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A one-dimensional quantum version of the frustrated XY (planar rotor) model is considered which 
can be physically realized as a ladder of Josephson junctions at half a flux quantum per plaquette. 
This system undergoes a superconductor to insulator transition at zero temperature as a function of 
charging energy. The critical behavior is studied using a Monte Carlo transfer matrix applied to the 
path-integral representation of the model and a finite-size-scaling analysis of data on small system 
sizes. Depending on the ratio between the interchain and intrachain couplings the system can have 
single or double transitions which is consistent with the prediction that its critical behavior should 
be described by the two-dimensional classical XI’-Ising model. 

The two-dimensional frustrated classical XY model has 
attracted considerable attention recently.‘-* It can be related 
to Josephson-junction arrays in a magnetic field, where it is 
expected to describe the finite-temperature superconductor to 
normal transition in arrays with half a flux quantum per 
plaquette.’ At low temperatures where capacitive effects 
dominate, the array undergoes a superconductor to insulator 
transition as a function of charging energy.i”-13 These charg- 
ing effects arise from the small capacitance of the grains 
making up the array and leads to strong quantum fluctuations 
of the phase of the superconducting order parameter. The 
critical behavior is now described by a two-dimensional frus- 
trated quantum XY model with a Hamiltonian12 

2- 2 E,,, cos(8,- Or,) . (1) 
(4 

The first term in Eq. (1) describes quantum fluctuations in- 
duced by the charging energy E,=4e2/C of a non-neutral 
superconducting grain located at site r, where e is the elec- 
tronic charge and C is the effective capacitance of the grain. 
The second term is the usual Josephson-junction coupling 
between nearest-neighbor grains. or represents the phase of 
the superconducting order parameter and the couplings E,,I 
satisfy the Villain’s “odd rule” in which the number of nega- 
tive bonds in an elementary cell is odd.i4 In a square lattice 
this can be satisfied, for example, by ferromagnetic horizon- 
tal rows and alternating ferromagnetic and antiferromagnetic 
columns of bonds. This rule is a direct consequence of the 
constraint that, for the half-flux case, the line integral of the 
vector potential due to the applied magnetic field should be 
equal to rr in units of the flux quantum. 

In this work we consider a one-dimensional frustrated 
quantum XY (1D FQXY) model” which can be regarded as 
the simplest 1D version of the model (1) consisting just of a 
single column of frustrated plaquettes as indicated in Fig. 1. 
This can be physically realized as a periodic Josephson- 
junction ladder at half a flux quantum per plaquette.‘67’7 In 

the classical limit (E,= 0), the ground state of the 1D FQXY 
model has a discrete 2, symmetry associated with an antifer- 
romagnetic pattern of plaquette chiralities ,Y, = ? 1, as indi- 
cated in Fig. 1, measuring the two opposite directions of the 
supercurrent circulating in each plaquette. For small E,, 
there is a gap for creation of kinks in the antiferromagnetic 
pattern of x,, and the ground state has long-range chiral 
order. 

Within a path-integral approach,16 it can be shown that 
the effective action describing quantum fluctuations in the 
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FIG. 1. Schematic representation of the one-dimensional frustrated quantum 
XY model with inter- (E,) and intrachain (?E,) coupling constants. The 
antiferromagnetic ordering of chiralities ,y,,= + 1 is also indicated. 
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1D FQXY model leads to two coupled XY models in two 
(space-time) dimensions which is expected to have a critical 
behavior in the universality class of the 2D XY-Ising model’* 
defined by the classical Hamiltonian 

,f3H=-2 [A(l+ crffrt COS(~,- err)+c~,+)] . 
(4 

(2) 

The phase diagram of this model consists of three branches, 
in the ferromagnetic region. One of them corresponds to 
single transitions with simultaneous loss of XY and Ising 
order. Further away from the branch point, this line of single 
transitions becomes first order. The other two lines corre- 
spond to separate XY and Ising transitions. The 1D FQXY 
model is represented by a particular path through this phase 
diagram which will depend on the ratio EJE, between the 
interchain and intrachain couplings of the model. In this 
work we describe the results of a finite-size scaling analysis 
of extensive calculations on the 1D FQXY mode1’5P’9 which 
shows that, in fact, the XY and Ising-like excitations of the 
quantum model decouple for large interchain couplings, giv- 
ing rise to pure Ising model critical behavior for the chirality 
order parameter. As a consequence, the universality class of 
the superconductor-insulator transition in the related 
Josephson-junction ladder should then depend on the ratio 
between interchain and intrachain Josephson couplings. 

To study the critical behavior of the 1D FQXY model, 
we find it convenient to use an imaginary-time path-integral 
formulation of the model.20 In this formulation, the one- 
dimensional quantum problem maps into a 2D classical sta- 
tistical mechanics problem where the ground state energy of 
the quantum model of finite size L corresponds to the re- 
duced free energy per unit length of the classical model de- 
fined on an infinite strip of width L along the imaginary time 
direction, where the time axis r is discretized in slices Ar. 
After scaling the time slices appropriately in order to get a 
space-time isotropic model one obtains a classical partition 
function where the parameter CX=(E,,/E,)"~ plays the role of 
an inverse temperature in the 2D classical model. The scaling 
behavior of the energy gap for kink excitations (chiral do- 
main walls) of the 1D FQXY corresponds to the interface 
free energy of an infinite strip in this classical model. For 
large a (small charging energy E,), there is a gap for cre- 
ation of kinks in the antiferromagnetic pattern of X, and the 
ground state has long-range chiral order. At some critical 
value of a, chiral order is destroyed by kink excitations, with 
an energy gap vanishing as I@ - “Cl ‘, which defines the cor- 
relation length exponent V. Right at this critical point, the 
correlation function decays as a power law (XPXPt) 
= Ip -p’/ - rl with a critical exponent 7. The free energy per 
unit length f(m) of the Hamiltonian on the infinite strip can 
be obtained from the largest eigenvalue X0 of the transfer 
matrix between different time slices as f= - In X0. To obtain 
&,, we used a Monte Carlo transfer-matrix method21 which 
has been shown to lead to accurate estimates of the largest 
eigenvalue even for models with continuous symmetry. The 
implementation of this method is similar to the case of the 
2D frustrated classical XY model* and further details can be 
found in that work. 
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FIG. 2. S= dAF(a,L)lda evaluated near the critical coupling cr, . The 
slope of the straight line gives an estimate of l/v. 

The interfacial free energy for domain walls can be ob- 
tained from the differences between the free energies for the 
infinite strip with and without a wall. To obtain the critical 
exponents and critical coupling we employ the finite-size 
scaling AF( a,L) =A(L"'Sa) where A is a scaling function 
and &Y= LY- cr, . In a linear approximation for the argument 
of A, we have 

AF(~,L)=u+~L~/~~ (3) 
which can be used to determine the critical coupling LY, and 
the exponent Y independentlyal The change from an increas- 
ing trend with L to a decreasing trend provides and estimate 
of LY,. Once the critical coupling is known, the correlation 
function exponent 77 can be obtained from the universal am- 
plitude a in Eq. (3) through a result from conformal 
invariance,22 - a - rrq. To estimate the correlation length ex- 
ponent v we first obtain the derivative S= dAFlda near a,, 
then it can easily be seen that a log-log plot of S vs L gives 
an estimate of l/v without requiring a precise determination 
of a,. In Fig. 2 we show this kind of plot for E,lE,=3 from 
where we get the estimate v=1.05(6). Of course, this is only 
valid in the linear approximation of Eq. (3). To ensure that 
higher-order terms can safely be neglected, the data for 
AF( a,L) must be obtained in a sufficiently small range near 
cy, . We also checked, using a more general finite-size scaling 
analysis,* that allowing for higher-order terms gives results 
agreeing within the errors. The results for the critical cou- 
pling LY, and critical exponents v and 77 for two different 
values of the ratio E,IE,=l and 3 are indicated in Table I. 

For equal couplings E,= E, , the results for the critical 
exponents VJ and v differ significantly from pure 2D Ising 

TABLE I. Critical couplings [a, = (EJE,)“~] and critical exponents ( v,$, 
obtained from finite-size scaling analysis of interfacial free energies for two 
values of the ratio between interchain and intrachain couplings (EJE,). 

WE, ffc Y 1) 

1 1.04(l) 0.81(4) 0.47(4) 
3 1.16(2) 1.05(6) 0.27(3) 

J. Appl. Phys., Vol. 75, No. 10, 15 May 1994 Enzo Granato 6961 

Downloaded 06 Jul 2004 to 150.163.34.25. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



6 

8 

W4 

1 

7  

FIG. 3. Behavior of the interfacial free energy AF=L’Af for a system of 
size L=12 resulting from an imposed phase twist of ?r. Vertical arrows 
indicate the locations of the Ising and XY transitions and the horizontal 
arrow the value AF=a from where the XY transition is located. 

exponents (v=l, ~=0.25). This result points to a single tran- 
sition scenario. In fact, they are consistent with a point along 
the line of single transitions in the XY-Ising model.18 It is 
interesting to note that this result is also consistent with simi- 
lar calculations for the 2D frustrated classical XY model.’ In 
general, the critical behavior of a d dimensional quantum 
model is in the same universality class of the d + 1 dimen- 
sional classical version. However, the 1D FQXY model, ap- 
parently, is not the Hamiltonian limit of the 2D classical 
model. Yet, their critical behavior appears to be in the same 
universality class. 

For the case of unequal couplings E,/E,=3, the results 
indicated in Table I are in good agreement with pure 2D 
Ising values. From the relation between the 1D FQXY model 
and the 2D XY-Ising model this then implies that the XY and 
Ising-like excitations have decouple in this region of param- 
eters. To show that in fact one has two decoupled and, at the 
same time, separated transitions we show in Fig. 3 the results 
for the helicity modulus which measures the response of the 
system to an imposed twist. The helicity modulus is related 
to the free-energy differences AF between strips with and 
without any additional phase mismatch of 7~ along the strip 
and is given by y= 2AF/r2 for large system sizes. If the 
model is decoupled then the transition should be in the uni- 
versality class of the 2D classical XY model, where one 
knows that the transition is associated with a universal jump 
of 217~ in the helicity modulus.23 The critical coupling can be 
estimated as the value of cr at which AF = v which gives 

cu,=1.29. This is to be compared with the critical coupling 
for the destruction of chiral order in Table I, ~,=1.16. This 
clearly indicates the transitions are well separated and thus 
one expects they are decoupled. We  have also performed less 
detailed calculations at other values of the ratio EJE, from 
which we can estimate that the Ising and XY transitions 
merge into a single transition roughly at E,lE,-2. Since, the 
superconductor to insulator transition is to be identified with 
the loss of phase coherence” we reach the interesting result 
that in the 1D FQXY, or alternatively, a Josephson-junction 
ladder, the universality class of the superconductor-insulator 
transition depends on the ratio between inter- and intrachain 
couplings. 
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