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Critical behavior and driven Monte Carlo dynamics of the XY spin glass
in the phase representation
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A driven Monte Carlo dynamics is introduced to study resistivity scalini ¥itype models in the phase
representation. The method is used to study the phase transition of the three-dimex¥igpat glass with a
Gaussian coupling distribution. We find a phase-coherence transition at finite temperature in good agreement
with recent equilibrium Monte Carlo simulations which shows a singl@n and chiral glass transition.
Estimates of the static and dynamic critical exponents indicate that the critical behavior is in the same univer-
sality class as the model with a bimodal coupling distribution. Relevance of these resutisjdaction
superconductors is also discussed.
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Phase transition in the three-dimensio@dD) XY spin  lower-critical dimension is below 3, which implies that a
glass with short-range interactions has been a challenginghase-coherence transition at finite temperature is possible in
problem. The additional chiral order paramétevith Ising-  three dimensions. Later on, resistivity calculations in the
like symmetry, arising from frustration effects competes withPhase representation using Langevin dynafr'ﬁccx)nflr.m'ed
spin-glass ordering due to freezing of the two componenihe occurrence of a phase-coherence transition at finite tem-
spins. Earlier work showed that while the spin-glass transiPerature and suggested a smgle_ transition scenario where chi-
tion temperature vanishes, the chirality orders at a finitd@ and phase variables order simultaneously. ,
temperaturé. Evidence of such behavior has been provided, Recent equilibrium MC simulations by Kawamura and Li
both for models where the coupling betweéN spins has a for the X'Y spin glass with a bimodal coup!lng d'smbu“%.’.
bimodal distribution ¢ 1 and —1 with equal probability provided an improved estimate of the chiral-glass transition

and for models with a Gaussian coupling distribution. HOW_temperature, which turned out to be consistent with the tran-

ever recent numerical work based on equilibrium and d sition temperature as obtained from the resistivity scaling,

o lati h tioned thi (? led Yut still conclude for the absence of phase coherence within
hamic simulations nas questione IS decouple Scenarlé?spin-chirality decoupling scenario. However, very recently,
with some conflicting results.

. MC calculations of the chiral and spin correlation lengths by
Just as otheXY type models, the XY spin glass can also | e and Young for the model with Gaussian couplifgs
be regarded as a model for phase-coherence in supercondugtio that there is indeed a transition at finite temperature at
ors. In particular, it is currently being used as a model foryhich both spin and chirality order, supporting the single
granular superconductors containing junctions}™ as in  transition scenario. These conflicting results raise the imme-
high-T.. superconductor materials withwave symmetr.In  diate question of universality class of the phase transition in
this case, ar junction corresponds to an antiferromagneticthe two models. In addition, since the resistivity scaling ap-
coupling between th&Y spins while the orientational angle proach indicates a phase-coherence transition for the bimodal
of the spins represents the phase of the local superconductesupling model at the chiral-glass transition, it should also
order parameter. This superconductor analog allows the usse of particular interest to find out if it gives consistent re-
of the electrical resistivity as a very useful dynamic quantitysults for the Gaussian coupling model.
that can characterize spin-glass ordering in ¥ spin- In this work, we study the critical behavior of the 3Dy
glass. In fact, the linear resistivity is a direct measure ofspin glass with Gaussian couplings by a scaling analysis of
phase stiffness and therefore phase coherence in the supgtie nonlinear resistivity obtained by MC methods. First, we
conductor, which is equivalent to long-range order in theintroduce a driven MC dynamics fotY-type models in the
spin variables. Thus, the resistivity behavior can be used tphase representation. The alternative MC dynamics in the
study numerically the phase transition in tK¥ spin glass. vortex representatiotf, which has been used for the model
Earlier Monte Carlo(MC) simulations of resistivity be- with bimodal couplings, is not useful for the Gaussian model
havior of theXY spin glass with a bimodal coupling distri- because in this case the coupling magnitude is not uniform.
bution in the vortex representatiohshowed evidence of a The main advantage of the driven MC method in the phase
resistive transition at finite temperature. However, this resultepresentation compared with standard Langevin dynamics
was interpreted as an indication of the chiral-glass transitionsimulation§® is that much longer time scales can be ac-
With a different interpretatiof,it was argued that this resis- cessed, insuring that the long-time behavior is probed at the
tive transition should instead be attributed to the spin-glastowest temperatures and current densities. In addition, the
ordering. The possibility of spin-glass ordering at finite tem-driven MC dynamics is particularly useful in models for
peratures was also supported by calculations of the spin stifixhich Langevin phase dynamics or MC vortex dynamics are
ness exponent in the ground stité? showing that the not availablet®
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From a scaling analysis of the resistivity data for the 3D 1 d L
XY spin glass, we find a phase-coherence transition at finite V=— gt 2 (01 k= 0L jk—UxL). (3)
temperature and the corresponding thermal and dynamic L k=1

critical exponents are determined. The results are in goo
agreement with recent equilibrium MC simulations for the

model with Gaussian coupling$Moreover, comparing the ing current densityl for different temperature$. The main

static and dynamic critical exponents obtained for the Gaussédvantage of this MC method compared with standard
an model with recent rgeéults for the bimodal coupl_lng mo_delLangevin dynamics® for models in the phase representation
using the same analySissuggests a common universality is that in principle much longer time scales can be accessed.

class_. _AItogetherh)these res_ults strongly support the Singlﬁw the latter method, the maximum time step is limited by
transition scenarfowhere chiral and phase variables ordery, , erjca| instabilities when integrating the Langevin differ-

S|multane01_Jst in both W_‘Ode's- . ential equations whereas in the former, trial moves are pos-
We_ consider _thé(Y-spln glass _dr|v_en by an external per- sible which would correspond to very large time steps in the
turbation, described by the Hamiltonian numerical integration.
For the simulations of resistivity behavior described be-
low, first MC calculations are performed with=0 (zero
H=—2 J;,co86,— 6;))— 32 (6= 6;1y). (1) current bias to obtain the equilibrium state which is then
Y ' used as initial state for the driven MC dynamics with

) . ) . #0. Extensive calculations were performed, using typically
The first term gives the nearest-neighbor coupling energy; 7 Mc steps for the equilibration and driven MC dynamics

where J;; are quenched random variables taken from theyith 1020 different realizations of thi; disorder distribu-
Gaussian distribution with zero mean and unit variance  ion for low values ofJ in system sizes ranging froln=4 to

nging this procedure, the electric fidid=V/L and nonlinear
resistivity p=E/J can be obtained as a function of the driv-

L=12.
1 To extract the critical behavior from the numerical results
P(J;j) = ———=exp —Jizj/Z)_ 2 of the nonlinear resistivity we need a scaling theory for the
V2w resistive behavior near a second-order phase transition. A

detailed scaling theory has been described in the context of
The second term in Eq1) represents the effects of an ex- the current-voltage characteristics of vortex-glass mddels
ternal perturbation, applied in the direction for conve- butit can be directly applied here. If a phase-coherence tran-
nience, coupled to the bond phase differerge- 6, . sition occurs at nonzero temperatufg, then measurable
When regarded as a model for granular superconductors withuantities scale with the diverging correlation lenggh
7 junctions®*3 the random distributed negative signs of the|T/Tc—1|~” and relaxation timer= &%, wherev andz are
bond variableJ;; correspond to Josephson junctions with athe thermal and dynamical critical exponents, respectively.
phase shift ofr and the perturbation is equivalent to a driv- The nonlinear resistivityp should then satisfy the scaling
ing current densityd applied to the superconductor. When form®
J+#0, the total energy is unbounded and the system is out of )
equilibrium. The lower-energy minima occur at increasing Tp§z1:g+(£> (4)
phase differenceg; — 6, . , as a function of time, leading to a T

net phase slippage rate proportional (( 8, — 6, )/dt), . . . .
which can be taken as a measure of t<he vlolt‘dlt_:fda); argi— whereg(x) is a scaling function. The- and — signs corre-
spond toT>T, and T<T,., respectively. If the numerical

trary unit9 in a model of superconductors. : . .
To study the nonequilibrium behavior generated by thedata satisfy such scaling form for different temperatures and

driving current densityd in Eq. (1), we use a driven MC driving currents, then the critical temperature and critical ex-
dynamics method. The time deper;dence is obtained by idelp_onent_s of the underlying equilibrium transitionJa O can
tifying the MC time as the real timeand we set the unit of be. estlmatgd from the best data coIIapse.' However, for a
time dt=1, corresponding to a complete MC pass throughr.EI.'able. estimate, th_e data should also _satlsfy _the e>_<pected
the lattice. Periodidfluctuating twisj boundary conditions finite-size behavior in smaller system sizes. Finite-size ef-
are uself in cubic systems of linear size. This boundary fects are pa_rtlcularly important sufficiently close'ltg_when
condition adds new dynamical variables, («=x, y and the .correlat|0n lengthé app_roaches the_ system sike In

2), corresponding to a uniform phase twist between nearespart'CUIar' afT;, the correlation length will be cut off by the
néighbor sites along the principal axis directions§, and system size in any finite system and the nonlinear resistivity

. ) should then satisfy a scaling form as in E4) with é=L,
z. AMC step consists of an attempt to change the local phase

0, and the phase twists, by fixed amounts, using the Me- JL2
tropolis algorithm. If the change in energy AH, the trial TcPLZ_lzg(T—
move is accepted with probability r{ihexp(~AH/KT)}. The ¢
external current density in Eq. (1) biases these changes, Away from T, the scaling function in Eq4) will also de-
leading to a net voltagghase slippage ratacross the sys- pend on the dimensionless rati§ L/¢ asg(J&%/T,L/£). To
tem, given by simplify the analysis, we consider resistivity data at current

. (5
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FIG. 1. Nonlinear resistivity for different temperatures, for a
system sizéd.=12. FIG. 3. Finite-size scaling plot of the nonlinear resistivity at
T.=0.335.

densities such thalé?/T= is constant. Then, the scaling
form depends only on a single variable and the resistivitthe unknown parameters. We now show that these estimates,

should satisfy the finite-size scaling form using the largest system size, are reliable by verifying that
~ they satisfy the expected finite-size behavior using smaller
TpLZ t=g[LY(TIT,—1)]. (6) system sizes. In fact, as shown in Fig. 3, the nonlinear resis-

tivity satisfy the finite-size scaling form of E¢5) for differ-

We now describe the results of the scaling analysis of thent system sizes at the estimaiieg=0.335. Also, away from
resistivity behavior obtained from the driven MC dynamics. T, the nonlinear resistivity calculated at different tempera-
The nonlinear resistivity as a function of current density tures and system sizes satisfy the scaling form of(Egas
and temperature is shown in Fig. 1 for a large system sizeshown in Fig. 4. From this scaling analysis we obtain the
L=12. The behavior is consistent with a phase-coherencestimate of critical temperature and critical exponents
transition at an apparent critical temperature in the range=0.335(15),z=4.5(3), andv=1.2(2). Itshould be empha-
T.~0.25-0.35. At higher temperatures, the linear resistivitysized here that this result is obtained by requiring Thatz,
pL=IimJ E/J is finite while at lower temperatures, it ex- and v satisfy, not only the scaling form of Eg¢4) for the
large systent! but at same time also the finite-size scaling
forms of Egs.(5) and(6) for smaller systems.

Our estimate of the phase-coherence critical temperature
and exponent for the model with Gaussian couplings is par-
ticularly interesting in view of the recent equilibrium MC
simulation$* which show evidence of spin-glass transition at
Sfénlte temperature and that chirality and spin variables order
g5|multaneously Our results provide further support for the

trapolates to very low values. The actual limiting values of
the resistivity at low currents cannot be determined accu-
rately with the available computer time. However, if one
assumes a continuous equilibrium transition at a finite tems<
perature withJ=0, then the nonlinear resistivity should sat-
isfy the scaling form of Eq(4) and the critical temperature,

and exponents can then be obtained from the data collap
Such scaling plot is shown in Fig. 2, obtained by adjustin
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FIG. 2. Scaling plot of the data from Fig. 1 near the transition, FIG. 4. Finite-size scaling plot nedr. using current densities
with &oc|T/T,— 1|77, such thatl¢€?/T=1, a constant value.
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estimate of the spin-glass transitionTat=0.342), asfirst  of the superconductor material since in a granular sample the
reported in that work. Moreover, our estimate of the staticJosephson couplings between grains will have random mag-
and dynamic critical exponents agree with those obtained fonitudes, as well as random signs due to the@hase shifts.
the model with bimodal coupling distribution using similar Second, our results show that a phase-coherence transition
analysi§® [v=1.2(2), z=4.4(3)], suggesting a common takes place at finite temperature and the common universal-
static and dynamic universality class. If indeed the criticality class we find for the resistive transition in these models
behavior is the same for both models then a single transitioshows that the proposgguperconducting chiral transition
should also be observed in the latter model, despite the comnd the power-law exponent do not depend on details of
clusions from other MC simulatiofss that find a spin- the coupling distribution.
chirality decoupling scenario. In summary, we have introduced a driven MC dynamics
Our results for the resistive transition in the Gaussian coumethod to determine the resistivity behavior XfY-type
pling model are also relevant for understanding the behaviomodels in the phase representation. The method is used to
of granular superconductors with junctions>®®%In par-  study resistivity scaling and the phase transition in the 3D
ticular, some measurements in high- superconductor XY spin glass. From the scaling analysis we find clear evi-
materialst® and numerical simulation’s, showing a power- dence of a phase-coherence transition at finite temperature.
law behavior for the nonlinear contribution to the resistivity The critical temperature and exponents are in good agree-
near the onset of the paramagnetic Meissner effect, havament with recent equilibrium MC simulations with a Gauss-
been interpreted as resulting from a chiral-glass transitioian coupling distribution$ and suggest that the critical be-
with no phase coherence, based on earlier results for thieavior is in the same universality class as the the model with
XY-spin glass model with a bimodal coupling distribution. In a bimodal coupling distributiofl.For 7 junction supercon-
view of the results for resistivity scaling, an alternative inter-ductors, the results demonstrate that the superconducting
pretation is possibfewhere the observed behavior is a con- chiral-glass transition and the numerical value of power-law
sequence of the underlying phase-coherence transition amkponenta, are not sensitive to the details of the coupling
the power-law exponent is determined by the dynamic distribution.
critical exponeniz asa=(5—2)/2. In this regard, the results
for the Gaussian model considered here have two important This work was supported by FAPES@&rant No. 03/
implications. First, this model is a more realistic description00541-0.
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