a hardware
detector are organized in frames, stored in files on board and transmitted in real time
to the Ground Station, where they are received by the TMSTATION software [17], as
illustrated in figure 4.1.

The main function of TMSTATION is to separate the frames, sequentially re-
ceived through a serial channel RS422, in distinct files, like they are stored on Hard
Disk on board. The separation is based on the identification of a pattern, e.g. a string
of at least 5 occurrences of the hexadecimal word “AA55”, which shall be presented
at the end of each frame. In the rest of the text we will refer to this word as the end-
of-file (EOF) pattern. The software specification also required the TMSTATION
application to report the status of each frame stored on ground according to the frame
length. The TMSTATION was implemented in C language under LabWindow/ CVI
[15] environment.

Figure 4.1 The TMSTATION software operation context for MASCO scientific data
reception on ground.

Under normal transmission conditions from board to ground, the valid frame to be
recorded at ground station has the following format: first, the word “EB90”, followed
by “937 x 146 words” (data field), finally the “end of file” pattern. In case of com-
munication failure, part of the frame might be missed resulting:

(i) Truncated frame: a frame with reduced length is generated whenever part of the
frame data field is lost, without affecting the EOF pattern

(ii) Extended frame: a frame with bigger length might occur if part of the EOF
pattern is corrupted or lost. In this case, the TMSTATION aggregates the next
frame to the current frame data field.

In order to validate whether the TMSTATION implementation deals correctly

with the reception of valid frames, we used conformance testing. To emulate invalid
frames, as described above, we used fault injection with the aim to mimic communi-
cation failures on the radio frequency downlink.

The FSoFIST architecture, presented in figure 3.1, was configured to achieve the
TMSTATION testing needs as shown in figure 4.2. The physical serial channel RS-
422 connects the two processes, PF and IUT, both residing on the same machine, on
an Windows environment. The Lab-CVI library was used for the communication
through the serial line, acting then as the test context. Faults are injected to emulate
ground-board link failures. For that reason, we assumed that messages transferred to
the IUT through the serial line are delivered in sequence, without modification. So,
the FIM was not introduced inside the test context, as it should be (c.f. Section 3.1);
instead, it uses this context to interface with the IUT. This configuration was useful
given that our main interest was to validate FSOFIST module’s behavior.

Figure 4.2. FSoFIST configuration for TMSTATION application testing

A TELEMETRY.dat file, containing a sequence of valid frames, was used during
the tests. Various scripts were developed: one for conformance testing, and the others
for fault injection. The conformance testing script merely reads frames on the

TELEMETRY.dat file and passes them to the IUT through the ferry clips. For the
fault injection tests, the scripts were generated according to the types of faults to be
injected (fault cases). Faults were selected deterministically to meet the frame viola-
tions bellow:
(i) omission of words in the data field – to emulate the reception of truncated

frames.
(ii) change of the EOFpattern - to emulate failure in the transmission of this pattern

which results in extended frames.

Figure 4.3 shows an example of FSoFIST window during test execution. The upper
part of this window shows the script used to inject faults according to (ii) above. In
this script, the last three words of the EOF pattern are changed from (AA55) to
(9A05), intermittently on the 2nd, 3rd and 4th frames of a sequence composed of five
frames. The lower part of Figure 4.3 shows part of the log generated during the tests.

Figure 4.3. presents the script and test results associated to FSoFIST execution for
extended frames test case.

Six scripts were created in order to validate fault injection capabilities of the FIM
module. These scripts implement the prescribed error models according to (i) and (ii)
above, and for each one we varied the repetition pattern (transient, intermittent and
permanent). Table 4.4 describes them as well as the related results:

Table 4.4. Summary of the results of FSoFIST validation using TMSTATION soft-
ware as case study.

Number of frames
in input file

 Error model FSoFIST
 technique

Status of the stored
frames (*)

6 Transient at
3rd frame

corruption at
EOF
pattern

1valid
2valid 3/4extended
5valid 6 valid

7 Intermittent at
2nd, 4th, 6th

frames

corruption at
EOF
 Pattern

1valid 2/3extended
4/5extended
6/7extended

5 Intermittent at
2nd, 3rd, 4th

frames

omission of
EOF
 pattern

1valid
2/3/4/5extended

3 Permanent byte omission
on the data
field

1 truncated
2 truncated
3 truncated

5 Intermittent at
2nd, 4th, 5th

frames

byte omission
on the data
field

1 valid 2 truncated
3 valid 4 truncated
5 truncated

4 Transient at
2nd, 3rd
 frames

byte omission
on the data
field

1 valid 2 truncated
3 truncated
4 valid

*Test Results: Status of the data files (frames) generated by TMSTATION

5 Related Works

Numerous approaches have been proposed for the validation of distributed systems.
Our work is primarily related with studies in the areas of protocol conformance test-
ing and fault injection. Section 2 presented the main aspects concerning test architec-
tures used in these areas. Here we discuss some previous work.

From protocol conformance testing field we borrowed the ferry-clip approach to
build our protocol and fault injection tool. The ferry-clip approach is not new. Zeng
et al introduced the concept in 1985 [28], where the PF was intended to replace the
UT in the System Under Test, and an enhanced UT was moved to the same machine
as the LT. As a result, the amount of test code in the SUT is reduced, and also, the
synchronization between the UT and LT is easier. In their approach both the test
channel and the ferry channel pass through the IUT. Many refinements were applied
to this architecture since then. In [29] it is proposed a reduction in the PF by remov-
ing the interface region from it. The interface region converts data to/from the IUT,
masking IUT dependent features from the testers. Part of these features were moved

to a new module, called Service Interface Adapter, introduced in the Test System to
convert data from to/from the upper IUT interface. Another part constitutes the en-
coder/decoder in the Test System, used to convert data to/from the IUT lower inter-
face. Also, the ferry channel no longer passes through the IUT; it uses the underlying
communication layer instead. Chanson et al proposed the Ferry Clip based Test Sys-
tem (FTCS) [5], where a Ferry Control Protocol was introduced to provide a stan-
dardized interface on top of an existing protocol which actually transfers the test data
(the ferry transfer medium protocol). In this architecture, both interfaces of the IUT
are controlled and observed by the PF. We borrowed this idea to build our ferry-
injection tool. Besides the improvement on the control and observation of the IUT
interfaces, this architecture also provides an independent communication channel for
ferry connection. This allows the Ferry Transfer Medium Protocol to be as simple as
possible, in order to reduce the complexity of the PF. In addition, this guarantees
availability of the connection between the Test System and the System Under Test in
case of crashes that can occur as consequence of fault injection.

Another related work is the one presented by A.W.Ulritch et al, where two test ar-
chitectures for testing distributed systems were proposed: one based on a global
tester that controls and observes all distributed components of a SUT in a central
manner, another based on a distributed tester that consists of a number of distributed,
concurrent tester components, each of them observing a partial behavior of the IUT
[24]. The latter must provide a test coordination procedure to assure a consistent
global view of the SUT, which comprises various IUT. A tool, TMT (from Test and
Monitoring Tool) to support both architectures was implemented in Java. TMT can
be applied to systems implemented in C++ (for Unix-like or Windows NT platforms)
or Java. The distributed test components are implemented in a test library. Call for
functions in this library must be inserted into the IUT source code. The source code is
then necessary since TMT implements a grey-box testing approach, in which instru-
mentation is introduced inside the IUT to observe its internal interactions. The archi-
tecture of FSOFIST can also be easily extended to incorporate multiple ferry clips
inside the SUT. Grey-box testing can then be used, for instance, for a multi-layer
IUT, allowing the observation exchanges at various layer boundaries. However, the
fact that FSOFIST does not take for granted that source code is available, its imple-
mentation is not dependent on any specific programming language.
 Also closely related to our work is the approach called on-the-fly testing, which
combines test derivation and execution in an integrated manner. Instead of deriving
complete test cases (comprised of test events, each test event representing an IUT
interaction), the test derivation process only derives the next test event from the
specification and this test event is immediately executed [26]. In this case, besides the
Driver, that controls and observes the IUT during testing, there is another component,
the Primer, responsible for the generation of a valid input derived from the specifica-
tion, as well as for checking whether the output generated by the IUT is valid accord-
ing to the specification. TORX [23] is an example of a tool developed to support this
approach. The tool also supports batch test derivation and execution. A drawback of
this approach is that the Test System is dependent on the specification formalism,
since it is also responsible for test case derivation. In our case, this task can be per-
formed either by another tool or by the user that can manually write her/his test cases
using the editor available at FSoFIST interface.

The studies presented so far are aimed at conformance and interoperability testing,
but do not consider fault injection.

Fault injection on distributed systems is a very active area. In the past, most com-
mon fault injection approaches were by hardware or through fault simulation. These
approaches have been used even for software validation (e.g. [3; 8]). More recently,
software-implemented fault injection is been used for that purpose. SFI [20] and its
successor, Doctor [19], use different approaches to inject different types of faults. To
inject communication faults, library routines are altered so as to provide erroneous
communication services. EFA [11] introduces communication faults by inserting a
fault injection layer in the protocol stack. This extra layer is introduced on top of the
network link layer. Fault injection control is a program compiled into the fault injec-
tion layer. This program can be automatically generated from a formal model of the
system. VirtualWire [10] also introduces fault injection and monitoring features on
top of physical layer, more precisely, between the network interface card’s device and
the IP protocol stack. VirtualWire is aimed at testing any network protocol operating
within a local area network. Fault injection control is programmed in a declarative
language specially developed for that purpose. PFI and its successor, ORCHESTRA
[9] use a fault injection layer between the IUT and the layer below on the network
stack, as the previous works. But differently from EFA and VirtualWire, this layer
moves around the protocol stack. It is based on the concept of probes, introduced to
network monitoring purposes. Similar to FSoFIST, the experiments are programmed
by the user in TCL and C. This work is rather close to the approach used in this pa-
per. They also defined an abstract fault-injection architecture and develop a tool
based on it. Their architecture aims at protocol-independence, although their tool is
devoted to protocols that use sockets on Unix-like operating systems. Fault injection
capabilities were introduced at the routines which comprise the socket interface pro-
vided by a library. The IUT source code is not modified, but it must be re-linked with
the new library.

Loki [4], as ORCHESTRA, is another tool that uses probes monitoring as well as
fault injection purposes. Probes are inserted in each node to monitor state changes
and to inject faults as required. Fault injection on a node is triggered according to
state changes information, either local or from remote nodes. Probes can be inserted
into the source code, whether it is available. In case the source code is not available,
monitoring and fault injection is performed from outside the IUT. The users can
either select a probe among the pre-implemented ones, or can develop their own
probes.

Similar to Loki, in FSoFIST the users can also develop their own PF, more spe-
cifically, the SUT-dependent part of the PF (LMAP and SIA/FIM modules), which
gives the tool more flexibility and applicability. The user can choose a suitable loca-
tion to the SIA/FIM modules according to her/his test purposes. These modules can
also be implemented using probes, as in ORCHESTRA and Loki. For the moment we
do not have pre-implemented modules as in Loki, but this is envisaged for the near
future.

6 Conclusion and Future Work

This paper presents the ferry-injection architecture for conformance testing and fault
injection of distributed systems. We also presents a tool, FSOFIST, that implements
the proposed architecture. Some experiments were performed to validate the tool and
demonstrate the capabilities of the ferry-injection architecture. Preliminary results of
performance evaluation are also reported. A small and simple, but real-world applica-
tion was used as case study. The advantages of the proposed architecture include
protocol independence and portability to different platforms. The architecture is also
ease to use, since test cases for conformance testing, as well as fault injection experi-
ments, might be specified using user-defined scripts in TCL, whose syntax is very
similar to the C language. Ongoing activities on this project are considering the fol-
lowing aspects: (i) use of other distributed applications in the aerospace field as case
studies; (ii) extension of the ferry-injection architecture for multi-party and interop-
erability testing. In the long term we plan to use other commercial or prototype dis-
tributed applications to evaluate the tool's capabilities.

Acknowledgment

The authors would like to acknowledge the financial support from the National Re-
search and Development Council (CNPq) of Brazil and the team of the Astrophysics
Division at the National Institute of Space Research (INPE) headed by Dr. João
Braga, responsible for the MASCO project. We also thank Anderson Nunes de Paiva
Moraes for executing the experiments with FSoFIST, and Ana Maria Ambrósio for
the technical review.

References

1. Araújo, M. R. R. FSoFIST- A Tool for Fault Tolerant Protocols Testing. MSc Disser-
tation. Institute of Computing – State University of Campinas (UNICAMP). (Octo-
ber/2000). (In Portuguese)

2. Arlat, J., Crouzet, Y., Laprie, J.-C., Fault Injection for Dependability Validation of
Fault Tolerant Computing Systems. Proc Int’l Symposium on Fault-Tolerant Com-
puting (FTCS-19), Chicago, USA, (1989)

3. Arlat, J., Aguera, M., Crouzet, Y., Fabre, J.-C., Martins, E., Powell, D. Experimental
Evaluation of the Fault Tolerance of an Atomic Multicast System. IEEE Trans. Reli-
ability, 39 (4), (October/1990), 455-467

4. Chandra, R., Lefever, R.M., Cukier, M., Sanders, W.H., Loki: a State-Driven Fault
Injector for Distributed Systems. Proc. Int’l. Conference on Dependable Systems and
Networks (DSN’00), New York, USA, (2000) 237-242

5. Chanson, S. T., Lee, B. P., Parakh, N. J., Zeng, H. X., Design and Implementation of
a Ferry Clip Test System. Proc. 9th IFIP Symposium on Protocol Specification Test-
ing & Verification, Enscchede, The Netherlands. (1989) 101-118

6. Chanson, S.T., Vuong, S., Dany, H., Multi-Party and Interoperability Testing using
the Ferry Clip Approach. Computer Communications, 15 (3), (April/1992)

7. Clark, J. A., Pradhan, D. K., Fault Injection: A Method for Validating Computer Sys-
tem Dependability. IEEE Computer, (June/1995) 47-56

8. Czeck, E., Siewiorek, D., Effects of Transient Gate-Level Faults on Program Behav-
ior. Proc Int’l Symposium on Fault-Tolerant Computing (FTCS-20), (1990) 236-243

9. Dawson, S., Jahanian, F., Mitton, T., ORCHESTRA: a Fault Injection Environment
for Distributed Systems. Available on site: http://www.ecs.umich.edu.

10. De, P., Neogi, A., Chiueh, T-C., VirtualWire: A fault injection and analysis tool for
network protocols. Proc. IEEE 23rd. International Conference oin Distributed Com-
puting Systems, Providence, Rhode Island, USA (2003)

11. Echtle, K., Leu, M., The EFA Fault Injector for Fault-Tolerant Distributed System
Testing. Proc. Workshop on Fault-Tolerant Parallel and Distributed Systems, Am-
herst, USA, (1992)

12. Holzmann, G.J. Design and Validation of Computer Protocols, Prentice Hall, (1991)
13. Hsueh, M., Tsai, T. K., Iyer, R. K., Fault Injection Techniques and Tools. IEEE

Computer, (April/1997) 52-75
14. ISO TC97/SC21, IS 9646. OSI Conformance Testing Methodology and Framework,

ISO/1991.
15. LabWINDOWS/CVI-C for Virtual Instrumentation-User Manual, National Instru-

ments Corporation Technical Publications, 1996
16. Martins, E., Sabião, S.B., Ambrosio, A.M., ConData: a Tool for Automating Specifi-

cation-based Test Case Generation for Communication Systems. Software Quality
Journal, 8 (4), (1999) 303-319

17. Mattiello-Francisco, M.F. Software Requirements Specification for MASCO Teleme-
try Ground Reception. Internal Report MASCO-SRS-001, INPE, (05/2000)

18. Probert, R., Monkevic, O. , TTCN: The International Notation for Specifying Tests
of Communication Systems. Computer Networks & ISDN Systems, 23 (1992) 111-
126

19. Rosenberg, H.A., Shin, K.G., DOCTOR: an Integrated Software Fault Injection Envi-
ronment. Technical Report, University of Michigan n° CSE-TR-192-93 (1993)

20. Rosenberg, H.A., Shin, K.G., Software Fault Injection and its Application in Distrib-
uted Systems. In Int’l Symposium on Fault-Tolerant Computing (FTCS-23), (1993),
Toulouse, France

21. Segall, Z., Vrsalovic, D., Siewiorek, D.P., Yaskin, D., Kownacki, J., Barton, J.,
Dancey, R., Robinson, A., Lin, T., FIAT - Fault Injection Based Automated Testing
Environment In Int’l Symposium on Fault-Tolerant Computing (FTCS-18), Tokyo,
Japan, (1988) 102-107.

22. Stefani, M.R., Trace Analysis and Diagnosis Generation for Testing the Behavior of
a Communication Protocol in the Presence of Faults. MSc. Dissertation, Institute of
Computing, State University of Campinas, (May/1997)

23. Tretmans, J., Belinfante, A., Automatic Testing with Formal Methods. Proc. 7th.
European Conference on Software Testing, Analysis and Review. EuroSTAR´99,
(November, 1999)

24. Ulrich, A W., Zimmerer, P., Chrobok-Diening, G., Test Architectures for Testing
Distributed Systems. Proc. of Software Quality Week, (1999)

25. Villela, T., Braga, J., Mejá, J., D'Amico, F., Alves, A., Silva, E., Rinke, E., Fernan-
des, J., Corrêa, R., Preflight Tests of the MASCO Telescope, Advances in Space Re-
search, 26(9), (2000) 1411--1414

26. Vries, R.G., Tretmans, J., On-the-fly Conformance Testing using SPIN. In
G.Holzmann, E.Najm, A.Serhrouchni, (ed.), 4th. Workshop on Automata Theoretic
Verification with the SPIN Model Checker, Paris, France, (November/1998) 115-128

27. Walter, T., Shieferdecker, I., Grabowski, J., Test Architectures for Distributed Sys-
tems – State of the Art and Beyond. In, Testing of Communicating Systems, 11, A.
Petrenko, N.Yevtuschenko (ed.), Kluwer Academic Publishers, (September/1998).
Obtained in 2002 at URL: http://citeseer.nj.nec.com/walter98test.html

http://www.ecs.umich.edu/
http://citeseer.nj.nec.com/walter98test.html

28. Zeng, H.X., Rayner, D., The Impact of the Ferry Concept on Protocol Testing. In
Proc. V Protocol Specification, Testing and Verification, (1986) 533-544

29. Zeng, H.X., Li, Q., Du, X.F., He, C.S., New Advances in Ferry Testing Approaches.
Computer Networks and ISDN Systems, 15 (1988) 47-54

Appendix

AF Active Ferry PCO Point of Control and Observa-
tion

ASP Abstract Service Primitive PDU Protocol Data Unit
CTMF Conformance Testing Methodology

and Framework
PF Passive Ferry

FCP Ferry Control Protocol SAP Service Access Point
FE Ferry Engine SIA Service Interface Adapter
FIC Fault Injection Controller SUT System Under Test
FIM Fault Injection Manager TCP Test Coordination Procedure
FTMP Ferry Transfer Medium Protocol TM Test Manager
ISO International Standard Organization TMP Test Management Protocol
IUT Implementation Under Test TS Test System
LMAP Lower Mapping Module TSC Test Sequence Controller
LT Lower Tester UT Upper Tester

	Página de Rosto
	A tool for fault injection and conformance testing of

distributed systems
	1 Introduction
	2 Types of Tests Supported
	2.1 Conformance Testing
	2.2 Fault Injection

	3 FSOFIST design overview
	3.1. The proposed ferry-injection architecture
	3.2. The ferry protocols
	3.3. The ferry-clips
	3.4. The Fault Injection Module
	3.6. Test Specification
	3.7. Requirements on the System Under Test

	4 Implementation of FSoFIST
	4.1 Performance measurements
	4.2. Experiments with MASCO

	5 Related Works
	6 Conclusion and Future Work
	References
	Appendix

