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FLEXIBLE SPACE SYSTEM STATES AND PARAMETERS
ESTIMATION

A. Trigolo®, L. C. Gadelha DeSouza®, H. K. Kuka"

Nowadays an increasing number of space missions are using satellites with a rigid
hub and long and/or wide flexible appendices, such as solar panels, communication
antennas, telescopic structures, and robotics flexible arms. The increasing need for
better pointing accuracy of antennas connected to the rigid part of the spacecraft
leads to a requirement for more efficient controllers, where more accurate
identification process play an important rule into the closed loop system. To meet
the requirements for pointing accuracy, flexible parameters as elastic displacement,
which are of great importance for control tasks should be continuously identified in
the space environment. This paper presents investigation results of elastic
displacement identification using the Kalman Filter methodology. A flexible Euler-
Bernoulli beam, connected to a rigid core with torques as input and angles and
angular velocities as outputs is used as simple mathematical model of a rigid-
flexible satellite to apply the Kalman filter identification algorithm proposed. The
Kalman filter is tested under several conditions considering cold start with coarse
initial knowledge and varied measurement noise levels. At the end comments are
drawn about the robustness of the proposed procedure and feasibility of
implementation within the control system loop.

INTRODUCTION

The use of small satellites has been a fast, simple and of low cost way of reaching the
space in missions with the most several applications]’ 2 However, in order to conquer the
space it is necessary to launch spacecraft that contain a mix of rigid/flexible structures.
These missions are more complex because the satellites have a great number of
components like, solar panels, antennas, cameras and mechanical manipulators. As a
results, the knowledge of the flexibility influence of such structure play an important role
in the dynamics behavior as well as in the Attitude Control System3’4 (ACS) performance.
Others important aspects in the study of the dynamics and control of flexible space
structures are: the degree of interaction between the rigid and flexible motion, maintenance
of the ACS performance in face the uncertainties of the mathematical model, damping
residual vibrations and dynamic parameters identification™® in order to keep pointing
precision. This paper presents an identification procedure using the Kalman Filter
methodology that may be used to estimate the elastic displacement and identify system
parameters in space. Section 2 presents a mathematical model of a simple spacecraft based
on a flexible Euler-Bernoulli beam connected to a rigid core. The equations of motion are
also derived where the torque is used as input and angles and angular velocities as outputs.
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In section 3 the Kalman filter estimation algorithm is introduced. Section 4 shows the
simulation where the Kalman filter is tested under several conditions considering cold start
with coarse initial knowledge and varied measurement noise levels. Section 5 concludes
the paper.

SPACECRAFT MATHEMATICAL MODEL

The satellite mathematical model used is composed of a rigid platform with two
flexible appendixes and masses in the extremities of the appendices. The appendices are
identical and opposite, being considered as beam connected to the platform, and subjects to
rotational and vibrational motion. In order to derive the equations of motion for this model,
one applies the Lagrange methodology, starting from the expression of the kinetics and
potential energy of the system. Figure 1 illustrates the system composed by rigid hub, an
elastic appendage with a mass in the extremity, which is included in the derivation of the
equation of motion, but is disregard in the model used in the Kalman filter application.
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Figure 1 Satellite Model with a Rigid Hub and a Flexible Appendage.

One considers that the inertial reference system coincides with the origin of the fixed
reference system in the rigid body, which is represented by the axes nj, ny, ns. The fixed
reference system is coincident with the mass center of the rigid body, which is
characterized by the axes by, b,, and bs. The vector r represents the radius of the rigid body.
The vector x represents a position of a measured mass element along the axis b; direction,
in no deformed form with respect to fixed reference system. R gives the vector position of
any point in the appendage relative to the inertial reference system. The vector of elastic
displacement (elastic deformation) measured perpendicular to the axis b is represented by
y (x, t). Therefore, the vector position of any point in the deformed appendage form
relative to the inertial reference system is given by

R =(r+x)b,+yb, (1)

Considering that @ is the angular velocity of the satellite the vector velocity is given by

(R), = L(R), + 6 xR @)
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In order to get the total velocity expression of the satellite hub and appendages, one
substitutes Eq. (1) into (2), so as

R=-6yb, +[6(+x)+7]b, 3)
EQUATIONS OF MOTIONS

The equations of motion are derived for two generalized coordinates X; =1 ,2), the angular
rotation @ () and elastic motion ¢ (), using the Lagrange Equation given by
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where T, V and Fy; represent the total kinetics energy, the total potential energy and the
generalized forces of the system.

The total kinetics energy of the system is sun of the kinetics energy of the hub, the
appendage and the tip mass

T =T

P Tapp +T

tip

- 9+9ﬁp(r+x)2dx+n;(r+x)2+J,} + [pitdsm (0P, R
0 0 ( 5 )

. ze{]py(m)dxmm L+, y’(L)}

where J; and J; are the hub and the appendage moment of inertia, L and p are the length
and the density of mass of the appendage, m, is the mass at the end of the appendage and
y(x, t) represents the elastic displacement.

The total potential energy of the system is only due to the elastic deformations of the appendage
and it is given by
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where E represents the module of elasticity and I the moment of inertia of the beam.
The discretization of the system is done using assumed mode method.” Therefore, the
elastic displacement y(x,t) is substituted by

y(x,t):im(x)qﬁ(t) ”

where ¢;(x) are the admitted functions and g;i(t) are the elastic coordinates.

Substituting Egs.(7), (6) and (5) into Eq.(4) and after some manipulation the equations
of motion are given by
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The Eqgs.(8) and (9) are associated with the rigid and flexible motion, respectively. They
can be put in matrix form

I M8l fo  ol[6] 1 o]fu
. | . (10)
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where u represents the control input associated with Fy , J is the total inertia moment of the
system, M, represents the sub-matrix associated with the rigid and flexible motion, M,

represents the sub-matrix associated with the flexible motion and K, represents the sub-

matrix associated with flexible body.
Considering z = [, q]T, Eq. (10) can be written in compact form

M7+ Kz=Du (11)

where M is the mass matrix, K is the stiffness matrix of the system and D is the control
5

influence matrix.

Solving the auto-value problem of the Eq.(11) and considering the variable
transformation z= ®m), where ® are the auto-vectors and 1 is the new variable. Eq.(11)
can be put in modal form

M@t +Cnt)+Kn)=Du (12)

where M , C , K and D represents mass, damping, stiffness and control influence matrices
in modal form.

KALMAN FILTER IDENTIFICATION ALGORITHM

The Kalman filter is a computational algorithm containing a sequence of time and
measurement updating of estimates of the system state.® The Kalman filter can incorporate
dynamic noise in the dynamical model of the state. It is a real time estimator supplying the
estimates for the instant that the measurement is available. The filter consists of two
cycles:

¢ Time update
e Measurement update



In short, the Kalman filter processes measurements to produce an estimate of minimum
variance of the state of a system using the knowledge of the dynamics of the system, the
measurement, the statistics of the noise, and the errors of the measurements, besides the
information of the initial condition.

State Dynamics Model
Let the state dynamical model be represented by

Xx = Ax + Go (13)

where x=(7,,n,,7,,1,) are the states associated with the angular displacement (1; = 0)

and the elastic displacement (1, = q) continuously variant in the time. The matrix G define
how the noise enter in the system, ® is the continuous dynamic noise and A is named the
system matrix which contain the total dynamic information of the system and is given by:

N (14)

The system matrix is formed by the identity matrix I, by K :diag{ 0, w’ } the matrix
containing the squared natural frequencies, and the modal damping matrix
C= {0, 251' ; }

Measurements Model

y=Hx+vVv (15)

where y is the measurement vector composed by the angle 6 and angular velocity 6
measured by the angular position and angular velocity sensor.
The H matrix relates the measurements to the state by

1000
H= (16)
0010

and v represents a white noise vector to model the errors during the measurement process.
One assumes for the angular position and velocity a nominally a standard deviation of 0.1°
and 0.01%s, respectively. Therefore, the white noise vector has the following statistical
characteristics

vy =N(0,0.1) +  v,=(0.0.01°/5) (17)



Time update

In this filter cycle, the time updated state X and the covariance P estimates are
computed using the dynamical model of the system given by
X=AX (18)
with initial condition X, , =X, ,, and

P=AP+PA'+GQG" (19)

with initial conditionP,_, = 13](71 . Eq. (19) is known as the continuous Riccatti equation.

Measurement update

This cycle updates the state and covariance matrix at instant k due to measurement y,
by means of the measurement model given by Equation (15). The measurements of instant
k provide the information to update the state and covariance. The equations that follow
describe the measurement update cycle of Kalman filter

K=PH (HPH' +R )" 0)
P=(I-KH)P @1
x=x+K(y-HX) 22)

where K represents the Kalman gain, Pand R are the covariance and the state updated.

The errors between the actual state and the estimated state will be used to evaluate the
algorithm performance for the tests carried out, and is given by

A

Ag, =X, —X, (23)
The estimated error standard deviation is given by
Ag, =P (24)

SIMULATIONS

The aim of the simulations is implementing and testing the proposed Kalman filter
methodology to estimate the elastic displacement and velocity, assuming that the angular
displacement and velocity are measured. The analysis is performed through the utilization
of the dynamical model Eq.(13) and Egs. (15) to (22), which represent the time and
measurement update of the state and covariance via the Kalman filter. The investigation
philosophy is, first of all, to analysis the nominal case using the initial conditions and
parameters shown in Table 1.



Table 1

INITIAL CONDITIONS AND PARAMETERS OF THE KALMAN FILTER

Symbol G Ro ) R s Qs O P crs) 0, O
Values l4 0.01 0.001 10° 100 o1
Symbol 0, (s) Q, O Qg () Po© Q4 () P g Crs)
Values 0.01 10° 10° 107 0° 100

In the sequel, the same conditions used in the nominal case are applied to analyze
the behavior of the filter when non-typical measurement errors are imposed to the system.
In particular, two cases comprising precise and imprecise measurements are compared to
the nominal case. It should be mentioned that in the space area the Kalman filter approach
has been used in many application for estimation of states associated with angular position
and angular velocity. However, it is not of the authors’ knowledge that this approach has
been used before for flexible states estimation like elastic displacements and its variation.

Nominal Case

Figure 2 shows the actual and standard deviations for the angular position, elastic
displacement, angular velocity and elastic displacement rate, respectively. Errors were
calculated according to Eqs (23)-(24). From Figure 2, one notices that most of the actual
errors are within one standard deviation. Convergence was obtained quickly (less than 20s)
for all, with exception of the angular position, although it was within 0.05°.
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Figure 2 Errors of Angular and Elastic Displacement, Angular and Elastic Displacement Rate.
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Figure 3 Residual of Angular Position and Velocity for Nominal Case.

Figure 3 shows the residual behavior of the angular position and velocity
measurements for the nominal case. In this case the residuals are in good shape with one

standard deviation around 0.1° and 0.01°/s, respectively.
Over-accurate Measurements

In is case measurements are simulated with one order better accuracy. The aim is to
verify if there is some relevant gain of accuracy in the identification filter when more
accurate sensors are used. It can be observed in Figure 4 an apparent improvement in the
residuals profile, one order better than the nominal case of Figure 3. This suggests better
state estimates with respect to the nominal case. For this case the angular position and
velocity measurements were corrupted with random gaussian noise of 0.01° e 0.001°s,
respectively.
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Figure 4 Residual of Angular Position Velocity for Over Accurate Measurement Case.



Under accurate measurements

In the same way, one investigated the effects of less accurate (than nominal)
measurements, with the aim of verifying if the accuracy is degraded up to the extent the
filter does not estimate the states correctly.

From Figure 5 it can be seen the influence of increasing the measurement errors in the
behavior of the estimation scheme. From the simulations it can be seen that even losing
sensors accuracy the filter shape did not degrade when compared to the nominal case, in
terms of convergence. The measurement errors in this case were random gaussian with 1°
and 0.1°/s of standard deviation, respectively. The behavior of the residuals in this under
accurate measurement case is shown in Figure 5.

Consistently the residuals RMS also increased one order of magnitude with respect to
the nominal case. Moreover, the states were estimates without sign of divergence of the
Kalman filter.

Fesiduals in Angular Position
T T T

- i ‘& a 5 z i =
E sl - - < - - i R .
- e i
& - - - & - - m s .
8 - = g © 6T 5 g Sy .
-
B oaose "e . 3 - .
< . _ .
1l = SR CEESE R i S o
L L ' T L -y i L L
o 10 20 30 40 S0 &l 70 20 o0 100
time [seconds]
0z EResiduals in & Welocit
% T T
- R - oo -
= 01l . wrnneg Sy sor]
| e BB : g
S OER- - g - L - =
§ - - PR - . - . - -
S5 - - - “aa -
g .01l : it : ; . . .
= 3 e - o a n
" - -
0z I L La L L L L L L
0 10 20 30 40 0 &0 70 20 20 100

time [seconds]

Figure 5 Residual of Angular Position and Velocity for Under Accurate Measurements Case.

Table 2 lists the mean and the standard deviation of the states corresponding to the
rigid body and the flexible part of the satellite. Through the table it can be observed that
for the three cases, namely nominal, over-accurate, and under-accurate measurements, the
state components regarding the flexible body, q (elastic displacement) and q (elastic
displacement rate), did not suffer any meaningful change in the mean and in the standard
deviation error. On the other hands, the state components of the rigid body, 6 (angular
position) and 6 (angular velocity), have suffered (as expected) with the variation of the
noise in the measurement, which means that the use of the Kalman filter approach is quite
adequate to obtain information of the elastic displacement and its rate. As a result, the
controller can use that information in order to improve control system performance in tern
of time of response.

As for the robustness of the technique, it can be verified if one consider that in relation
to the nominal case, all the cases tested converged to the expected level of errors, showing
the robustness of the filter under several levels of measurement accuracy.



Table 2

MEAN AND STANDARD DEVIATION OF STATE ERRORS

Nominal Over accurate Under accurate
0 () (107 + (2x10™) (-3.6x10" + (6x107) (1.6x10%) + (1x10%
q® (3 x107%) +(1.6x10™") (3x10%)  * (1.6x10™) (3x107%) + (1.6x10™)
0 (ss) (2.7 x10™) £ (6x107) (-5x107) + (6x107) (7x107%) * (1.9x10™)
q Crs) (-1.23 x10™") + (4 x10™) (-1.2x10" + (4x10™) (-1.2x10™") * (4x10™)
CONCLUSION

In this work a satellite model composed of a central rigid body and two flexible
appendages was used to apply an estimation methology based on Kalman filter approach.
The Lagrange formulation was used to derive the equations of motion of the satellite, and
the discretization of the elastic motion was performed by the assumed mode method.

The Kalman filter methology was implemented in order to estimate the satellite
rigid and flexible mode (states) composed of the rigid and elastic displacement and their
variation in time, considering that only the angular position and velocity measurements are
available. Throughout several simulations it was possible to investigate the behavior of the
state estimation errors for three distinct cases. In the first one, called nominal case, typical
data were considered as the initial conditions of the filter. In this case, it was verified that
the satellite position and angular velocity error estimates are within the errors allowed by
the filter, being observed a great time for the convergence of the filter in the angular
position component. For the elastic displacement and rate the convergence has occur in
less than 20 seconds. Afterwards, two simulations considering non-typical conditions, that
is, over accurate measurements and under accurate measurements have been investigated.
For the over accurate case (as expected) it was detected a remarkable improvement in the
real and estimated states with respect to the nominal case.

That results, shows that even in the presence of the no measured elastic
deformation the procedure improve when one uses more accurate sensors. In the under-
accurate case, it was detected that even with less accuracy of the sensors, the estimated
state errors were not so degraded with respect to the nominal case, keeping the filter
convergence in acceptable level. Therefore, having in mind the complexity of putting a
sensor on the elastic parts of the satellite, the application of the Kalman filter methology
has been showed a good approach to estimate indirectly the flexible parameters of a rigid-
flexible satellite. That approach becomes more promising when it is necessary to feedback
the elastic measurements into the control system in order to assure better pointing
conditions and/or better system performance. The Kalman filter has also shown to be a
robust methology since in the under-accurate case tested, it has maintained a good
performance. A next step in that work is to investigate that happens with the performance
of the Kalman filter approach used when one increases the numbers of flexible modes in
the model.
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