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ABSTRACT 
 
In this paper we simulate and classify the Swing-by maneuvers of a spacecraft in close approach with 
a celestial body, alternatively proposing an identification of the category of the orbits in the synodic 
coordinate system. The mathematical model used is the restricted circular three-body problem in two 
and three dimensions. In general the classification of orbits are presented in “letter-plots” which 
consist of graphs of orbital categories represented by letters. The coordinates are chosen from the 
initial conditions of the problem. In our work we use the periapsis distance pr  and the spherical 
angles of the spacecraft. Henceforth, we are able to use spatial rectangular coordinates instead and 
obtain a view of the spacecraft at its periapsis position and the changes in the trajectory during the 
close approach. The letters are substituted by points in the new graph where the study of the sign of 
energy and angular momentum gives the right classification of the orbits. 
 

INTRODUCTION 
 
The gravity assisted maneuver is a technique used in space missions to reduce fuel consumption like 
in Weinstein 1992, Swenson 1992, Broucke and Prado 1993, Prado and Broucke 1995 and many 
others (see Broucke 1988 and reference therein). The standard maneuver uses a close approach with a 
celestial body to modify the velocity, energy and angular momentum of a dimensionless body (a 
spacecraft). The model used in the present study is the three-dimensional restricted circular tree-body 
problem (Szebehely 1967). 

 

For fixed parameters pV , pr , α  and β , to described later, the problem consists of studying the 
motion of the spacecraft near the close encounter with a secondary body of the system. In particular, 
the energy and angular momentum of the spacecraft before and after the close approach. Those 
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quantities are used to classify its orbit up to sixteen classes of orbits, according to the changes in the 
energy and angular momentum caused by the close encounter (see Prado and Broucke 2000). 

 

The main goal is to simulate a large number of orbits, under some fixed parameters, classify them into 
those classes and use an alternative model to describe the regions of different classes of orbits. 

 

This alternative description of orbital regions, differently from the standard ones found in the 
literature, uses the spatial rectangular coordinates in the rotating reference system. Henceforth, if is 
possible to obtain a view of the spacecraft at its periapsis position together with its class of orbit. 
Moreover, using this alternative model it is possible to derive equations in order to obtain necessary 
conditions for similarity between two systems. 

 

MATHEMATICAL MODEL 

 

For the present study the well known model of three-dimensional restricted circular three-body 
problem (Szebehely 1967) is used. It consists of two bodies 1M  and 2M , called primaries, of masses 

1m  and 2m  moving in circular orbits about their mutual center of mass, with constant angular velocity 
w , and a third body 3M  of negligible mass (the spacecraft) witch moves under the gravitational 
effect of the central and perturbing masses without affecting their motion. As usual, dimensionless 
units are used, in such way that the distance between the primaries, the total mass of the system and 
the angular velocity w  of the system  are equal to one. The equations of motion of the third body in 
the rotating frame are given by 
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=µ , 1r  and 2r  are the distances from 1M  and 2M  to 3M , respectively. In the case 

of planar motion 0=z . It is also necessary to have equations to calculate the energy ( E ) and angular 
momentum (C ) of the spacecraft, which are respectively the following 
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In the restricted problem neither the orbital energy nor the angular momentum are conserved since the 
third body does not affect the motion of the primaries. However, the dynamical system still has na 
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integral of the motion, the Jacobi constant, given by Ω−= 2

2
1 VJ , where 
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ALGORITHM TO SOLVE THE PROBLEM 

 
In order to describe the maneuver it is standard to use the four independent parameters: 

 
i) pV , the magnitude of the velocity of the spacecraft at periapsis; for our purposesly velocity 

vectors pV
r

 parallel to the x-y plane were considered; 
ii) pr , the distance between the spacecraft and the second mass 2M  during the closest 

approach (periapsis); 
iii) α , the angle between the projection of the periapsis line in the x-y plane and the line that 

connects the two primaries; 
iv) β , the elevation angle between the periapsis line and the x-y plane. 

 
Figure 1 – Initial conditions in two and three-dimensions. 

 
Once a system is established (i.e., µ  is fixed at some value), the initial position ( )iii zyx ,,  and 
velocity ( )iii VzVyVx ,,  are considered for the spacecraft at periapsis. With these considerations, a 
numerical algorithm is built using MapleV software to solve the problem, in the following steps: 

 
i) arbitrary values for the parameters pV , pr , α  and β  are given; 
ii) with these values, the initial conditions in the rotating system are computed 

αβµ coscos)1( pi rx +−=  αβ sencospi ry =  βsenpi rz =  
αsenpi VVx −=    αcospi VVy =  0=iVz  

iii) with these initial conditions, the equations of motion are integrated forward in time until 
the distance 2r  is equal to 0.5, half the distance between the primaries in the dimensioless 
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system. At this point the numerical integration is stopped and the energy ( +E ) and the 
angular momentum ( +C ) after the close encounter are calculated; 

iv) the initial conditions are considered again and the equations of motion are integrated 
backwards in time, until the specified distance is reached again. Then the energy ( −E ) 
and angular momentum ( −C ) before the encounter are obtained. 

 
For all simulations, a Runge-Kutta 4th-5th order was used, performed by MapleV software. The energy 
determines whether the trajectory is elliptic ( 0<E ) or hyperbolic ( 0>E ) and the angular momentum 
indicates when it is retrograde ( 0<C ) or direct ( 0>C ). Parabolic trajectories are given by 0=E  
and linear trajectories by 0=C . The goal is to identify the category of the orbit of the spacecraft 
before and after the close encounter for a large range of given initial conditions. The standard 
classification and representation according to the change in the orbit of the spacecraft is by assigning 
letters to orbits, the so called “letter-plot” diagram forend in the related literature (Broucke 1988). In 
the planar case, letter-plots are represented in two-dimensional diagrams that have α  in the horizontal 
axis and the Jacobi constant J  in the vertical axis, for fixed values of pr  and µ . In the three-
dimensional restricted circular three-body problem, a letter-plot is made for fixed values of pr , µ  and 

pV , in a diagram that has angle α  in the vertical axis and angle β  in the horizontal axis (see Felipe 
2000). 
 

RESULTS 
 
In this study a velocity at periapsis pV  is fixed and the pr  is a variable taking values in an interval 
where the influence of 2M  in the change of orbit of the spacecraft is significant. The value of pr  
should not be so large such that the gravitational force of 2M  on the spacecraft would hardly be 
noticed, neither it should not be so small to result in capture of the spacecraft for a long period. 
 
According to Broucke 1988, where a convenient interval for the Jacobi constant J  is assumed 

5.145.1 ≤≤− J , it is necessary to find the corresponding pV ’s for J  in this interval. 
 
The Earth-moon system ( 01.0=µ ) is initially fixed and for pr ’s found in Broucke 1998, it is possible 
to obtain lower and upper bounds for pV ’s corresponding to 5.145.1 ≤≤− J . 

 
Table 1 – Ranges for pV ’s corresponding to 5.145.1 ≤≤− J . 

pr  Lower pV  Upper pV  
0.01 1.435407970 2.821417381 
0.001 4.478850632 5.095105787 
0.0001 14.14426032 14.35131004 

 
In order to perform the simulations of orbits, the values chosen for pV ’s are 1.5, 2, 2.5, 3, 4, 5, 10 and 
14. 
 



 5

Considering J  constant with respect to the angle α , it is possible to calculate lower and upper 
bounds for pr ’s for each pV  fixed, as it is shown in table 2. 
 
Note that for each pV  fixed it is possible to find an pr  such that the calculated J  is equal to –1.45, 
however the same does not happen for 5.1=J . In the latter cases, or in case the calculated upper 
bound for pr  is superior to the radius of influence, it is taken the upper bound 04.0=pr  for the study 
of orbital regions. 
 

Table 2 – Initial conditions for the study of orbital regions. 

pV  Lower pr  
calculated 

Upper pr  
calculated 

Lower pr  
assumed 

Upper pr  
assumed 

1.5 0.0091339 Não tem 0.009 0.04 
2.0 0.005076 Não tem 0.005 0.04 
2.5 0.0032311 0.07277 0.0032 0.04 
3.0 0.00223717 0.00657944 0.002237 0.0066 
4.0 0.00125471 0.00199205 0.00125 0.002 
5.0 0.000801928 0.00105043 0.0008 0.0011 
10.0 0.000200120 0.000212676 0.0002 0.00022 
14.0 0.000102072 0.000105241 0.000102 0.00011 

 
With 01.0=µ  and pV  fixed for a value in table 2, a simulation of an orbit is performed for each 
initial condition as defined before, for pr  in that interval and the orbit is classified according to the 
signs of −E , +E , −C  and +C . 
 
An example of the results obtained and represented in this alternative diagram is shown below for 

5.1=pV . 
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E- = 0 
E+ = 0

C+ = 0

C- = 0 

E- < 0 
E+ < 0 
C- < 0 
C+ < 0 

 
Figure 2 – Orbital regions for 5.1=pV  and 04.0009.0 ≤≤ pr  in Earth-moon system. 

 
In order to understand this representation, consider two points 1P  and 2P  which are indicated in the 
diagrams as initial conditions. The point 1P  has polar coodinates º232=α  and 03.0=pr  and 2P  has 

º300=α  and 03.0=pr . 1P   is found in a region of type A (direct ellipse to direct ellipse) and 2P  is 
located in a region K (direct hyperbola to direct hyperbola). 
 
 

 

E- = 0 
E+ = 0

C+ = 0

C- = 0 

E- < 0 
E+ < 0 
C- < 0 
C+ < 0 

 
Figure 3 – Representation of points 1P  and 2P  in diagram of orbital regions. 

 
 

A simulation of the trajectories of the spacecraft in the rotating reference system, under the fixed 
parameters 01.0=µ , 5.1=pV   and periapsis at 1P  and 2P   is shown in figure 5. 
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Before

After 

 

Before 

After 

 
Figure 4 - Trajectories of the spacecraft in regions A and K for a short time. 

 
Note that for a longer period, one trajectory is a spiral around the center of mass, characteristic of a 
hyperbolic orbit, and the other is a trajectory composed of small loops enclosing the bigger primary, 
which characterizes an elliptic orbit. 

 

Before 

After 

 

Before

After 

 
Figure 5 - Trajectories of the spacecraft in regions A and K for a long time. 

 
Simulations for other values of the parameter pV  in table 2 give the following diagrams of orbital 
regions. 
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Figure 6 - Orbital regions for 2=pV  and 04.0005.0 ≤≤ pr (left) and for 5.2=pV  and 

04.00032.0 ≤≤ pr (right). 
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C- < 0
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E+ = 0
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C- < 0 
C+ < 0 

 
Figure 7 - Orbital regions for 3=pV  and 0066.0002237.0 ≤≤ pr (left) and for 4=pV  

and 002.000125.0 ≤≤ pr (right). 
 
In each graph a point on the axis of the primaries indicates the signs of the funcions E-, E+, C-, C+ at 
that point. As one moves to the right hand side and crosses their zero level curves, then the signs of 
these functions change from negative into positive at points chosen in the ring domain. 
 
Note that the zero level curves of the energy ( 0=−E  and 0=+E )  look alike and are almost paralel 
for Vp small. When they intercept the horizontal axis they meet at º180=α  and º360=α . Similarly 
for the zero level curves of the angular momentum ( 0=−C  e 0=+C ) which leave the ring domain 
for larger radii almost at º270=α . If 2>pV  and rp's are sufficiently large the energies ( −E  
and +E )  are positive and the regions are reduced to three classes ( retrograde hyperbola to retrograde 
hyperbola, retrograde hyperbola to direct hyperbola and direct hyperbola to direct hyperbola). 
Moreover, those regions are delimited by curves of zero angular momentum. As pr  increases, those 
curves approach asymptotically a line at M2 of constant angle α , which for +C  is close to º270=α . 
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SIMILARITY RESULTS 
 
The objective now is to develop a technique that may permit associating two systems which have 
similar diagrams of orbital regions, under different parameters and initial conditions. 
 
Broucke in (Broucke 1988) verified that letter-plot diagrams of orbital regions, in the coordinate 
system of variables α  and  J in the axis, are similar for given parameters 1C=µ  and 12 CCrp ⋅= ,  if 
pairs of values are taken in the sets 1C =0.01, 0.001, 0.0001 and 0.00001 and 2C =0.01, 0.1, 1, 10, 
100. In fact, if there is similarity of diagrams then  

 

1

2
12 µ
µ

pp rr = , (1) 

 
where ( 1pr , 1µ ) and ( 2pr , 2µ ) are periapsis radii and the coefficients of mass for systems 1 and 2, 
respectively. 
 
Once  01.0=µ , 01.0=pr  and º180=α  are fixed, the velocities pV  are calculated corresponding to  

5.15.1 ≤≤− J , and the values obtained are 12.82141738 61.40014143 ≤≤ pV .  Then, a value of pV  is 
fixed and the dependence of J  with respect to the independent variable α  can be measured. 
 
 

  

 
Figure 8 - Relation between the Jacobi constant and α  for fixed pV  and pr . 

 
The Jacobi constant J may be considered a constant function of the variable angle α , with an error 
smaller than 10-4 , for 01.0=pr  .  It is assumed that the initial conditions 01.0=µ , 01.0=pr  and 

5.15.1 ≤≤− J   may be replaced by 01.0=µ , 01.0=pr  and 821417381.2400141436.1 ≤≤ pV ,  
giving the same diagrams of orbital regions. Analogously,  for 001.0=µ  and 001.0=pr , again 
assuming J   constant with respect to α , the corresponding velocity values are 
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62.8277206351.41280005 ≤≤ pV , and so on. The following table shows the same calculations for 
other pairs  ( pr,µ ).  

 
Table 3 - Ranges of velocities corresponding to 5.15.1 ≤≤− J  

Initial Conditions Calculated Interval of Velocities 
( 01.0=µ , 01.0=pr ) 1.400141436 ≤ pV ≤ 2.821417381 

( 001.0=µ , 001.0=pr ) 1.412800055 ≤ pV ≤ 2.827720636 
( 0001.0=µ , 0001.0=pr ) 1.414072148 ≤ pV ≤ 2.828356420 

( 00001.0=µ , 00001.0=pr ) 1.414199420 ≤ pV ≤ 2.828420054 
 
These pairs of initial conditions are equivalent in the sense that for the corresponding intervals of 
velocities pV  ´s  their diagrams of orbital regions should be similar. 
 
Now, fixing 12.82141738=pV  (case 01.0=µ )  and calculating an interval of pr 's such that J  takes 
its standard values, it results in 01.033010.00249991 ≤≤ pr . Analogously,  if 827720636.2=pV  
(case 001.0=µ ) then the resulting interval of pr 's is 01.0 991220.00024999 ≤≤ pr . 
 
Therefore, 12.82141738=pV  ( 01.0=µ , 01.0=pr )  is equivalent to 827720636.2=pV  ( 001.0=µ , 

001.0=pr ) and both represent a horizontal line in the diagrams of orbits in coordinates J , α  .  
Other simulations for those initial conditions  and other choices of pr 's show a similarity between 
these two systems. 
 

  

 
Figure 9 - Study of J  for different values of pr  in two systems 

. 
However, for lower velocities like pV =1.400141436 ( 01.0=µ ) it is not possible to find an interval of 

pr ’s  which would give the standard interval of J 's. Moreover, here J  is not a constant function of 
the variable α , as the following examples show. The left hand side shows from top to bottom the 
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cases 01.0=µ   and pr  varying in the intervals [0.01,0.2] and [0.01,0.5], and the right hand side 
shows in the same order, cases 001.0=µ  and pr  taking values in the intervals [0.001,0.02] and 
[0.001,0.05]. 

  

 
  

 
Figure 10 - Study of J  for different intervals of pr  in two systems 

 
Given two systems with periapsis 1pr  and 2pr  and coefficients of mass 1µ  and 2µ , respectively, for 
the purpose of this study if there is similarity then equation (1) is satisfied. This implies that if 1pr  is 
taken equal to 1µ  then 2pr  is equal to 2µ . Moreover, if their Jacobi constants 1J  and 2J  are assumed 
constant functions of the angle  α  , then α  may be taken equal º180 . With these initial conditions, in 
order to obtain similarity it is assumed 21 JJ =  and it follows that their respective periapses velocities 

1pV  and 2pV  in the rotational reference system must satisfy the condition: 
  

2
2

2
1

2
12 )21()21( µµ −+−−= pp VV . (2) 

 
Some examples of similar diagrams of orbital regions are given below for high and low velocities. 
Their respective initial conditions satisfy equations (1) and (2). 
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Figure 11 - Similar diagrams of orbital regions for two different systems 82142.21 =pV  and 

01.01 =µ (left) and 82772.22 =pV  and 001.02 =µ  (right). 
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E- = 0 

E+ = 0
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Figure 12 - Similar diagrams of orbital regions for two different systems 0.21 =pV  and 

01.01 =µ (left) and 00978.22 =pV  and 0001.02 =µ  (right). 
 

ORBITAL REGIONS  IN THREE DIMENSIONS 
 
The study of three-dimensional orbital regions involves one more variable: the angle beta. Simulations 
are performed for a spherical shell taking pV  fixed and º900 ≤≤ β , since there is symmetry for 

0º90 ≤≤− β . Each of the sixteen classes of regions is viewed separately. For a fixed angle β , the 
points of the boundary of a region are determined. Then, the angle β  takes different values between 0 
and 90 in order to generate different surfaces. Finally, these surfaces are put together in order to 
generate the desired region.  
 
A better view of a region is obtained using MapleV to produce animations of the three-dimensional 
picture. The following pictures ilustrate the type of view obtained as output of the programs for 

5.1=pV . 
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Figure 13 - Orbital regions for 5.1=pV  including the letters of classes of orbits. 

 

 
Figure 14 - Region K (direct hyperbola to direct hyperbola). 

 
 

CONCLUSIONS  
 

The effects of a close approach of a spacecraft  with a celestial body were simulated and classified, 
using a numerical algorithm and the plotting resources of MapleV software . An alternative 
description of diagrams of orbital regions in the rotational coordinate system is proposed. The 
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mathematical model used is the restricted circular three-body problem in two and three dimensions. In 
general the classification of orbits are presented in “letter-plots” which consist of graphs of orbital 
categories represented by letters. In this work  the periapsis distance pr  and the spherical angles α 
and β of the spacecraft are used as variables, and the periapsis velocity pV  is fixed. Henceforth, it is 
possible to use spatial rectangular coordinates instead and obtain a view of the spacecraft at its 
periapsis position and a classification of the changes in the trajectory during the close approach, 
simultaneously at the same diagram.  
 
Moreover, a procedure was developed to study the similarity of two systems, or equivalently, the 
similarity of two diagrams of orbital regions for different initial conditions. Equations involving the 
periapsis radii, the coefficients of mass and the velocities of two systems, were derived as necessary 
conditions for similarity of two systems. 
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