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Plasma-immersion ion implantation (also known as plasma-source ion implantation) is a 
process in which a target is immersed in a plasma and a series of large negative-voltage pulses 
are applied to it to extract ions from the plasma and implant them into the target. A general 
one-dimensional model is developed to study this process in different coordinate systems for 
the case in which the pressure of the neutral gas is large enough that the ion motion in the 
sheath can be assumed to be highly collisional. 

I. INTRODUCTION 
In plasma-immersion ion implantation, a target im- 

mersed in a plasma is pulsed repetitively with large negative 
voltages. When the pulse is applied, electrons are repelled 
from the target on the time scale of the inverse electron plas- 
ma frequency, creating a uniform ion sheath. The ions, on a 
longer time scale, are attracted and implanted into the sur- 
face of the target. As the ions are implanted, the ion density 
in the sheath drops. This causes the sheath-plasma edge to 
recede and uncover more ions to increase the ion density in 
the sheath and sustain the potential drop across the sheath. 
The velocity of the moving sheath edge depends upon, 
among other factors, the pressure of the background neutral 
gas. Here, we develop a general one-dimensional model to 
study this process in different geometries for the case in 
which the pressure of the neutral gas is high enough that the 
ion motion in the sheath can be assumed to be highly colli- 
sional. We obtain analytic expressions for normal ion veloc- 
ity distribution f( v,), sheath motion s(t), ion flux at the 
target J(t), and other parameters of interest. We apply this 
general model to planar and spherical targets, and compare 
the analytic results with those obtained by simulation. The 
following analysis was inspired by the work of Lieberman,’ 
and Scheuer and Shamin,’ Scheuer and Emmert,3*4 and 
Conrad et aL5 

( 1) The electron motion is instantaneous (inertialess). 
(2) Charge exchange is the dominant ion-neutral colli- 

sion mechanism. 
(3) The ion motion is highly collisional; hence, s%/z,, 

where s = r, - r, is the sheath thickness, and Ri is the ion- 
neutral mean free path. 

(4) The applied voltage I’, is much larger than the elec- 
tron temperature T,; hence, s$;l,, where /2, is the Debye 
length. The plasma potential is also chosen as the reference 
potential, dplasma = 0. 

(5) The ion charge density in the sheath is uniform in 
space, but varying slowly in time, as seen in Fig. 1 (b) . This is 
seen experimentally in dc glow discharges6 and is also seen in 
simulation (see Sec. V). Further, we assume this charge den- 
sity to be constant during the ion transit time in the sheath. 

(6) In order to sustain a constant potential drop across 
the sheath, the ion loss at the target (the implanted ion cur- 
rent) is compensated by the uncovering of ions at the moving 
plasma sheath edge. 

(7) Ions, having undergone many collisions with the 
neutrals in the plasma, enter the sheath at the neutral tem- 
perature (room temperature). 

II. ASSUMPTIONS 

At time t=O+, the potential at the target drops to 
- V,. This negative potential forces the electrons away from 

the target, forming an ion sheath. The sheath-plasma edge r, 
moves far enough away, as shown in Fig. 1 (a), so that the 
potential drop across the sheath equals V,. The ion density in 
the sheath, n,, is still the same as that in the plasma, no. At 
this point, the ions in the sheath, starting at essentially zero 
velocity, are accelerated by the resultant electric field. How- 
ever, before traveling far, the ions collide with the neutral 
particles and scatter or lose their energy. Since the ions suffer 
many collisions before reaching the target, located at r = r,, 
the time-varying ion density at any point in the sheath is 
assumed to change more slowly than the ion transit time 
through the sheath. The assumptions for this model are the 
following. 
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a1 Visiting from INPE, P. 0. Box 515, S. J. dos Campos, SP, 12201, Brazil, FIG. 1. The ion charge density in the sheath and sheath edge at time f = 0 ’ 
supported partially by CAPES-Ministry of Education, Brazil. and t>O. 
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ill. ONE-DIMENSIONAL ANALYSIS 

Assuming constant ion charge density in the sheath re- 
gion ni = n, (with n, = O), one can apply Gauss’ law: 

V-E=%,, (1) 
EO 

with a boundary condition E, (r, ) ~0 to get E,(r) (r is a 
general one-dimensional coordinate). Having found the 
electric field in the sheath, the electric potential can be ob- 
tained from Vq5 = - E. The boundary condition at the tar- 
get states that d( r, ) = - V. when the pulse is applied. 

Now let us assume an ion, after suffering a charge-ex- 
change collision with a neutral, starts from the rest at r = r,, 
as seen in Fig. 2. This ion is accelerated by Er ( r), normal to 
the target, according to the one-dimensional equation of mo- 
tion 

i=fp). 
This acceleration occurs in planar, cylindrical, and spherical 
coordinates since we assume that the total ion velocity has 
dropped to near zero after the charge-exchange colIision; 
hence, conservation of angular momentum forces the other 
velocity components to remain zero after the collision. 

Equation (2) can be integrated with the following sub- 
stitutions: 

i= u,, 

p du 
-z--i.+ 
dtr dr 

This gives 

dur zur =$E,(r), 

u: (r,ro) = 2 5 s 
r 

M r,, 
E, (r)dr. 

The velocity of the ion at the target, r = r,, starting at r, is 
then 

U, = u,(r,,ro), (4) 

FIG. 2. An ion is assumed to be accelerated from rest at r = rI, after a 
charge-exchange collision. The electric field shown is typical in the planar 
coordinates. 

assuming the ion does not collide with a neutral again before 
reaching the target. 

We now can get an expression forf( U, ), the normal ion 
velocity distribution, by applying the condition for conserva- 
tion of particles: 

f(u, Mu, = exp( - v) n.J(ro)dro, 

where A(r,) is the cross-sectional area at r,,, 1; is the ion- 
neutral mean free path, and dr, is as shown in Fig. 2. The 
exponential factor, containing the neutral pressure depend- 
ence, is the probability of an ion, starting from rest at r,, 
striking the target without suffering a charge-exchange colli- 
sion. Thus, we have 

.fCu,) =c,exp( -~)wf(rd-$f-, (5) 

where dr,/du, is calculated from (4) and c, is determined by 
normalization. 

Having calculated the ion velocity distribution, one can 
compute the average ion velocity at the target from 

ii, = ua,fCu, Mu,. (6) 

The average ion current density at the target is then given by 
Jo = en,u, , which is 

J, = en,ii,, (7) 

where the bar denotes average value over the velocity distri- 
bution and the ion density at the target, n,, is assumed to be 
the same as in the sheath. 

Noting that S,J& + (a/&).f,p dV= 0 guarantees 
conservation of charge, the sheath motion can be calculated 
from 

J,A(r,) = - $ [ en,Ur,,r,)] +& [enoUrs)], (8) 

where V(r,,r, ) is the volume of the sheath region and 
dV(r,) is the volume of the shell at r, uncovered by the 
moving sheath edge over the interval at. The first term in the 
right-hand side of (8) is the rate of change of the total ion 
charge in the sheath. This rate of change is zero if there is no 
charge accumulation in the sheath region; i.e., the ion den- 
sity in the sheath, n,, decreases at the same rate that the 
volume of the sheath region increases. The second term in 
the right-hand side of (8) is the rate at which the ions in the 
plasma are uncovered by the moving sheath edge, as shown 
in Fig. 1 (b). This is the rate at which the ions are introduced 
into the sheath region, which must be the same as the ion loss 
at target if there is no charge accumulation in the sheath. 

The parameters J, , n,, V( r, ,r, ), and V( r, ) in Eq. ( 8) 
are implicit functions of the sheath edge r,. Hence, Eq. (8) 
can be integrated for r, (t) . This could then be used to deter- 
mine the time dependence of such parameters as J, and ii,. 
J, (t) represents the rate of ions implanted into the target per 
unit time, which is an important parameter in the ion im- 
plantation process. 
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IV. PLANAR COORDINATE SYSTEM 

For simplicity, in this case one can assume that the tar- 
get is located at the origin, r, = 0; hence, r, = s. In one- 
dimensional planar geometry, ( 1) becomes 

aE en, -=-----. 
ax e. 

Integrating this from the sheath edge to some arbitrary posi- 
tion in the sheath, x, and assuming that E(s) = 0, we have 

E(x) =T (x-s). 
60 

The electric potential with respect to the plasma potential is 
then 

en, (is(x) =- sx-x-5 
60 ( 

2 2 
. 

2 2 > 
Applying the boundary condition @( 0) = - V,, we obtain 

(9) 

Thus, the equation of motion for an ion starting from rest at 
x = x0 after a charge-transfer collision in the sheath is 

d2x eE(x) -=- 
dt= M 

=$(x-s), 

where s, the sheath thickness, is assumed to vary slowly com- 
pared with the ion transit time. Integrating this using (3), 
we find 

u==g [cx2-x;) -22s(x-xo)], 

where u”, = 2eV,/M is the square of the maximum ion ve- 
locity at the target. The ion velocity at the target is then given 
by 

2 

u5, = 5(2sxo -xi,. 
s2 

Equation (5) in this case becomes 

f( u, ) = c2e - +JA’n+4 (x,)2 . 
* 

Solving ( 10) for x0 and differentiating x0 with respect to u,, 

fob 1 = c2uo 

( 1 - u; /ut, ) “2 

The parameter c2 is determined by normalization to be 

s c2 = 
Rjui (1 - e-‘s’A,) . 

The complete expression for f( u) is therefore 

fC%) = su, 
Aiu2, (1 - e-““0 (1 - u~/u~)“’ 

X=p($(l -$)“2- 11). (ii) 
Assuming s$.il,, the average ion velocity at the target 

can be found using (6) to be 

(12) 

Inserting ( 12) and (9) into (7), we get 

(13) 

The current density given by ( 13) has the same depend- 
ence on s and /zj as the equation obtained by Lieberman,’ but 
is greater by roughly a factor of 3. Lieberman uses 
,U = 2e/2,/rrMu for the mobility of the ions in the sheath; this 
mobility is valid for the case in which ions are moving in a 
constant uniform applied electric field.x The electric field in 
the sheath is not constant; hence, the expression for the aver- 
age mobility has a different coefficient. 

In planar geometry, the term n, V(r,,r, ) in Eq. (8) is 
time invariant; hence, 

J cl =en ds 
’ dt ’ 

Thus the sheath velocity is 

ds e. 47re2, “2 Vr -=- - 
( > dt en, M s5/2’ 

or 

(14) 

where so = (26, V,/en,) “= is the initial sheath thickness, 
and u0 = (eV,n-A,/Ms,) “2 is a characteristic ion velocity in 
the sheath. Integrating (14), we find 

s(t) = so( 1 f wol)2’7, (15) 
where w. = ( 7uo/2so) “2 is a characteristic frequency for 
the ions in the sheath. 

Putting (15) into (9), (12), and (7), we obtain 

n,(t) = n0 

(1 j- Wot)4" ' 

ii,(l) = UO 

( 1 + w,t) I” ’ 

J,(r) = enouO 
( 1 + o,,t)s” . 

(16) 

(18) 

One can also insert ( 15) into ( 11) to obtain the velocity 
distribution of ions as a function of time. 

V. COMPARISONS WITH SIMULATION 
We use the code PDP~~.” to simulate a one-dimensional 

planar-bounded plasma system. The particle-in-cell method, 
covered in detail by Birdsall and Langdon, ’ ’ is implemented 
in PDP~ to solve for the particle and field parameters self- 
consistently. The code also uses a Monte Carlo scheme to 
model the collisions of charged and neutral particles 
(charge-exchange and scattering ion-neutral collisions, and 
elastic, excitation, and ionization electron-neutral colli- 
sions) with laboratory cross sections used to determine 
Y(E) . In order to compare the analytic results [ Eqs. ( 11)) 
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( 17), and ( 18) ] with the simulation, we need only consider 
ion-neutral charge-exchange collisions. 

At time t = 0, a pulse with a fall time of 1 ,us and magni- 
tude 500 V is applied to the left electrode, and the potential at 
the electrode is kept at this constant value thereafter. Initial- 
ly, the space between the two electrodes is filled with a uni- 
form plasma. The neutral gas used for these runs is argon, 
and the other common parameters are as follows: 
length = 30 cm, area = 100 cm*, n, = lo7 cme3, 
V, = - 500 V, fall time = 1 ps, and T, = 1 eV. The initial 
sheath thickness for these parameters is S, = 7.43 cm. 

Note that the fall time of the voltage applied to the target 
is zero in the analytic treatment and is chosen to be 1 pus in 
the simulation. For the simulation case, the electron plasma 
frequency fp in the bulk plasma is given by 
f z 9OOOdm = 28 MHz. To avoid plasma oscillation 
excitation, l/7” ( T, = fall time) should be well below the 
plasma frequency. For T, = 1 ps, this condition is satisfied, 
and no plasma oscillation is observed in the simulation. 
However, the fall time should also be less than the character- 
istic ion transit time in the sheath, T = w; ‘, to get a reasona- 
ble comparison with the theory. The characteristic ion tran- 
sit time in the sheath is calculated, for the analytic case, to be 
roughly 1.5 pus at 20 mTorr and larger at higher pressures. 
Although the ion transit time in the sheath seems to be on the 
order of the fall time, the applied voltage in the simulation is 
falling over this entire time interval. Hence, the average vol- 
tage applied to the target is lower than the final voltage, and 
the average sheath motion is slower. This suggests that the 
effect of shortening the fall time will not significantly change 
the dynamics. To test this, we ran the simulation with 
Tf = 0.5 ps, and no significant change was observed. 

The comparisons are made at the neutral pressures of 
20,30,50, and 100 mTorr. For these pressures, the ratios of 
the initial sheath thickness to the ion-neutral mean free path, 
so//z,, are, respectively, 18, 27,45, and 90. 

Figure 3 shows the ion and electron number densities at 
time t = 1 ,us, when the pulse is fully applied, and a later time 

0 
0 x (cm) 30 

1.5x10' 

FIG. 3. A simulation output showing the ion and electron densities in the 
planar geometry. At t = 1 ps, the potential at the left electrode is V,,, the 
sheath edge has moved to its initial position, and the ion density in the 
sheath appears to be roughly the same as that in the plasma. At I = 7 ,US, the 
sheath edge has moved farther away from the electrode, and the ion density 
in the sheath has a nearly uniform profile. 

p=20mTorr 
- Simulation 
--- Theory 

p=5OmTorr 
- Simulation 
--- Theory 

0 I4 (mlsec) 5000 

1 
FIG. 4. Ion velocity distribution at the planar target. Note that the maxi- 
mum ion velocity at the target, u,,, = (2e V,JM) 1’2, is roughly 50 Ooo m/s 
for this applied voltage. 

t = 7 ,US for the neutral pressure of p = 50 mTorr. These 
density profiles tend to justify our assumption of uniform ion 
density in the sheath. 

As previously described, one can put ( 15) into ( 11) to 
get the instantaneous velocity distribution of ions. Doing so, 
we compare the result with the simulation at the following 
pressures: p = 20, 50, and 100 mTorr, as seen in Fig. 4. The 
analytic expression for the instantaneous distribution func- 
tion at 20, 50, and 100 mTorr is evaluated, respectively, at 
the following times: t = 80,69, and 64 ps. 

Figure 5 displays a comparison of Eq. ( 17)) average ion 
velocity at the target as a function of time, with a simulation 
for the neutral pressures of 20 and 30 mTorr. 

Equation ( 18 ), the ion flux at the target as a function of 
time, is compared in Fig. 6 with simulation for the neutral 
pressures of 50 and 100 mTorr. Although the ion flux com- 
pares well with the simulation, the analytic average ion ve- 
locity appears to be somewhat smaller than the one obtained 
by simulation. The discrepancy may come from the constant 
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FIG. 5. A linear plot of the time response of average ion velocity at the 
target in the planar geometry. 
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FIG. 6. The time response of ion current density at the planar target (linear 
plot). 

profile assumed for the ion density in the sheath. The ion 
density seen in the simulation is not quite uniform, being 
slightly lower at the target. 

VI. SPHERICAL COORDINATE SYSTEM 
In this geometry, we assume the target to be a sphere of 

radius r,; hence, ( 1) becomes 

-- ; ; (IZE,) =2. 
r 

One can integrate this from the sheath edge r, to some r in 
the sheath to obtain 

E,(r) =$ r-s , 
0 ( > 

provided E, (r, ) = 0. The electric potential with respect to 
the plasma potential is then 

f+(r) = -~($+S-+F$). 

Applying the bouidary conrdition d( r, ) = - V,, we get 

(19) 

where 

R”=d +2<-3+,. 

At time t = 0, the density in the sheath is assumed to be 
the same as in the bulk plasma. Hence, the initial position of 
the sheath edge can be found from ( 19) to be 

r%, z (3r, VoqJen,) “’ + r,/2. 

This expression is the same as that derived by ConradI plus 
a correction term r,/2 for the case in which r, is comparable 
to r,. 

We will carry on the analysis assuming r, $ r,, where the 
electric field can be approximated by 

E,(r)= -5 2 
0 3E,, ? ’ 

and R 3 reduces to 

R ‘~26. 

Equation (2) in this case becomes 

‘i= - 

Integrating this, using (3)) we get 

(20) 

where U: = (2eV,/M) (2</R 3, is the square of the maxi- 
mum ion velocity at the target modified by a scaling factor 
due to the geometry. The ion velocity at the target is then 

(21) 

Equation (5) in this coordinate system becomes 

f(u,) =c,exp( --?)42. 
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Solving for r, in (21) and differentiating it with respect to 
I( 0, 

f(u, 1 = c3 
%/Ufn 

[ 1 - (UJU, )*I4 

X exp - 25 
( 

(h/U, I2 
Ai l-(U,/U,)* ) ’ 

The constant c, is determined by normalization to be 

22 c3 = 
umC&rz -I-Ufr, +w;1 * 

For r, %Ai, 

2r 
c3- 

-2. 
hJ, 

Putting this value into the expression for f( u), 

f(u,, =A- u,/ul?l 
%,A [ 1 - (UJU, )*I4 

X exp 
( 

- 2 (UJU, 1’ 
Ai l- (U,/U,)2 ) ’ 

(22) 

The average ion velocity at the target, given by (6)) is 
then 

Inserting Eqs. (23) and ( 19) into Eq. (7), 

(23) 

(24) 

Using Eq. (8) to determine the motion of sheath edge in 
this geometry and noting that the term n, V( r,,r, ) is time 
invariant for r, 9 r,, we have 

4v?J = 4n-?en 3 
0 0 s 0 tit ’ 

which, assuming r, g r, and using (20)) can also be written 
as 

(25) 

where 4, = (3 VOyo/en,) is the initial position of the 
sheath edge, and u. = ( eVgAi/2Mr, ) “* is a characteristic 
ion velocity in the sheath. Equation (25) can be integrated to 
find r,s as a function of time to be 

r, = r.%, ( 1 + u,t) “6, (26) 
where o. = 6u,2/<) is a characteristic ion frequency in the 
sheath. 

One can put Eq. (26) into Eqs. (19), (23), and (7) to 
obtain 

n,(t) = n0 

( 1 + w,t) I’* ’ 
(27) 

%(t) = uo, (28) 

Jo(t) = enOuO 
( 1 + o,t) I’* * (29) 

used to approximate the sheath dynamics. One can also ob- 
tain the velocity distribution of ions as a function of time by 
inserting (26) into (22). 

VII. COMPARISONS WITH SIMULATION 

The code PDS~‘~ is used in this case to simulate a one- 
dimensional spherically bounded plasma system. This code 
is the same as PDP~ with the basic difference that the field 
parameters and equations of motion are solved in the spheri- 
cal coordinates. This code also uses a Monte Carlo scheme to 
model the collisions of charged and neutral particles, and 
again we need only consider ion-neutral collisions to com- 
pare the analytic results with the simulation. In this case we 
will compare Eq. ( 11) with the simulation running with ar- 
gon as the background neutral gas and the following param- 
eters: r, = 1 cm, p = 50 mTorr, n, = 10’ cm - 3, V. 
= - 10 000 V, fall time = 1 ps, and T, = 1 eV. 

For these parameters, the ion-neutral mean free path, 
initial position of the sheath edge, average ion velocity, and 
the characteristic ion frequency and period in the sheath are 
calculated to be, respectively, Ai = 0.164 cm, rs,, = 1 I .8 cm, 
u. = 7.86~ lo4 m/s, w, = 2.87X lo4 Hz, and T = woe ’ 
=3.5x10-5s. 

Figure 7 shows a reasonable agreement between theory 
and simulation for the distribution function. The analytic 
expression for the distribution is evaluated at t = 70,~~s. Note 
that at this pressure, the ratio of the initial sheath thickness 
to the ion-neutral mean free path, so/Ai, is roughly 66. 

Equation (28), the average ion velocity at the target as a 
function of time, is compared in Fig. 8 with the simulation. 
The simulation also suggests that the average ion bombard- 
ment energy at the spherical target, with rs ) r,, is time in- 
variant in contrast to the time-variant result obtained for the 
planar target [ Eq. ( 17)) Fig. 51. 

The ion charge accumulation in the target as a function 
of time, Q, (t), is obtained by integrating Eq. (29) : 

Q,(t) = or JAM. s 
This analytic result was calculated, compared with the simu- 
lation, and shown to be smaller by roughly a factor of 2. The 
disagreement may be a result of the assumption of a constant 
profile for the ion charge density in the sheath. The observed 

- Simulation 

FIG. 7. Ion velocity distribution at the target in the spherical coordinate 
system. Even when r, is comparable to r,, Eqs. (26)-(29) may be 
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p = SO mTorr 
- Simulation 
- Theory 

0 t (=4 9.4 xl a P 
FIG. 8. A linear plot of average ion velocity at the spherical target as a 
function of time. 

ion charge density from the simulation is not quite uniform, 
being slightly higher at the target, unlike what was seen for 
the planar target. 

VIII. SUMMARY 
A one-dimensional collisional model has been devel- 

oped to study plasma-immersion ion implantation in the 
high-pressure regime. The model describes the sheath ex- 
pansion as a function of time, ion velocity distribution at the 
target, and the ion flux at the target as a function of time. The 
problem is solved in both planar and spherical coordinate 

systems, and the analytic results compare well with those 
obtained by simulation. 
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