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1. ABSTRACT 
 
Nowadays, control systems of satellites 

with rigid and flexible components are 
increasingly being extended to advanced 
applications, such as space uninhabited 
vehicles with very demanding pointing 
accuracy. The control design methods 
presently available, including parameters and 
states estimation, robust and adaptive 
control, need more investigation to know 
their capability and limitations. In that 
context, the guaranty of the controller 
performance depends not only on its good 
design but also on the knowledge of all states 
to be fed-back in order to improve the 
overall control system efficiency. In this 
paper, a Kalman filter methodology is used 
to recover all the unmeasured states (elastic 
displacement and its rates) considering that 
only the states associated with rigid motion 
are measured (angle and angular velocity). 
To investigate the robustness of the Kalman 
filter, one considers in the measurements 
model phase a satellite model with three 
flexible modes, whereas in the time and 
measurement update phases the satellite 
model will consider just one flexible mode. 
Through the simulations, one observes that 
the fidelity of the estimation process 
enhances with the inclusion of more modes 
into the satellite model. However, one 
observes as well that even with a reduced 
model in the update phase the robustness of 
the Kalman filter is preserved once it is 
properly tuned. 
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3. INTRODUCTION 
 
The use of small satellites has been a fast, 
simple and of a low cost way of reaching 
the space [1]. However, in the order to 
conquer the space it’s necessary to launch 
spacecrafts that involves rigid/flexible 
structures. In that type of spacecrafts, the 
influence of flexibility plays an important 
role in the dynamics behavior as well as in 
the performance of the Attitude Control 
System (ACS). Other important aspect in 
the study of the dynamics and control of 
flexible space structure are: the degree of 
interaction between the rigid and flexible 
motion [2], maintenance of a ACS 
performance in face the uncertainties of the 
mathematical model [3], damping residual 
vibrations in order to keep pointing 
precision and states estimations [4]. This 
paper introduces a state estimation 
procedure using the Kalman filter 
methodology to recover the flexible 
coordinates from measurements of the rigid 
part (angle and velocity angular). Section 2 
presents a mathematical model of a simple 
spacecraft based on a two flexible Euler-
Bernoulli beam connected to a rigid hub. 
The equations of motion are derived 
considering the torque as input, and angle 
and angular velocity as outputs. Section 3 
presents the Kalman filter state estimation 
problem. Section 4 presents the simulation 



of the problem. Section 5 concludes the 
paper. 
 

4. SATELITE MATHEMATICAL MODEL  
 
The satellite mathematical model used is 

composed of a rigid platform with two 
flexible appendices (see Figure 1). The 
appendices are identical and opposite, being 
considered as beam connected to the 
platform, subject to rotational and vibrational 
motion. The equations of motion are derived 
using the Lagrange methodology, starting 
from the expression of the kinetics and 
potential energy of the system.  
 
The inertial reference system is 

represented by the axes 1n̂ , 2n̂ , 3n̂ , which 
coincides with the center of mass of the rigid 
body characterized by the axes 1b̂ , 2b̂ , 3b̂ . 
The vector r is the radius of the rigid body. 
The vector x represents the position along 
the axis 1b̂  in no deformed form. The vector 
position in the appendage relative to the 
inertial reference system is given by R . The 
vector of elastic deformation, perpendicular 
to the axis 1b̂  ,is represented by y(x,t), and  
θ
�
 is the satellite angular velocity. Therefore, 

the vector velocity of any point in the 
deformed appendage form, relative to the 
inertial reference system is given by: 
 

[ ] 21 b̂y)xr(b̂yR
����

++θ+θ−=             (1) 
 
5.  EQUATIONS OF MOTION 
 
The total kinetics energy of the system is 

given by 
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where hJ  is the rotary inertial of the hub, ρ 
is the mass density of the appendages, L is 
the length of the appendage and y(x,t) 
represents the elastic displacement. The 
potential energy is given by: 
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where E is the modulus of elasticity and I the 
moment of inertia of the beam. The 
discretization of the system is done using 
assumed mode method [4]. Therefore, the 
elastic displacement  y(x,t)  is given by 
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Figure 1: Satellite Mathematical Model 
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where qj(t) are the generalized coordinates 
and )x(jφ  are the admissible functions. The 
equations of motion for the rigid )t(θ  and the 
elastic q(t) motion, are found  using the 
Lagrange formulation: 
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where Fi is the generalized force, and xi is 
the ith element of the vector (x). After 
derivation the equations of motion in matrix 
form is given by  
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where M represents the mass matrix, K is the 
stiffness matrix and D in known as control 
influence matrix. Transforming Equation (6) 
in space state modal form, one has:  
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Here M~ , C~ , K~  and D~ represents mass, 
damping, stiffness and control influence 
matrices in modal form, respectively. 
 
6.  KALMAN FILTER METHODOLOGY 
 
The complete dynamical model is 

represented by: 
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1 ],[ ηη=η � �is�the�modal�coordinates,�ω�
is�white�gaussian�noise,�G�is�matrix�unitary�
and�A�is�the�system�matrix�that�relates�the�
state�linearly�by�
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The�measured�model�is�given�by:�
�

ν+η= 1CY � � � � ����������(9)�
�
the�output�is�the�angle�θ�and�angular�
velocity�θ� ,�with�standard�deviation�of��0.05°�
and��0.005°/s,�respectively.�The�matrix�is�
C=BT�.�The�term�ν�represents�a�white�noise�
vector�with�the�following�statical�charac-
teristic� )05.0,0(N °=ν θ , )s/005.0,0(N °=ν θ� ���

In�the�time�update,�the�states�are�estimates�
using�
�
xAx =
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with�initial�conditions� 1k1k x̂x −− = ,�and�the�
covariance�is�computed�by�
�
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with�initial�conditions� 1k1k P̂P −− = .�Equation�
(11)�is�known�as�Riccati�equation.�In�the�
measurement� update� the� states� and�
covariance�matrix�are�calculated�by��
�
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�
where�K�represents�the�Kalman�gain,�and�P�
and�x̂�are�the�covariance�and�the�state�
updated.�The�errors�between�the�actual�state�
and�the�estimated�state�is�
��
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7.��SIMULATIONS�
�
In�order�to�investigate�the�robustness�of�

the�filter,�it�has�been�done�the�simulation�
with�a�satellite�model�with�one,�two�and�
three� elastic� modes.� The� structural�
parameters�are:�radius�r�=�0.3048m,�density�
ρ=47.89Kg/m,�damping� 2.0=ς ,�L=1.2192m,�
E�=�7.735x109�Kg/m2�,�I=1.293x10-10�Kg*m2��
Jh�=�10.84�Kg*m2,�G=[04x4�,�I4x4�]T,�R=�[0.052�
,0.0052�]T,�and� ( )]10,10,10,10[diagQ 6664 −−−−= .�



The�initials�conditions, 1.00 =θ ,� 01.00 =θ" ,�
)]10([diag0P nxn

2−= .�Figure�2�shows�the�
difference�between�the�ideal�state�and�the�
estimate�state�the�“error”�for�the�satellite�
model�with�one,�two�and�three�modes.�It�can�
be�seen�that�angular�velocity�estimated,�
remains�in�all�modes,�under�the�limits�of�
standard�deviation.�But�for�the�angle�it�is�
necessary�50�seconds�for�the�filter�to�adapt�
and�have�a�good�performance.��
�
�
Figure�3�shows�a�significant�difference�

between�the�model�with�one�and�two�modes�
in�the�flexible�coordinate�q1� and�q2.�
However,�that�difference�is�negligible�for�the�
model�with�two�and�three�modes,�which�
means�that�the�satellite�can�be�modeled�at�
most�with�two�modes�without�lost�of�
accuracy.�This�is�correct�because,�when�more�
modes�are�included,�the�dynamics�of�the�
system�tend�to�stationary�values.�
�
�

8.��CONCLUSIONS�
�
In�this�work,�one�applies�the�Kalman�filter�

Methodoly� to� estimated� the� elastic�
displacement,�considering�that�the�angle�and�
the�angular�velocity�of�a�flexible�satellite�are�
sensed.�Having�in�mind�the�complexity�of�
putting�a�sensor�on�the�elastic�parts�of�the�
satellite,�the�application�of�the�Kalman�filter�
technique�has�been�showed�a�good�approach��
to�estimate�indirectly�the�flexible�parameters�
of�a�rigid-flexible�satellite.�That�approach�

becomes�more�promising�when�it�is�
necessary� to� feedback� the� elastic�
measurements�into�the�control�system�in�
order�to�assure�better�pointing�conditions�
and/or�better�system�performance.�
�
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Figure�2����Errors�for�angle�and�angular�velocity.�
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Figure�3�Estimation�of�the�elastic�displacement�q1�and�q2.�
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