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The electrical conductivities of n-doped silicon and, in particular Si:Bi, have been investigated for 
doping levels greater than the impurity critical concentration N, for the metal-nonmetal transitions. 
A general feature of the conductivity for concentration normalized to N, is presented in the order 
o(Bi)>o(As)>o(P)>o(Sb). For Si:Bi, the value of N, is calculated for different criteria. The 
mobility of electrons presents a lower value compared to Si:P. The results for Si:P and Si:As are 
compared to the experimental data available in the literature. 

I. INTRODUCTION 

Much attention has been given both theoretically and 
experimentally to the electronic properties of n-doped silicon 
for a long period, mainly for the Si:As, Si:P, and Si:Sb 
systems.‘-r4 Bismuth-doped silicon (Si:Bi) was not given 
much attention. Maybe the reason is because Bi in Si has its 
ionization energy [E,(Bi)=71 meV], much larger than that of 
the other group-V elements, which have E,(As)-53 meV, 
E,(P)-45 meV and E,(Sb)=42 meV, respectively.‘5-20 With 
such ionization energy the theory of the effective mass is 
expected to be less applicable to this impurity center.15 Prob- 
ably this is why the results on Bi were not worked out to- 
gether with those of the other three donors, i.e., As, P, and 
Sb, respectively. However, the theory of the effective mass is 
used, with success, in the determination of E, of chalcogen 
systems (group-VI elements) as Si:S, Si:Se, and Si:Te, which 
have Ep 100 meV2”” 

Bismuth as a dopant in silicon has been investigated by 
ion implantation. It is a powerful method of making semi- 
conductor devices.23-25 This method also provides an ideal 
prototype to study disordered systems.‘.” 

Bearing in mind the importance of this system, we report 
here the calculations of some of its electronic properties, as 
metal-nonmetal (MNM) transition, electrical conductivity, 
and mobility as a first attempt to get to know its physical 
characteristics. 

In 1973 and 1974 Berggren calculated the MNM transi- 
tion for Si:Bi using two different ways, namely the Hubbard 
approach and Herzfeld theory, respectively.r7”* Here we 
present four criteria to determine the MNM transition and a 
scheme to calculate the electric conductivity and, as a con- 
sequence, the mobility of conduction electrons. 

II. MNM TRANSlTlON 

For the MNM transition we have applied the following 
methods. 

(i) The first is with use of the variation of the effective 
wave function and the interference factor due to the minima 
of the silicon conduction band. Disorder is neglected, and it 

*‘Previous address: Instituto de Fish, Ul%a, 40210 Salvador, Ba., Brazil. 
“Pemanent address. 

is assumed that the unperturbed impurity bandwidth A W, is 
given by the expression’7Yz126-as 

AW=22)T(, (1) 
where 2 is the coordination number for a particular arrange- 
ment of donors and T is the hopping energy between nearest 
neighbors. It is defined as 

T= I chli(r)Hl fij(r)dr, (2) 

where H, is the the one-particle Hamiltonian including the 
kinetic energy operator and the electron-donor interaction 
and +r is the wave function with the interference factor. The 
transition is given by’7,Xp29p30 

AWlU=l.lS, (3) 
where U is the intradonor Coulomb interaction or Hubbard 
U. The calculations are performed assuming that the impu- 
rities are distributed over a regular lattice [simple cubic (SC), 
bee and diamond] averaging these different arrangement of 
the impurities. 

(ii) The second is with a randomlike distribution of do- 
nors with the probability that the nearest donor neighbor lies 
at a distance R . Equation (1) is rewritten as5 

AW=21(7’)1, (4) 
where (T) is the average hopping energy integral. It is given 
by 

(T)= 1 WP,UWK (5) 

where Px(R) is the convoluted pair distribution function to 
be chosensl We use Poisson nearest-neighbor approxima- 
tion, PNN(R), and Rosso (interaction hierarchy model), 
PR(R), distributions,31,32 respectively, as 

3R2 
PNNW = x exp 

d 

and 

(6) 

(7) 

where Rd= (47rNd/3)-l’ and Nd is the donor impurity con- 
centration. The transition is obtained by Eq. (3). 

(iii) The third method is by applying a disordered one- 
band model with many-valley effects.28 The criterion for the 
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MNM transition is also given by Eq. (3), but AW is calcu- 
lated from a random system. The impurity bandwidths are 
calculated from the equation 

E’=E;Gif)(E), 03) 

where the bar denotes the configuration averaging of the 
Green’s functions over the random distribution of impurities. 
For more details the reader should refer to Refs. 1, 28, and 
33. In Eq. (8) El = E t ie and 5’ satisfies 

I 
T(W’) 

l-(N&E’)T($E’) +lfE” 
(9) 

where T&E’) is the Fourier transform of Eq. (2). Here we 
have taken one of the equivalent minima as the center of k 
coordinates and neglected the overlap.a,34 y is the number of 
equivalent minima. The coupled equations derived from this 
scheme are written as” 

X&d P cos e=1+m3 
I 

T(k,E’)[l+x,, cos ST(k,E’)]’ 

dk 

xA~kE’) 

and 

(10) 

(11) 

where 

A(k,E’)=[l+x cos b’T(~,E’)]2+[x sin eT(k&)]2, 
(12) 

P=Ndd3, (13) 

and a* is the effective Bohr radius. 
In the above equations we have used the definition 

x=-g=xo exp( i 01, Os&=T. (14) 

Solving Eqs. (10) and (11) self-consistently for 8=0+ and 
8=n- we obtain the bandwidths. 
(iv) The fourth method is to use a disordered two-Hubbard- 
bands mode1.35 In this model we use the criterion for the 
transition when the two impurity bands touch each other. The 
scheme used is the same is in (iii), but for the Hamiltonian 

H=C Tija,:ajg+ 4 z tIi~i-~+ (15) 
ija ‘JU 

Here ui’, and ajO are the creation and annihilation operators 
of an electron of spin u at the impurity site i and 

+ IlioT=ai,&Zio. 
The calculated values for the critical concentration N, of 

Si:Bi are reported in Table I. For comparison, the values 
calculated for Si:P are 

N, (Poisson) 

=N, (lattice averaging)=3.6X101’ cmb3. 

The experimental value is 3.7X lo’* cm-3.1v6,7*13 

TABLE I. The critical concentration N, for Si:Bi. 

El beV) a* (4 N, (10” cmm3) 

695.b 8.7 09 
I.? 

71c3’ t3.9c 1.8s 
1.8h 
2.9’ 
l.lj 
LIP 
1.4’ 

“Reference 15. 
bReference 17. 
‘Wfective Bohr radius a * from the experimental ionization energy E, : 
a * = e2/2kE,, k is the dielectric constant. 

dReference 18; here k=12, as in Reference 15. 
“Reference 16. 
‘Reference 19. 
Wesent calculation, Sec. II, method (i). 
‘Present calculation, Sec. II, method (ii), Poisson distribution. 
‘Present calculation, Sec. II, method (ii) Rosso distribution. 
1Present calculation, Sec. II, method (iii). 
‘Present calculation, Sec. II, method (iv). 
‘Average of g + h + j + k. 

III, ELECTRICAL CONDUCTIVITY 

The low-temperature impurity dc conductivity is calcu- 
lated making use of the following equation:* 

(16) 

where f(E) is the Fermi distribution function and y is the 
number of valleys of the silicon conduction band (y=6).’ It 
is worth noticing that in deriving the ensemble average of C, 
we are required to calculate the average of a product of two 
Green’s functions as 

-- 
Gij(E>G,tdE)sGij(E) GM(E)* (17) 

This means that, in this approach, certain terms, arising from 
the correlated diagrams of the two Green’s functions, are 
neglected. As a consequence, our scheme works fairly well 
above NC .l 

The results for different systems are shown in Fig. 1. For 
Si:P we also normalize the conductivity to Mott’s character- 
istic minimum conductivity ~~-20 (a cm)-1.6Y7 The con- 
centration is normalized to NC. The values of N, for the 
systems are NC(Si:Sb)~3.0X10’8 cm3, N,(Si:P)=3.7X101’ 
cme3, N,(Si:As)=8.5(6.4)X101* cmH3, and N,(Si:Bi) 
-l.4X1O19 cm-3.1~7~10~20 We obtain the order N,(Bi) 
>N,(As)>N,(P)>N,(Sb).‘2 The results for Si:P and Si:As 
present a fairly good agreement with experiments.3*7,36 

The conductivity as a function of normalized NIN, 
obeys the order a(Bi)>a(As)>u(P)>(Sb). Neglecting the 
normalization N/N, and taking o(T=2 K) (Ref. 1) as a func- 
tion of a given impurity concentration, i.e., N=l.l X1019 
CIC3, we obtain their values in Table II for different systems. 
We observe that o-(Sb)>a(P)>o(As)>a(Bi). It is the order 
found in experiments for u as a function of N>1019 cmm3 at 
room temperature.36-39 
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FIG. 2. Mobility of conduction electrons /.L~ as a function of N/N, for Si:P 
and Si:Bi. 

FIG. 1. Electrical conductivity o of Si:Sb, Si:P, Si:As, and Si:Bi as a func- 
tion of the normalized impurity critical concentration N/N,. cumin is Mott’s 
characteristic conductivity. Open and solid circles and open squares are 
experimental data extracted from Ref. 7. 

pared to available experimental data for Si:P and Si:As. Ex- 
perimental and theoretical investigations on Si:Bi system are 
called for to further check the above studies. 

IV. MOBILITY 

The mobility of conduction electrons pe is extracted 
from the classical paper of Pearson and Bardeen.2 It is writ- 
ten as 

P,=~ cm21V s, 
eNd 

where (r is the impurity conductivity, given by Eq. (16), e is 
the electronic charge, and Nd is the donor concentration. In 
Fig. 2 we show the mobility for Si:P and Si:Bi as a function 
of N/N,. We can observe that for this range of concentration 
the results present a rough agreement with experiments.4725 
For Si:Bi Baron et al.= have found Hall mobility & instead. 
For the concentration presented here Mousty and 
co-workers’ have found that pH=&. We obtain a f.& at a 
lower value than other systems. 

V. SUMMARY 

We have reported calculations for MNM transition, elec- 
tric conductivity, and mobility of conduction electrons of 
n-doped semiconductors, with emphasis on the Si:Bi system. 
The schemes presented here show fair agreement when com- 

TABLE II. Low-temperature conductivity at N,==l.lX1019 cmd3. 

(T (Cl cm)-’ 

System Theor. Expt. 

Si:Sb 
Si:P 
Si:As 
Si:Bi 

-400 . . . 
350 -350’ 
140 -150b 
120 . . . 

*Reference 7. 
bReference 36. 
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