 SpaceOps 2004 - Conference

Dynamic Object Architecture Applied to Satellite Control Systems

P.E. Cardoso, L.S. Cardoso, M.G.V. Ferreira

National Institute for Space Research (INPE), São José dos Campos, Brazil.

ABSTRACT

This paper presents INPE´s Satellite Control Systems, the evolution of their modeling architecture, and a proposal for a future “100%” reusable system based on the Dynamic Object Architecture. The Ground System Development Division (DSS) at INPE has been developing software with an architecture that may be used by other satellites. The present challenge is to build an Adaptive Satellite Control System, using the newest technology of Dynamic Object Architecture, so as to comply with future requirements without having to change the code. According to this technology, object structures and their behavior are mapped onto a database so end-users can modify them at runtime, using configuration tools and, possibly, a domain specific language. Initially, this technology will be applied in the Telemetry Processing Subsystem as a case study. Up to now a Binary Transfer Function prototype has been implemented to gain knowledge in the technology.

Keywords: Satellite Control System, Dynamic Object Model, Adaptive Systems, Metadata, Design Patterns
1 INTRODUCTION

At the moment INPE is operating three satellites: SCD1, SCD2 and CBERS-2. The Data Collecting Satellites (SCD1 and SCD2) are part of the Brazilian Complete Space Mission (MECB) and have as their objective to receive data transmitted by data collecting stations, spread over the Brazilian territory, processing the data and making it available to the community. The SCD1 satellite has been in operation since 1993 and the SCD2 since 1998. The CBERS-2 satellite is the second remote sensing satellite developed with China inside the China Brazil Earth Resource Satellites program. The first CBERS satellite was launched in 1999 and was controlled by INPE and China up to the end of its life (2003). Nowadays, the following space programs are in course: the scientific program of micro-satellites, which foresees the launching of the following satellites: FBM (French-Brazilian Micro-Satellite), EQUARS (Equatorial Atmosphere Research Satellite) and MIRAX (X-Ray Astronomy Satellite); and the program of a multi-mission platform that will be utilized in the project of the SSR-1 and SSR-2 Remote Sensing satellites. Moreover, the agreement with China is being renewed for the development of two more remote sensing satellites (CBERS-3 and CBERS-4).

The development of the Satellite Control Systems for these satellites is under the responsibility of the Ground System Development Division (DSS) at INPE. Since the beginning of its activities DSS has always aimed to develop systems whose architecture permitted the maximum of reuse for operating other satellites. DSS has already developed three Satellite Control Systems and in each system new processes were used in order to achieve reusability goals.[1]

It has been noticed that in each new mission, the team gains more experience to define a more flexible Control System that can be reused by other missions with a reduced number of modifications. The challenge is to look for a solution that allows the addition of new requirements to the system without modifying the code, or at least reducing this modification to a minimum.

This paper presents the evolution of the INPE Satellite Control System as well as a proposal for developing a Satellite Control System with high reusability by using the Dynamic Object Model architecture technology. A binary transfer function prototype that was implemented with the proposed architecture will be also presented.

2 SATELLITE CONTROL SYSTEM EVOLUTION

The first system developed by DSS was the Satellite Control System (SICS) that complied to the MECB satellite requirements [2]. Thanks to its conception based on configuration files, this system was initially utilized in the control of the first Brazilian satellite (SCD1) and was reused, with a minimum of adaptation, to comply with the SCD2 satellite requirements.

Although the architecture of this system fulfilled all the requirements of the MECB satellite family, it did not prove flexible enough to fulfill the control requirements of the CBERS satellites. To comply with the new requirements it was necessary to develop a new Satellite Control System (TMTC) [3][4].

The TMTC was developed according to an object oriented architecture to comply not only to the CBERS requirements but also to control the MECB satellites, thereby reducing the operating cost of the INPE Tracking and Control Center (CRC). While the TMTC utilizes microcomputers, the previous system, SICS, utilized VAX/Alpha machines of high maintenance cost.

From SICS, TMTC inherited the configuration feature, with the difference that the storage technology migrated from files to a relational database. The novelty was the utilization of object based modeling as opposed to the SICS procedure based one. TMTC was designed as a class framework that allowed an easy adaptation to comply with both the CBERS and MECB satellite requirements. The framework classes contain the common functions of the two families of satellites and at the same time the framework permits the compliance with specific functions of a satellite by means of the specialization of some of its classes.

Despite this system’s success in controlling the CBERS, SCD1 and SCD2 satellites, the necessity to create specialized classes to comply with new requirements proved to be awkward and the desired flexibility proved to be limited when it came to modeling a new ground satellite communication protocol for the scientific micro satellite program.

Counting with the accumulated experience with the two previous systems (configuration files and framework), enforcing the utilization of Design Patterns and looking for generating a system with a bigger degree of reusability, the third generation Satellite Control System is being developed by the DSS to comply with the scientific micro-satellites program requirements.

3 ARCHITECTURE FOR A HIGHLY REUSABLE SYSTEM

Although each new space mission establishes new requirements, most of the requirements remain the same. So it is very important to identify which parts are more likely to change in order to make the systems easier to adapt to other space missions in compliance with their new requirements. And it would be better if the mission operation engineers themselves could change the system according to new requirements without writing new code. This may be done by moving certain aspects of the system into a database - business rules, for example. Systems can be quickly adapted to changing business needs by simply changing values in the database rather than the code. In this way, it is possible to introduce news products without reprogramming and even to make changes to their business models at runtime. With this new approach, it is possible to reduce the cost and development time of products.

One solution for implementing a system with these characteristics is to utilize “reflective architectures” or “meta-architectures” technologies. Systems built with this kind of architecture are also called of Dynamic Object Models (DOM) or Adaptive Object Models. DOMs usually emerge from mature domain-specific frameworks. As the framework evolves, the developers gain a better understanding of the domain and can recognize the parts that are likely to change.

3.1 DYNAMIC OBJECT MODEL OVERVIEW

A Dynamic Object Model is a system that represents classes, attributes, and relationships as metadata. Users change the metadata to reflect changes in the problem domain. These changes modify the system’s behavior. In other words, the object model is stored in a database and interpreted at runtime. [5] In this way, future changes in the behavior do not demand code changes.

DOM architecture is based on the following design patterns: TypeObject [6], Property and Strategy [7].

The Type-Object pattern makes the class-instance classification relationship explicit. Instances of the type class replace subclasses of the original class. Users have full control over this relationship. They can even modify it at runtime. This pattern divides the system into Entities and EntityTypes. Entities have Attributes, each of which has an AttributeType. Each EntityType specifies the AttributeTypes of its Entities. The EntityType also holds a set of Strategies as Properties. [8]

The Property pattern uses an instance variable that holds a collection of attributes, instead of having an instance variable for each attribute. Each attribute is associated with a unique key. Users use these keys to access, add, modify or remove attributes at runtime [8].

The Strategy pattern makes it possible to represent the behavior through objects that represent primary rules or combination of rules such as repetition, conditional, sequential and forking. It defines a standard interface for a family of algorithms. The clients can work with any algorithm of a given family. If an object´s behavior is defined by one or more strategies, then that behavior is easily changed by a user-level mechanism. [5]

The core of a DOM architecture is a combination of the 3 patterns described above. They allow the user to control the state, the behavior and the classification relationship. The resultant architecture is created by applying the Type-Object pattern twice with the Property pattern. The system is divided into Entities and EntityTypes. Entities have attributes that can be defined using the Property pattern. Each state (attribute) of an entity is associated to an object that defines the type of the state. The type of the state, in turn, is contained in a valid type set associated to the object that defines the type of the Entity. Finally, the Strategy pattern or RuleObjects [9] for representing the behavior of each type of Entity [5] is added. Figure 3.1 shows the relationship between the classes that compose the pattern which is called Type Square With Rules.

[image: image1.wmf]+Operation()

-specific_attributes

Entity

+Type_Operations()

EntityType

+Evaluate()

Rule

-value : String

Property

-name : String

-type : String

PropertyType

+Evaluate()

PrimaryRule

+Evaluate()

CompositeRule

0..*

-type

1

1

-properties

0..*

0..*

-type

1

1

-properties

0..*

-rule

1

1

1

0..*

Figure 3.4 Type Square With Rules

The TypeObject, Property and Strategy patterns are the building blocks of the architecture. DOM’s represent the remainder of the object model as configuration data, or metadata. Therefore, modifications of the metadata change the object model and consequently the system’s behavior.

The metadata may be recovered from the database where they are stored to build the DOM that represents the real business model. If an object-oriented database is used, the types of objects and relationships can be built up by simple instantiating the TypeObjects, Properties and RuleObjects. Otherwise, the metadata is read from the database for building these objects, using the Interpreter and Builder Patterns. [8] [10]

Special tools and visual languages can be built to support end-users because the complexity of the system is transferred to the configuration data and the configuration decisions are delegated to the users. Users become specialized programmers in the specific language defined by the metadata.

Two factors contribute to extend the flexibility of DOM architectures. First, only the generic part is hardwired (Type Square With Rules). Second, the variable part is transferred to Metadata so that the users can modify it to adapt the object model to their needs.

4 ADAPTIVE SATELLITE CONTROL SYSTEM PROPOSAL

We have been studying the utilization of the DOM techniques in the satellites control systems, hoping that this technique can contribute to developing a more reusable Satellite Control System that can be reconfigured as much as possible by the satellite operation engineers. In this way, there would be a big reduction in the development cost and time for complying to the requirements of each new space mission. Initially, as a case study, DOM will be applied to the Telemetry Processing Subsystem. DOM will be applied only in the parts identified as more likely to be modified taking into account the DSS team’s experience acquired in the development of the previous satellite control systems. In the metadata design, relational and object-oriented databases will be utilized to evaluate the degree of difficulty for implementing the “Type Square and Rules” pattern and the performance characteristics of the two solutions. The performance difference between DOM and object-oriented models will be also evaluated.

A Binary Transfer Function prototype has been implemented using the Type Square With Rules structure and the corresponding metadata model to gain knowledge in this technology.

4.1 BINARY TRANSFER FUNCTION PROTOTYPE

A prototype was built to create binary transfer functions by using fundamental bit operations. This prototype was coded in the Java language and the binary transfer function data model was stored in a Microsoft Access database.

Figure 4.1 shows the tables that were created to store the prototype metadata. TblBinTF table is used to define the binary transfer functions (Entities) and is associated with the TblBinTfType table that defines the types of binary transfer functions (EntityType), and with the TblBinTFProp table that defines the properties values of each binary transfer function. These last two tables are associated with the TblBinTFTypeProp table that defines the types of properties. The TblBinTFTypeProc table defines the bit operation sequences of each type of binary transfer function. The TblBitFunc table was not used in the prototype. In the future it will be used to define the return and argument types of the bit operations.

[image: image2.wmf]
Figure 4.1 - Metadata

Figure 4.2 presents the prototype class diagram. The binary transfer functions are represented by the BinTF class (Entity). The BinTFType class represents the types of binary transfer functions of (EntityTypes). The Properties and the properties types are represented by the BinTFProperties and BinTFPropType classes, respectively. In the prototype three operations were defined: bit left shift (ShiftL), bit set (SetBit) and bit inversion (InvBit). These three classes were derived from the Function base class. The TFMainAplic class is responsible for: (i) creating the binary transfer fuctions types and binary transfer functions objects by recovering them from the database; and (ii) executing the transfer functions.
[image: image3.wmf]TFMainAplic

-

m_conexao: Connection = null

-

m_tfTypes: Hashtable

-

m_tf: Vector

+

TFMainAplic()

+

main(String[]) : void

+

CreateTFType() : void

+

GetBinTFType(String) : BinTFType

+

CreateTF() : void

ShiftL

-

m_nbits: String

+

ShiftL(String)

+

Evaluate(BinTF, int) : int

SetBit

-

m_nbits: String

-

m_bitinic: String

+

SetBit(String, String)

+

Evaluate(BinTF, int) : int

InvBit

-

m_nbits: String

-

m_bitinic: String

+

InvBit(String, String)

+

Evaluate(BinTF, int) : int

Function

+

Evaluate(BinTF, int) : int

BinTFType

-

m_typeId: String

-

m_nBytes: int

m_tfTypeProp: Hashtable

m_tfTypeProc: Vector

+

BinTFType(String, int, Connection)

+

GetTypeId() : String

+

GetNroBytes() : int

+

GetPropType(String) : String

+

ExecuteTF(BinTF, int) : int

+

IsValidProperty(String, Class, Object) : boolean

BinTFPropType

-

m_propType: String

-

m_propId: String

-

m_class: Class

+

BinTFPropType(String, String)

+

GetPropertyId() : String

+

GetPropType() : String

+

IsSuperTypeOf(String) : boolean

+

IsValidValue(Object) : boolean

BinTFProperties

-

m_strPropVal: String

-

m_propVal: Object

+

BinTFProperties(String, String)

+

GetValue() : Object

BinTF

m_type: BinTFType

m_properties: Hashtable

-

m_tf: String

+

BinTF(String, BinTFType, Connection)

+

SetBinTFType(BinTFType) : void

+

GetProperty(String) : Object

~

ExecuteTF(int) : int

*

+m_tfTypeProp

*

*

+m_properties

1

*

+m_tf

1

*

+m_tfTypes

1

*

*

+m_tfTypeProc

*

1

+m_type

Figure 4.2 – Prototype Class Diagram

An example of the metadata values used in the prototype tests is shown in figure 4.3. In the example, the function tf1 corresponds to the following operations sequence:

i) 2 bits left shift (number of bits is defined by the “nbits” property)

ii) bits 3 and 4 setting (bit range is defined by the “bitinic” and “nbits1” properties)
iii) bits 10 to 13 inversion (bit range is defined by the “bitinic1” and “nbits2” properties)
In this way, it is enough to modify only the database in order to include a new procedure of bit manipulation. It is not necessary to modify the code provided that the new procedure can be defined using the existent bit operation functions.
[image: image4.wmf]
Figure 4.3 – Test Metadata Values

5 CONCLUSION

The DSS team at INPE always aimed to build a very reusable system in order to reduce the development cost and time. But despite the increases in reusability it has always been necessary to change the code to comply with the requirements of new missions. In order to achieve a higher degree of reusability, DSS is studying the use of the DOM architecture as a proposal for the next evolution step. This proposal is supported by the existence of a mature framework and a team with several years of experience in the application domain.

On the one hand, DOM systems can more easily be adapted to domain changes. They have fewer classes, making them easier to maintain by system designers. Moreover, DOM systems do not require recompiling the code when there are changes to be made. Thus, power users themselves may change business rules without depending on the system designers. On the other hand, their development is expensive and the systems can be hard to understand, requiring skilled human resources. Such systems may have poor performance and require infrastructure for storing, building and interpreting metadata.

The case study now underway which applies DOM to the Telemetry Processing Subsystem aims to verify these advantages and disadvantages to decide if this technology is worthwhile.

6 BIBLIOGRAPHIC REFERENCES

[1] L.S.C. Gonçalves et al,. Satellite Control Center: solution for an Adaptable System, IV International Symposium of Small Satellites Systems and Services – SSSS, Antibes, France, (1998)

[2] W. Yamaguti et al, Satellite Control System Nucleus for the Brazilian Complete Space Mission, In Proceeding of the International Symposium on Ground Data Systems for Spacecraft Control, Darmstadt, June 26-29, (1990)

[3] P.E. Cardoso et al, Brazilian experiences in Upgrading a Satellite Control System, IV International Symposium on Space Mission Operations and Ground Data Systems, Munich, Germany, (1996)

[4] P.E. Cardoso et al,. Lessons Learned in Adopting PCs at the Brazilian Satellite Control Center, V International Symposium on Space Mission Operations and Ground Data Systems, SPACEOPS98, Tokyo, Japan, (1998)

[5] J. W. Yoder, et al, Architecture and Design of Adaptive Object-Models, ACM Sigplan Notices, Vol. 36, pg 50-60, December (2001)

[6] R. E. Johnson, B. Woolf, The Type Object Pattern, PloP’ 96 - Pattern Languages of Programming Conference (1996)

[7] E. Gamma, et al, Design Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley (1995)

[8] D. A. Manolescu, R. E. Johnson, Dynamic Object Model and Adaptive Workflow, OOPSLA'99 Metadata and Active Object-Model Pattern Mining Workshop (1999)

[9] A. Arsanjani, Rule Object 2001: A Pattern Language for Adaptive and Scalable Business Rule Construction, PLoP'2000 - Pattern Languages of Programming Conference. (2001)

[10] R. Johnson, J. W. Yoder, The adaptive object-model architectural style, IEEE/IFIP Conference on Software Architecture 2002 (WICSA3´02). Canada, August (2002)

PAGE
Montreal, Canada – May 17 – 21 2004

1 of 9

