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Critical behavior and driven Monte Carlo dynamics of the XY spin glass
in the phase representation
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A driven Monte Carlo dynamics is introduced to study resistivity scaling inXY-type models in the phase
representation. The method is used to study the phase transition of the three-dimensionalXY spin glass with a
Gaussian coupling distribution. We find a phase-coherence transition at finite temperature in good agreement
with recent equilibrium Monte Carlo simulations which shows a single~spin and chiral! glass transition.
Estimates of the static and dynamic critical exponents indicate that the critical behavior is in the same univer-
sality class as the model with a bimodal coupling distribution. Relevance of these results forp-junction
superconductors is also discussed.
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Phase transition in the three-dimensional~3D! XY spin
glass with short-range interactions has been a challen
problem. The additional chiral order parameter,1 with Ising-
like symmetry, arising from frustration effects competes w
spin-glass ordering due to freezing of the two compon
spins. Earlier work showed that while the spin-glass tran
tion temperature vanishes, the chirality orders at a fin
temperature.2 Evidence of such behavior has been provid
both for models where the coupling betweenXY spins has a
bimodal distribution (11 and 21 with equal probability!
and for models with a Gaussian coupling distribution. Ho
ever, recent numerical work based on equilibrium and
namic simulations has questioned this decoupled scen
with some conflicting results.

Just as otherXY type models,3 theXY spin glass can also
be regarded as a model for phase-coherence in supercon
ors. In particular, it is currently being used as a model
granular superconductors containingp junctions,4–9 as in
high-Tc superconductor materials withd-wave symmetry.4 In
this case, ap junction corresponds to an antiferromagne
coupling between theXY spins while the orientational angl
of the spins represents the phase of the local supercond
order parameter. This superconductor analog allows the
of the electrical resistivity as a very useful dynamic quan
that can characterize spin-glass ordering in theXY spin-
glass. In fact, the linear resistivity is a direct measure
phase stiffness and therefore phase coherence in the s
conductor, which is equivalent to long-range order in t
spin variables. Thus, the resistivity behavior can be use
study numerically the phase transition in theXY spin glass.

Earlier Monte Carlo~MC! simulations of resistivity be-
havior of theXY spin glass with a bimodal coupling distr
bution in the vortex representation,10 showed evidence of a
resistive transition at finite temperature. However, this re
was interpreted as an indication of the chiral-glass transit
With a different interpretation,7 it was argued that this resis
tive transition should instead be attributed to the spin-gl
ordering. The possibility of spin-glass ordering at finite te
peratures was also supported by calculations of the spin s
ness exponent in the ground state,11,12 showing that the
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lower-critical dimension is below 3, which implies that
phase-coherence transition at finite temperature is possib
three dimensions. Later on, resistivity calculations in t
phase representation using Langevin dynamics8,9 confirmed
the occurrence of a phase-coherence transition at finite t
perature and suggested a single transition scenario where
ral and phase variables order simultaneously.

Recent equilibrium MC simulations by Kawamura and
for theXY spin glass with a bimodal coupling distribution,13

provided an improved estimate of the chiral-glass transit
temperature, which turned out to be consistent with the tr
sition temperature as obtained from the resistivity scalin9

but still conclude for the absence of phase coherence wi
a spin-chirality decoupling scenario. However, very recen
MC calculations of the chiral and spin correlation lengths
Lee and Young for the model with Gaussian coupling14

show that there is indeed a transition at finite temperatur
which both spin and chirality order, supporting the sing
transition scenario. These conflicting results raise the imm
diate question of universality class of the phase transition
the two models. In addition, since the resistivity scaling a
proach indicates a phase-coherence transition for the bim
coupling model at the chiral-glass transition, it should a
be of particular interest to find out if it gives consistent r
sults for the Gaussian coupling model.

In this work, we study the critical behavior of the 3DXY
spin glass with Gaussian couplings by a scaling analysis
the nonlinear resistivity obtained by MC methods. First,
introduce a driven MC dynamics forXY-type models in the
phase representation. The alternative MC dynamics in
vortex representation,10 which has been used for the mod
with bimodal couplings, is not useful for the Gaussian mo
because in this case the coupling magnitude is not unifo
The main advantage of the driven MC method in the ph
representation compared with standard Langevin dynam
simulations8,9 is that much longer time scales can be a
cessed, insuring that the long-time behavior is probed at
lowest temperatures and current densities. In addition,
driven MC dynamics is particularly useful in models fo
which Langevin phase dynamics or MC vortex dynamics
not available.16
©2004 The American Physical Society03-1
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From a scaling analysis of the resistivity data for the
XY spin glass, we find a phase-coherence transition at fi
temperature and the corresponding thermal and dyna
critical exponents are determined. The results are in g
agreement with recent equilibrium MC simulations for t
model with Gaussian couplings.14 Moreover, comparing the
static and dynamic critical exponents obtained for the Gau
ian model with recent results for the bimodal coupling mo
using the same analysis8,9 suggests a common universali
class. Altogether, these results strongly support the sin
transition scenario8 where chiral and phase variables ord
simultaneously in both models.

We consider theXY-spin glass driven by an external pe
turbation, described by the Hamiltonian

H52(̂
i j &

Ji j cos~u i2u j !2J(
i

~u i2u i 1x!. ~1!

The first term gives the nearest-neighbor coupling ene
where Ji j are quenched random variables taken from
Gaussian distribution with zero mean and unit variance

P~Ji j !5
1

A2p
exp~2Ji j

2 /2!. ~2!

The second term in Eq.~1! represents the effects of an e
ternal perturbation, applied in thex direction for conve-
nience, coupled to the bond phase differenceu i2u i 1x .
When regarded as a model for granular superconductors
p junctions,9,13 the random distributed negative signs of t
bond variableJi j correspond to Josephson junctions with
phase shift ofp and the perturbation is equivalent to a dri
ing current densityJ applied to the superconductor. Whe
JÞ0, the total energy is unbounded and the system is ou
equilibrium. The lower-energy minima occur at increasi
phase differencesu i2u i 1x as a function of time, leading to
net phase slippage rate proportional to^d(u i2u i 1x)/dt&,
which can be taken as a measure of the voltageV ~in arbi-
trary units! in a model of superconductors.

To study the nonequilibrium behavior generated by
driving current densityJ in Eq. ~1!, we use a driven MC
dynamics method. The time dependence is obtained by id
tifying the MC time as the real timet and we set the unit o
time dt51, corresponding to a complete MC pass throu
the lattice. Periodic~fluctuating twist! boundary conditions
are used15 in cubic systems of linear sizeL. This boundary
condition adds new dynamical variables,ua (a5x, y and
z), corresponding to a uniform phase twist between near
neighbor sites along the principal axis directionsx̂, ŷ, and
ẑ. A MC step consists of an attempt to change the local ph
u i and the phase twistsua by fixed amounts, using the Me
tropolis algorithm. If the change in energy isDH, the trial
move is accepted with probability min$1,exp(2DH/kT)%. The
external current densityJ in Eq. ~1! biases these change
leading to a net voltage~phase slippage rate! across the sys
tem, given by
14420
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j ,k51

L

~u1,j ,k2uL, j ,k2uxL !. ~3!

Using this procedure, the electric fieldE5V/L and nonlinear
resistivity r5E/J can be obtained as a function of the dri
ing current densityJ for different temperaturesT. The main
advantage of this MC method compared with stand
Langevin dynamics7,8 for models in the phase representati
is that in principle much longer time scales can be acces
In the latter method, the maximum time step is limited
numerical instabilities when integrating the Langevin diffe
ential equations whereas in the former, trial moves are p
sible which would correspond to very large time steps in
numerical integration.

For the simulations of resistivity behavior described b
low, first MC calculations are performed withJ50 ~zero
current bias! to obtain the equilibrium state which is the
used as initial state for the driven MC dynamics withJ
Þ0. Extensive calculations were performed, using typica
107 MC steps for the equilibration and driven MC dynami
with 10–20 different realizations of theJi j disorder distribu-
tion for low values ofJ in system sizes ranging fromL54 to
L512.

To extract the critical behavior from the numerical resu
of the nonlinear resistivityr we need a scaling theory for th
resistive behavior near a second-order phase transition
detailed scaling theory has been described in the contex
the current-voltage characteristics of vortex-glass mod3

but it can be directly applied here. If a phase-coherence t
sition occurs at nonzero temperatureTc , then measurable
quantities scale with the diverging correlation lengthj
}uT/Tc21u2n and relaxation timet}jz, wheren andz are
the thermal and dynamical critical exponents, respectiv
The nonlinear resistivityr should then satisfy the scalin
form3

Trjz215g6S Jj2

T D , ~4!

whereg(x) is a scaling function. The1 and2 signs corre-
spond toT.Tc and T,Tc , respectively. If the numerica
data satisfy such scaling form for different temperatures
driving currents, then the critical temperature and critical e
ponents of the underlying equilibrium transition atJ50 can
be estimated from the best data collapse. However, fo
reliable estimate, the data should also satisfy the expe
finite-size behavior in smaller system sizes. Finite-size
fects are particularly important sufficiently close toTc when
the correlation lengthj approaches the system sizeL. In
particular, atTc , the correlation length will be cut off by the
system size in any finite system and the nonlinear resisti
should then satisfy a scaling form as in Eq.~4! with j5L,

TcrLz215gS JL2

Tc
D . ~5!

Away from Tc , the scaling function in Eq.~4! will also de-
pend on the dimensionless ratio3,10 L/j asg(Jj2/T,L/j). To
simplify the analysis, we consider resistivity data at curre
3-2
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densities such thatJj2/T5 is constant. Then, the scalin
form depends only on a single variable and the resistiv
should satisfy the finite-size scaling form

TrLz215g̃@L1/n~T/Tc21!#. ~6!

We now describe the results of the scaling analysis of
resistivity behavior obtained from the driven MC dynamic
The nonlinear resistivityr as a function of current densit
and temperature is shown in Fig. 1 for a large system s
L512. The behavior is consistent with a phase-cohere
transition at an apparent critical temperature in the ra
Tc;0.25–0.35. At higher temperatures, the linear resistiv
rL5 lim

J→0
E/J is finite while at lower temperatures, it ex

trapolates to very low values. The actual limiting values
the resistivity at low currents cannot be determined ac
rately with the available computer time. However, if o
assumes a continuous equilibrium transition at a finite te
perature withJ50, then the nonlinear resistivity should sa
isfy the scaling form of Eq.~4! and the critical temperature
and exponents can then be obtained from the data colla
Such scaling plot is shown in Fig. 2, obtained by adjust

FIG. 1. Nonlinear resistivityr for different temperaturesT, for a
system sizeL512.

FIG. 2. Scaling plot of the data from Fig. 1 near the transitio
with j}uT/Tc21u2n.
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the unknown parameters. We now show that these estim
using the largest system size, are reliable by verifying t
they satisfy the expected finite-size behavior using sma
system sizes. In fact, as shown in Fig. 3, the nonlinear re
tivity satisfy the finite-size scaling form of Eq.~5! for differ-
ent system sizes at the estimatedTc50.335. Also, away from
Tc , the nonlinear resistivity calculated at different tempe
tures and system sizes satisfy the scaling form of Eq.~6! as
shown in Fig. 4. From this scaling analysis we obtain t
estimate of critical temperature and critical exponentsTc
50.335(15),z54.5(3), andn51.2(2). Itshould be empha-
sized here that this result is obtained by requiring thatTc , z,
and n satisfy, not only the scaling form of Eq.~4! for the
large system,17 but at same time also the finite-size scali
forms of Eqs.~5! and ~6! for smaller systems.

Our estimate of the phase-coherence critical tempera
and exponent for the model with Gaussian couplings is p
ticularly interesting in view of the recent equilibrium MC
simulations14 which show evidence of spin-glass transition
finite temperature and that chirality and spin variables or
simultaneously. Our results provide further support for t

,

FIG. 3. Finite-size scaling plot of the nonlinear resistivity
Tc50.335.

FIG. 4. Finite-size scaling plot nearTc using current densities
such thatJj2/T51, a constant value.
3-3
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estimate of the spin-glass transition atTc50.34(2), asfirst
reported in that work. Moreover, our estimate of the sta
and dynamic critical exponents agree with those obtained
the model with bimodal coupling distribution using simil
analysis8,9 @n51.2(2), z54.4(3)], suggesting a common
static and dynamic universality class. If indeed the criti
behavior is the same for both models then a single transi
should also be observed in the latter model, despite the
clusions from other MC simulations13 that find a spin-
chirality decoupling scenario.

Our results for the resistive transition in the Gaussian c
pling model are also relevant for understanding the beha
of granular superconductors withp junctions.5,6,8,9 In par-
ticular, some measurements in high-Tc superconductor
materials,18 and numerical simulations,19 showing a power-
law behavior for the nonlinear contribution to the resistiv
near the onset of the paramagnetic Meissner effect, h
been interpreted as resulting from a chiral-glass transi
with no phase coherence, based on earlier results for
XY-spin glass model with a bimodal coupling distribution.
view of the results for resistivity scaling, an alternative int
pretation is possible9 where the observed behavior is a co
sequence of the underlying phase-coherence transition
the power-law exponenta is determined by the dynami
critical exponentz asa5(52z)/2. In this regard, the result
for the Gaussian model considered here have two impor
implications. First, this model is a more realistic descripti
,
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of the superconductor material since in a granular sample
Josephson couplings between grains will have random m
nitudes, as well as random signs due to thep phase shifts.
Second, our results show that a phase-coherence trans
takes place at finite temperature and the common univer
ity class we find for the resistive transition in these mod
shows that the proposed9 superconducting chiral transitio
and the power-law exponenta do not depend on details o
the coupling distribution.

In summary, we have introduced a driven MC dynam
method to determine the resistivity behavior ofXY-type
models in the phase representation. The method is use
study resistivity scaling and the phase transition in the
XY spin glass. From the scaling analysis we find clear e
dence of a phase-coherence transition at finite tempera
The critical temperature and exponents are in good ag
ment with recent equilibrium MC simulations with a Gaus
ian coupling distributions14 and suggest that the critical be
havior is in the same universality class as the the model w
a bimodal coupling distribution.9 For p junction supercon-
ductors, the results demonstrate that the superconduc
chiral-glass transition and the numerical value of power-l
exponenta, are not sensitive to the details of the couplin
distribution.

This work was supported by FAPESP~Grant No. 03/
00541-0!.
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