VOLUME 70, NUMBER 17

PHYSICAL REVIEW LETTERS

26 APRIL 1993

Giant Many-Body Enhancement of Low Temperature Thermal-Electron- Acoustic-Phonon
Coupling in Semiconductor Quantum Wires

J. R. Senna® and S. Das Sarma

Department of Physics, University of Maryland, College Park, Maryland 20742
(Received 28 January 1993)

We show that in a semiconductor quantum wire the energy relaxation of the excited one-dimensional
electron gas due to acoustic phonon emission is strongly enhanced at low temperatures by a subtle
many-body effect arising from the phonon broadening caused by the electron-acoustic-phonon interac-
tion. This broadening opens up a “‘virtual” channel for energy transfer from the electrons to the low en-
ergy tail of the phonon spectral function. This peculiarly one-dimensional many-body effect causes a
very large enhancement of the power loss over the bare value and restores the Bloch-Griineisen power
law temperature dependence of the energy loss rate at low temperatures.

PACS numbers: 71.38.+i, 63.20.Kr, 73.20.Dx

Most of the “anomalous” (as compared to systems
of higher dimensionality) transport properties of low-
dimensional electronic systems arise because of the severe
phase-space restrictions of reduced dimensionality. In a
one-dimensional electron gas (IDEG) at zero tempera-
ture, the only possible low energy excitations have wave
vectors of magnitude 0 or 2kr (where kr is the Fermi
wave vector). If one considers the low temperature
momentum relaxation of a 1DEG for instance, it has to
occur through the transfer of momentum 2A kg from the
electrons to the phonons or impurities. If one considers
the low temperature energy relaxation of a 1DEG in-
teracting with acoustic phonons, which have a linear
dispersion of the form w(q) =cq, again it can only occur
through the emission of 2kr phonons. Therefore one
would expect that the low temperature (kgT < Ef; kg is
the Boltzmann constant, T the temperature, and Ef the
Fermi energy) energy relaxation of an electron gas in-
teracting with acoustic phonons, being mediated entirely
by phonons of energy 2Ackr, would follow an exponential
behavior exp(—2hckr/kgT) when kgT K2hckr, simply
because there is no phase space at low temperatures for
the scattering of an electron in a 1DEG to excite a pho-
non of lower wave vector and frequency. Thus, in a
IDEG there is no conventional Bloch-Griineisen algebra-
ic temperature dependence regime in the momentum or
energy relaxation rate at low temperatures—all low tem-
perature bare acoustic phonon scattering processes are
exponentially activated in a IDEG. This is a striking
theoretical difference of a 1DEG from higher-dimen-
sional systems.

However, the electron-phonon interaction also renor-
malizes the phonon dispersion relation. Because the elec-
tron gas is polarizable, and can track the deformation of
the lattice to take advantage of regions of lower energy of
the electron states, it costs less energy to create a lattice
deformation in the presence of the electron gas than oth-
erwise. This softening is the cause of the Kohn anomaly
[1] in the phonon dispersion around 2kf, and can eventu-
ally drive w(2kr) to zero (Peierls transition) in a one-
dimensional system [2]. In addition to renormalizing the

phonon frequency, the interaction also causes a broaden-
ing of the phonon dispersion relation, which is usually not
of much consequence in higher dimensions. This means
that the frequency of the phonons interacting with the
electrons is not a well defined quantity, but rather a reso-
nance: There is a nonzero amplitude for phonons of arbi-
trary frequencies for wave vectors close to 2kr. As a
consequence, the energy relaxation of the 1DEG interact-
ing with phonons can occur through the emission of 2kp
phonons not just with the bare frequency 2Ackr, but with
all possible frequencies (and, in particular with arbitrari-
ly low frequencies), and the simple exponential behavior
arising from the existence of just one phonon energy scale
2hckr alluded to above is lost. This broadening is unim-
portant for acoustic phonons interacting with a higher-
dimensional electron gas, because there scattering by
phonons of arbitrarily small wave vectors is allowed any-
way, and some broadening of the phonon spectral func-
tion is a negligibly small effect. The integrated rates in
higher dimensions can be obtained [3] by substituting for
the spectral weight of the phonon the single bare phonon
pole. Thus, many-body broadening lifts the severe
phase-space restriction of a 1DEG with respect to the
thermal electron-acoustic phonon scattering. We em-
phasize that in higher (i.e., 2 and 3) dimensions this
many-body renormalization of electron-acoustic-phonon
interaction is quantitatively (and qualitatively) totally
insignificant and is usually neglected in theoretical calcu-
lations.

An observable consequence of this is that, for kgT
much smaller than 2Ackr, the energy relaxation rate in a
1DEG is strongly enhanced over the “bare phonon” re-
sult, and the asymptotic low temperature behavior of the
energy relaxation of a 1DEG in a semiconductor quan-
tum wire is not the one characterized by an Arrhenius
type exp(—2hckp/kT) behavior, but an algebraic tem-
perature dependence, T", with a substantially higher
power loss than the simple, unrenormalized result. Thus,
Bloch-Griineisen behavior is restored in a IDEG due to a
subtle many-body electron-phonon interaction effect.

We now quantify the above claims by evaluating the
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expression for the power loss per electron in a GaAs
quantum wire of width a and one-dimensional electron
density n:
2 *te do
P=—X|M(q)| - —”—hwng(hw/kT)
q

1
n
xImy(g,0)ImD(q,0), (1)

where ng(hw/kT) is the Bose occupation factor at a tem-
perature 7 (where T is the electron temperature, higher
than the lattice temperature which is taken here to be
zero), D(q,w) is the phonon propagator, with ImD(q,w)
defining the spectral weight function of the phonons,
[M(g)|? the squared matrix element for the one-
dimensional electron-acoustic phonon deformation poten-
tial interaction, given by

=22

Mg 2=PE4 &)
2pa“wy

and y(g,w) is the reducible polarizability of the electron

gas, given in the random phase approximation by

2(g,0) =x0(q, )1 = V(@) xo(g,0)] ~". 3)

In Eq. (3), xo(q,w) is the finite temperature Lindhard
polarizability [4] of a 1DEG, and V(g) the matrix ele-
ment of the electron-electron interaction in the lowest
subband of a quantum wire with an effective width a.
Using a parabolic well model for the lateral confinement
[5] of the quantum wire electrons, ¥ (g) is given by

2
V(q)=le——K0(qa) , 4
&

where g is the lattice dielectric constant of GaAs and Ko
is the modified Bessel function of zeroth order. The re-
normalized phonon propagator is given by

2hcq
(ho+in)?—(heg)?—2heqgI M (@) %y (q,0)
(5)

The last term in the denominator of Eq. (5) corresponds
to the phonon renormalization caused by the electron-
phonon interaction. Neglecting this renormalization D
has poles at w = % cq corresponding to the bare phonon
frequency in the absence of the electron gas. If the bare
phonon propagator is substituted into Eq. (1), one gets
the simple well-known expression for the power loss P
that can be obtained by elementary kinetic reasoning, by
considering the difference between the transition rates be-
tween electronic eigenstates of the system with emission
or absorption of phonons [3,6].

A numerical evaluation of Eq. (1) is shown in Fig. 1 as
a function of temperature, and is compared to the result
obtained using the bare phonon approximation. Materi-
als parameters for GaAs used in the computations are
=Z=7.0 eV (deformation potential), g=12.8, m/mg
=0.066 (electron effective mass over free electron mass,

D(q,0) =
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FIG. 1. Power loss per electron in a semiconductor quantum
wire, as a function of electron temperature, for GaAs parame-
ters, plotted both as an Arrhenius plot and (inset) as a log-log

plot. The dashed line is the result obtained by neglecting the
many-body renormalization of the phonons.

p=5.307 gecm 3 (density) and ¢=4.73%x10°> cms .
All the qualitative behavior as a function of temperature
discussed above appears in this result. For 2hckg>kgT,
the power loss tends to be linear in 7, but an exponential
regime sets up quickly as the temperature is lowered, and
persists indefinitely for the bare phonon approximation.
For even lower temperatures, however, a power law be-
havior reappears in the many-body calculation with re-
normalized phonons. In fact, around 7 =1-2 K, the vir-
tual phonon emission causes an enhancement of several
orders of magnitude in the power loss over the real pho-
non emission.

To see more clearly how this result comes about, we
rewrite Eq. (1) in terms of dimensionless quantities x
=q/2kp, y=hw/Ep, t=kgT/Er, D=ErD, l—=X/NF7
and ¢ =mc/4hkr, where Ng is the density of states of the
IDEG at the Fermi energy; and, after some algebraic
manipulation, obtain

+ oo + oo
P=Poj; dxxf_oo —dnxfng(y/t)lmf(x,y,t)

xImD(x,y,1), (6)

=2 5

Po=4=—"" ()
pa

The power loss is a sum of contributions from each
momentum x and energy y. For t<<1, Imy is signifi-
cantly different from zero only in the region

4x|x+xo| <y <dx(x—xg), (8)

xQ=(,U/EF)l/2, 9)
where u is the chemical potential, and xo approaches 1 as
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FIG. 2. ImD, (hw/ksT)ng(hw/ksT), and the product of
these two factors, giving the integrand Fy of the integral of Eq.
(6), for the same parameters as in Fig. 1, and for T=10 K
(dashed lines) and T=1 K (solid lines), showing how the main
contribution to the integral shifts from the only peak of ImD
(phonon peak) to the low-w region at low 7. The inset shows
the region in phase space that contributes to the power loss in
one dimension. The upper line for the phonon dispersion y =¢éx
corresponds to n=3%10° cm~!, and the lower one to n=3
x10® cm ~'. The dashed line is x =(u/Er) ', along which the
quantities shown in the main body of the figure are evaluated.

t goes to zero. The inequality of Eq. (8) specifies the al-
lowed region for electron-hole pairs in the IDEG. As il-
lustrated in the inset of Fig. 2, in only a small region
around x =1 there is a significant overlap of Imy and
ImD. If one neglects the phonon renormalization, a good
approximation for P can be obtained by replacing the in-
tegrals in Eq. (6) by an integral over the path y =¢x from
x=1—¢/4 to x=1+¢/4. Since ¢/4 <1, we can approxi-
mate the path length by ¢/2, and the argument of the
integrand by its value at x =1 and y=¢. This is the
“phase-space’” argument, from which one gets the ap-
proximate analytical result

_ Pocr ng(é/t)
8 |e(1,6,0)|%’

where we have used the fact that Img=Imyo/e and
Im7(x,y,t) = n/4x in the integration region. The sub-
script in Pp indicates that this is the result obtained with
bare phonons. This estimate explains the numerical re-
sults shown by the dashed line in Fig. 1, and makes it
clear that the exponential behavior comes from the fact
that at low temperatures energy relaxation in a IDEG
occurs only via the emission of 2kr phonons. .

In the main body of Fig. 2 we show ImD(x,y,t),
ng(y/t), and the argument of the y (frequency) integral
of Eq. (6), for the same parameters used to obtain the
curve in Fig. 1, for two different temperatures. The spec-
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FIG. 3. Result of the integration over y of Fy, as a function
of reduced wave vector x. In the scale of this figure, the renor-
malized and bare results are indistinguishable at 7=10 K, but
there is a strong enhancement due to the phonon renormaliza-
tion at T=1 K.
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tral weight function is weakly dependent on temperature
and has only one peak, which defines the renormalized
phonon frequency. It also shows how, as the temperature
is lowered, this peak contributes less to the integral over y
than the low frequency (low y) region. Again we stress
that there is no resonant behavior at low y. The collective
mode for the electron gas (plasmon) lies far above the
acoustic phonon, and the plasmon-phonon coupling effect
is not operative here. The result of the integration over y
is shown in Fig. 3, and compared to the bare phonon re-
sult. For higher temperatures, the phonon resonance still

gives the dominant contribution, and there is no
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FIG. 4. Relative shift to lower frequencies of the phonon
peak in ImD, for T=10 K (dashed line) and 7=1 K (solid
line). In the scale of the main body of the figure the two are in-
distinguishable; the inset shows the small difference between
them.
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FIG. S. Power loss per electron as a function of temperature,
for several values of well width and electron density, for GaAs
parameters, scaled according to the approximate analytical re-
sult, Eq. (10). The dashed line shows the single result for all
these parameters when the phonon renormalization is neglected.
The numbers indicate the electron densities in cm ~!; solid sym-

bols: @=50 A; open symbols: a=100 A; cross and star: a
=200 A.

difference, in the scale of that figure, between the results
with or without phonon renormalization, but for the lower
temperature the renormalized result is increased by or-
ders of magnitude over the bare one. One might think
that the low temperature behavior could be accounted for
by the shift of the resonant peak; we demonstrate this not
to be the case by explicitly showing the values of that
shift, for the same temperatures, in Fig. 4. The frequen-
cy renormalization is essentially the same at both temper-
atures, and moreover, its magnitude is too small to cause
any difference. This again shows that our results cannot
be obtained by the resonant coupling approximations
which neglect the many-body phonon broadening.

Finally in Fig. 5 we present the integrated results for
several choices of quantum wire widths and carrier densi-
ties, showing that the scaling implied by Eq. (10) is well-
satisfied down to ¢/t values of the order of 10. For lower
temperatures, a power-law behavior appears, and this is
the region where emission of virtual phonons is impor-
tant. Qualitatively, we have a many-body explanation
for the restoration at low temperatures of the Bloch-
Gruneisen behavior. But in this case, this low tempera-
ture behavior is not caused by the excitation of low wave
vector phonon modes, which cannot contribute in a
IDEG due to phase-space restrictions, but rather by 2kr
low energy virtual phonon modes.

More generally, since the previous argument can, in
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principle, be applied to momentum relaxation caused by
phonon scattering [7], one has an important conceptual
guide. When the simple phase-space argument reflects a
severe restriction on the scattering rate, the many-body
quantum-mechanical (not thermal) uncertainty in the
modes that couple to electrons can, by itself (and without
any extraneous broadening caused by impurities), provide
the needed continuum of final states to lift the phase-
space restriction. Thus, consistent with several recent ex-
perimental observations [8] of various other electronic
properties of quantum wires, the IDEG behaves not very
differently from higher-dimensional systems with respect
to its low temperature transport properties as well, even
though this “similarity” with the higher-dimensional be-
havior is caused by a rather subtle many-body effect in
this case.
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